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A.1 Proof of Theorem 1

Part (a). By optimality of θ̂ for problem (5),

‖y − θ̂‖22 + λθ̂T L̃θ̂ ≤ ‖y − β̂‖22 + λβ̂T L̃β̂

≤ ‖y − β̂‖22 + λ(1 + ε)β̂TLβ̂,

where we have used the spectral similarity of L, L̃. Rearranging, we see that

‖θ̂‖22 − ‖β̂‖22 ≤ 2yT (θ̂ − β̂) + λ(1 + ε)β̂TLβ̂ − λθ̂T L̃θ̂.

Substituting y = β̂ + y − β̂ on the right-hand side, and again rearranging,

‖θ̂ − β̂‖22 ≤ 2(y − β̂)T (θ̂ − β̂) + λ(1 + ε)β̂TLβ̂ − λθ̂T L̃θ̂.

Using y − β̂ = λLβ̂ from the stationarity condition for (1),

‖θ̂ − β̂‖22 ≤ 2λθ̂TLβ̂ − λ(1− ε)β̂TLβ̂ − λθ̂T L̃θ̂

≤ 2λ‖L1/2θ̂‖2‖L1/2β̂‖2 − λ(1− ε)β̂TLβ̂ − λθ̂T L̃θ̂

≤ 2λ
√

1 + ε‖L̃1/2θ̂‖2‖L1/2β̂‖2 − λ(1− ε)β̂TLβ̂ − λθ̂T L̃θ̂,

where we have again used the spectral similarity of L, L̃. Now we examine two cases for last line above. If√
1 + ε‖L̃1/2θ̂‖2 ≤ ‖L1/2β̂‖2, then

‖θ̂ − β̂‖22 ≤ λ(1 + ε)β̂TLβ̂ − λθ̂T L̃θ̂.

If
√

1 + ε‖L̃1/2θ̂‖2 > ‖L1/2β̂‖2, then

‖θ̂ − β̂‖22 ≤ λ(1 + 2ε)θ̂T L̃θ̂ − λ(1− ε)β̂TLβ̂.

Putting these together, we get the desired final bound.

Proof of (b). Following the proof strategy for part (a), except with the regularization parameter denoted by
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λ′ for problem (5), we have

‖θ̂ − β̂‖22 ≤ 2λθ̂TLβ̂ + ((1 + ε)λ′ − 2λ)β̂TLβ̂ − λ′θ̂T L̃θ̂

≤ 2λ‖L1/2θ̂‖2‖L1/2β̂‖2 + ((1 + ε)λ′ − 2λ)β̂TLβ̂ − λ′θ̂T L̃θ̂

≤ 2λ
√

1 + ε‖L̃1/2θ̂‖2‖L1/2β̂‖2 + ((1 + ε)λ′ − 2λ)β̂TLβ̂ − λ′θ̂T L̃θ̂

= 2λ
√

1 + ε‖L̃1/2θ̂‖2
(
‖L1/2β̂‖2 −

λ′

2λ
√

1 + ε
‖L̃1/2θ̂‖2

)
︸ ︷︷ ︸

a

+ ((1 + ε)λ′ − 2λ)β̂TLβ̂.

We now examine two cases for the first term a on the line above. If λ′/(2λ
√

1 + ε)‖L̃1/2θ̂‖2 ≤ ‖L1/2β̂‖2,
then a ≤ (4λ2(1 + ε)/λ′)β̂TLβ̂; if λ′/(2λ

√
1 + ε)‖L̃1/2θ̂‖2 > ‖L1/2β̂‖2, then a ≤ 0. Therefore,

‖θ̂ − β̂‖22 ≤
(4λ2(1 + ε)

λ′
+ (1 + ε)λ′ − 2λ

)
β̂TLβ̂.

An easy calculation shows that the optimal value of λ′, making the leading factor above as small as possible,
is λ′ = 2λ. Plugging this in gives the desired result.

