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Appendix A. Parameters Estimation

In this appendix, we provide the derivation details of
the maximum likelihood estimates for parameters of
the proposed model dbmovMFs.

A.1 Maximum Likelihood Estimate

The expectation of the complete data log-likelihood is
given by

E[Lc(Θ|X ,Z)] =
∑
h

z̃.h logαh +
∑
h

z̃.h log(cd(κh))

+
∑
h,i,j

z̃ihwjhκhµhhxij (1)

where z̃.h =
∑
i z̃ih. We first maximize (1) with re-

spect to αh, subject to the constraint
∑
h αh = 1. The

corresponding Lagrangian, up to terms which are not
function of αh, is given by

L(α, λ) =
∑
h

z̃.h logαh + λh(1−
∑
h

αh) (2)

Taking derivatives with respect to αh’s, we obtain

∂L(α, λ)

∂αh
=
z̃.h
αh
− λ

setting this derivative to zero yields:

z̃.h = λαh

Summing both sides over all h yields to λ = n, thereby
the maximizing value of the parameter αh is given by:

α̂h =
z̃.h
n

(3)

In the same manner, to maximize expectation (1) with
respect to µw

h , subject to the constraint (µw
h )Tµw

h = 1,

we form the corresponding Lagrangian by isolating the
terms which depends on µw

h , which leads to

L(µ, λ) =
∑
h