A.2 Proof of Theorem 2

Let us first consider the univariate logistic function g : R→ R defined by

g(x) = −ax+ log(1 + ex),

for a constant a ∈ R. It is clear that g is convex, with first and second derivatives

g′(x) = −a+ π(x), g′′(x) = π(x)(1− π(x)),

where π(x) = ex/(1 + ex). If |x| ≤ R, then g′′(x) ≥ δ(1 − δ), where δ = π(−R). Thus by strong convexity
of g over the interval [−R,R], we have

g(z)− g(x)− g′(x)(z − x) ≥ δ(1− δ)
2

(z − x)2, for all x, z ∈ [−R,R].

or equivalently, by the monotonicity of the inverse link function π,

g(z)− g(x)− g′(x)(z − x) ≥ δ(1− δ)
2

(z − x)2, for all π(x), π(z) ∈ [δ, 1− δ].

Now write the logistic loss in (3) as f(β) =
∑n
i=1 g(βi; yi); then the above shows that

f(θ)− f(β)−∇f(β)T (θ − β) ≥ δ(1− δ)
2

‖θ − β‖22, whenever π(βi), π(θi) ∈ [δ, 1− δ], i = 1, . . . n. (A.1)

Hence, under the assumptions of the theorem, we may begin with the assertion that

f(θ̂) + λ′θ̂T L̃θ̂ ≤ f(β̂) + λ′β̂T L̃β̂,

by the optimality of θ̂ for its own problem, then rearrange, and use (A.1), to arrive at

δ(1− δ)
2

‖β̂ − θ̂‖22 ≤ −∇f(β̂)T (θ̂ − β̂) + λ′β̂T L̃β̂ − λ′θ̂T L̃θ̂

≤ −∇f(β̂)T (θ̂ − β̂) + λ′(1 + ε)β̂TLβ̂ − λ′θ̂T L̃θ̂.

Using −∇f(β̂) = 2λLβ̂ from the stationarity condition for β̂ in (1), we have

δ(1− δ)
2

‖β̂ − θ̂‖22 ≤ 2λθ̂TLβ̂ + ((1 + ε)λ′ − 2λ)β̂TLβ̂ − λ′θ̂T L̃θ̂.

The right-hand side is precisely of the same form as that analyzed in parts (a) and (b) of Theorem 1, and
the results follow.
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A.3 Estimation Error Bounds and Stability

The following is an estimation error bound derived for Laplacian smoothing in regression, where the error
rate is shown to scale with λ/n.

Theorem A.1. Assume that y ∼ N(β∗, σ2I), and denote by ρ1 ≤ ρ2 ≤ . . . ≤ ρn the eigenvalues of the graph
Laplacian matrix L. Let i0 ∈ {1, . . . n}, and consider a choice of tuning parameter

λ = Θ

(√∑n
i=i0+1

1
ρi

‖Dβ∗‖2

)
,

where D the graph difference operator (so that L = DTD). Then the graph Laplacian smoothing estimate β̂
in (1), with the regression loss (2), satisfies

‖β̂ − β∗‖22
n

= OP

(
nullity(L)

n
+
i0
n

+
1

n

√√√√ n∑
i=i0+1

1

ρi
· ‖Dβ∗‖2

)
.

Proof. Let R = row(L), the row space of L, and R⊥ = null(L), the null space of L. Also let PR be the
projection onto R, and PR⊥ be the projection onto R⊥, and abbreviate ‖x‖R = ‖PRx‖2, ‖x‖R⊥ = ‖PR⊥x‖2.
We can decompose

‖β̂ − β∗‖22 = ‖β̂ − β̂∗‖2R⊥ + ‖β̂ − β̂∗‖2R.

The first term ‖β̂ − β̂∗‖2R⊥ is on the order of nullity(L), which is the number of connected components in
the underlying graph G. This contributes the first term in the error rate of the theorem. Now it suffices to
consider ‖β̂ − β̂∗‖2R.

Using the optimality of β̂ in (1),

‖y − β̂‖22 + λβ̂TLβ̂ ≤ ‖y − β∗‖22 + λ(β∗)TLβ∗.

After setting y = β∗ + ε with ε ∼ N(0, σ2I), expanding, and rearranging, we arrive at the basic inequality

‖β̂ − β∗‖2R ≤ 2〈β̂ − β∗, PRε〉+ λ(β∗)TLβ∗ − λβ̂TLβ̂. (A.2)

Abbreviating δ = β̂ − β∗, let us write

εTPRδ = εTPi0PRδ + εT (I − Pi0)PRδ,

where Pi0 is the projection onto the first i0 eigenvectors of L, i.e., the eigenvectors associated with eigenvalues
ρ1 ≤ ρ2 ≤ . . . ≤ ρi0 . The first term above satisfies

εTPi0PRδ ≤ ‖Pi0ε‖2‖δ‖R = OP
(√
i0
)
‖δ‖R,

whereas the second term satisfies

εT (I − Pi0)PRδ = εT (I − Pi0)D+Dδ =
εT (I − Pi0)D+

√
λ

√
λDδ ≤ ‖(D

+)T (I − Pi0)ε‖22
2λ

+
λ

2
‖Dδ‖22. (A.3)

(In the last line here, we used the inequality 2aT b ≤ ‖a‖22 + ‖b‖22.) Directly from the singular value decom-
position of D, it is easy to verify that

‖(D+)T (I − Pi0)ε‖22 = OP

(
n∑

i=i0+1

1

ρi

)
.
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Plugging these bounds into the basic inequality (A.2), we see that

‖β̂ − β∗‖2R ≤ OP
(√
i0
)
‖β̂ − β∗‖R +OP

(
n∑

i=i0+1

1

ρi

)
1

2λ
+
λ

2
‖Dβ̂ −Dβ̂0‖22 + λ‖Dβ∗‖22 − λ‖Dβ̂‖22

≤ OP
(√
i0
)
‖β̂ − β∗‖R +OP

(
n∑

i=i0+1

1

ρi

)
1

2λ
+ 2λ‖Dβ∗‖22.

(In the last line, we have again used ‖a + b‖22 ≤ 2‖a‖22 + 2‖b‖22.) Plugging in the value of λ as described in
the statement of the theorem yields

‖β̂ − β∗‖2R ≤ OP
(√
i0
)
‖β̂ − β∗‖R +OP

(√√√√ n∑
i=i0+1

1

ρi

)
‖Dβ∗‖2.

We can view this as a quadratic equation of form ax2 − bx− c ≤ 0 in x = ‖β̂ − β∗‖R. As a > 0, the larger
of its two roots serves as a bound for x, i.e., x ≤ (b+

√
b2 + 4ac)/(2a) ≤ b/a+

√
c/a, or x2 ≤ 2b2/a2 + 2c/a,

which means that

‖β̂ − β∗‖2R = OP

(
i0 +

√√√√ n∑
i=i0+1

1

ρi
· ‖Dβ∗‖2

)
.

This completes the proof.

Remark. Assuming that the number of connected components nullity(L) stays bounded as n grows, the
optimal i0 in the theorem would be chosen to balance i0/n with the last term in the rate. This depends, of
course, on the decay of eigenvalues of L; for different graphs G, the eigenvalues will decay at different rates,
leading to different error bounds. But in any case, the result in the theorem reduces to

‖β̂ − β∗‖22
n

= OP

(λ
n
‖Dβ∗‖22

)
,

which, when ‖Dβ∗‖22 = O(1), is precisely as claimed in (7) in the main paper.
Our next result shows that when the solution β̂ is tuned as in Theorem A.1, the achieved penalty is on

the same order as that for β∗.

Lemma A.1. Under the same conditions as in Theorem A.1, if nullity(L) = O(1), and we were to choose
i0 = O(λ‖Dβ∗‖22), then the achieved penalty term satisfies ‖Dβ̂‖22 = OP(‖Dβ∗‖22). Hence in particular if
‖Dβ∗‖22 = O(1), then ‖Dβ̂‖22 = OP(1).

Proof. Returning to the proof of Theorem A.1, consider replacing the step in (A.3) by

εT (I − Pi0)PRδ = εT (I − Pi0)D+Dδ =
εT (I − Pi0)D+

√
0.5λ

√
0.5λDδ ≤ ‖(D

+)T (I − Pi0)ε‖22
λ

+
λ

4
‖Dδ‖22.

Carrying on as in the proof of Theorem A.1, we arrive at

‖β̂ − β∗‖2R ≤ OP
(√
i0
)
‖β̂ − β∗‖R +OP

(
n∑

i=i0+1

1

ρi

)
1

λ
+

3λ

2
‖Dβ∗‖22 −

λ

2
‖Dβ̂‖22.

Using ‖β̂ − β∗‖2R ≥ 0, and rearranging, we have

‖Dβ̂‖22 ≤ OP

(√i0
λ

)
‖β̂ − β∗‖R + 3‖Dβ∗‖22 = OP

(
‖Dβ∗‖22

)
,

where we have used the choice of i0, and the corresponding rate of ‖β̂ − β∗‖R from Theorem A.1.

Lastly, we show that under the conditions of the last lemma, both β̂ and θ̂, the latter being the solution
of the sparsified problem (5), achieve the same error rate.
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Corollary A.1. Under the same conditions as in Lemma A.1, assuming that L̃ is a (1 + ε) approximation
of L, the solution θ̂ of the sparsified problem (5), with the regression loss (2), and tuning parameter

λ′ = Θ

(√∑n
i=i0+1

1
ρi

‖Dβ∗‖2

)
,

satisfies

‖θ̂ − β∗‖22
n

= OP

(λ
n
‖Dβ∗‖22

)
,

just as β̂ does.

Proof. There are two ways to prove this result. The first strategy is simply to note that

‖θ̂ − β∗‖22
n

≤ 2‖θ̂ − β̂‖22
n

+
2‖β̂ − β∗‖22

n
,

and both terms are OP(λ‖Dβ∗‖22/n), the first term controlled by part (b) of Theorem 1 in the main paper
(in combination with Lemma A.1), and the second term handled by Theorem A.1.

The second strategy is to replicate the proof of Theorem A.1, applied to the problem (5) with L̃ in place
of L, and then conclude that the resulting error rate is not changed, since all eigenvalues of L̃ are within a
multiplicative factor between 1/(1 + ε) and (1 + ε) of those of L.

A.4 Proof of Lemma 1

We use Hoeffding’s inequality as a main tool for proving the results for both the uniform and kN samplers,
first treating the uniform sampling case. For i = 1, 2, . . . q, let ei = (ui, vi) be the ith edge sampled, and
denote by Xi the term added to xT L̃x due to sampling ei. Then

Xi =
W

q
(xu − xv)2 with probability we/W for each e = (u, v) ∈ E,

recalling W =
∑
e∈E we. Note that

∑q
i=1Xi = xT L̃x. The variables X1, X2, . . . Xq are independent, and lie

in an interval of length Wr/q, where r = max(u,v)∈E (xu − xv)2 −min(u,v)∈E (xu − xv)2. Using Hoeffding’s
inequality,

P

(∣∣∣∣ q∑
i=1

(
Xi − E(Xi)

)∣∣∣∣ > t

)
≤ 2 exp

(
−2t2∑q

i=1(W 2r2/q2)

)
= 2 exp

(
−2t2q

W 2r2

)
. (A.4)

As L̃ is an unbiased estimator of L, we have
∑q
i=1 E(Xi) = E(xT L̃x) = xTLx. Abbreviating µ = xTLx, and

substituting t = δµ into the Hoeffding bound (A.4), we infer that

|xT L̃x− µ| ≤ δµ, (A.5)

with probability at least 1− 2 exp(−2δ2µ2q/(W 2r2)). Now we use the smoothness assumption (8) on x, i.e.,
‖Dx‖2∞ ≤ µswmin/W , as well as

r ≤ max
(u,v)∈E

(xu − xv)2 ≤ max
(u,v)∈E

wuv
wmin

(xu − xv)2 =
‖Dx‖2∞
wmin

,

recalling wmin = mine∈E we. Therefore r ≤ µs/W , and the result in (A.5) holds with probability at least
1 − 2 exp(−2δ2q/s2). To make this probability at least 1 − 1/n, we need to choose q ≥ s2/(2δ2) · log(2n)
samples. Lastly, to give the result as written in the lemma, we simply substitute δ = ε/(1 + ε) and observe
that (A.5) then implies

1

1 + ε
µ ≤ xT L̃x ≤

(
1 +

ε

1 + ε

)
µ ≤ (1 + ε)µ.

5



The arguments for kN sampling are similar. We sample only from nodes with degree greater than k;
call this set U . When sampling edges incident to node u ∈ U , for i = 1, . . . k, let eu,i denote the ith edge
sampled, and let Xu,i be its contribution to xT L̃x. Then

Xu,i =
Wu

2k
(xu − xv)2 with probability we/Wu for each v ∈ N(u),

recalling Wu =
∑
v∈N(u) wu,v and N(u) denotes the neighbors of u. The variables Xu,i, u ∈ U , i = 1, . . . k

are independent, and lie in an interval of length at most Wmaxr/(2k), where Wmax = maxu∈V Wu, and r is
as above (in the proof for the uniform sampling part). Using Hoeffding’s inequality once again,

P

(∣∣∣∣∑
u∈U

k∑
i=1

(
Xu,i − E(Xu,i)

)∣∣∣∣ > t

)
≤ 2 exp

(
−2t2∑

u∈U
∑k
i=1

(
Wmaxr/(2k)

)2
)

= 2 exp

(
−8t2k

r2
∑
u∈U W

2
max

)
.

(A.6)
Denoting zu =

∑
v∈N(u) wu,v(xu − xv)2 for all u ∈ V , note that E(Xu,i) = zu/(2k) for all u ∈ U . Thus,

∑
u∈U

k∑
i=1

Xu,i = xT L̃x− 1

2

∑
u∈V \U

zu,

and ∑
u∈U

k∑
i=1

E(Xu,i) = xTLx− 1

2

∑
u∈V \U

zu.

This means that the Hoeffding bound (A.6), setting t = δµ, implies the statement in (A.5), with proba-
bility 1− 2 exp(−8δ2µ2k/(r2

∑
u∈U W

2
max)) ≥ 1− 2 exp(−8δ2µ2k/(nr2W 2

max)). Bounding r ≤ sµ/W , from
the smoothness condition (8) (as argued in the proof for the uniform sampling case) this is further lower
bounded by 1− 2 exp(−8δ2W 2k/(ns2W 2

max)). To make this probability at least 1− 1/n, we need to choose
k ≥ n(sWmax/W )2/(4δ2) · log(2n). The rest follows as in the uniform sampling case, i.e., to get the result
as stated in the lemma, we take δ = ε/(1 + ε).

A.5 Proof of Lemma 2

The proof is simple. Denote by L the Laplacian matrix of G × H, and L̃ the Laplacian matrix of G̃× H̃.
Also denote the edge weights of G,H by wu,u′ , wv,v′ , and the edge weights of G̃, H̃ by w̃u,u′ , w̃v,v′ . Observe,

xTLx =
∑
u∈VG

∑
{v,v′}∈EH

wv,v′(xu,v − xu,v′)2 +
∑
v∈VH

∑
{u,u′}∈EG

wu,u′(xu,v − xu′,v)
2,

xT L̃x =
∑
u∈VG̃

∑
{v,v′}∈EH̃

w̃v,v′(xu,v − xu,v′)2 +
∑
v∈VH̃

∑
{u,u′}∈EG̃

w̃u,u′(xu,v − xu′,v)
2.

Applying the appropriate spectral sparsification bounds to the inner sums gives the result.

A.6 Proof of Theorem 3

Let us denote
F (β) =

∑
i∈Ω

`(xTi β; yi) + µ‖β − v‖22.

Note that, by construction, F is strongly convex with parameter 2µ > 0, which implies that

F (θ)− F (β) ≥ gT (θ − β) + µ‖θ − β‖22, (A.7)

for any subgradient g of F at β. Therefore, by the optimality of θ̂ for problem (10),

F (θ̂) + λ′θ̂T L̃θ̂ ≤ F (β̂) + λ′β̂T L̃β̂,
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and after rearranging and applying (A.7), we have

µ‖β̂ − θ̂‖22 ≤ −gT (θ̂ − β̂) + λ′β̂T L̃β̂ − λ′θ̂T L̃θ̂

≤ −gT (θ̂ − β̂) + λ′(1 + ε)β̂TLβ̂ − λ′θ̂T L̃θ̂,

for any subgradient g of F at β. As there exists a subgradient such that −g = 2λLβ̂ from the stationarity
condition for β̂ in (9), we have

µ‖β̂ − θ̂‖22 ≤ 2λθ̂TLβ̂ + ((1 + ε)λ′ − 2λ)β̂TLβ̂ − λ′θ̂T L̃θ̂,

and the remainder of the analysis proceeds exactly as in parts (a) and (b) of Theorem 1.

A.7 Gaussian Smoothing with the Google+ Data

In this experiment, we added i.i.d. N(0, 5.5) noise to the components of β∗, the smooth signal constructed
by a simulated diffusion over the Google+ graph, as described in the main paper. Figure A.1 shows the
results, when considering a Gaussian loss (2) in the Laplacian smoothing problems (1), (5).
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Figure A.1: MSE and timing results for a Gaussian smoothing problem with the Google+ data.
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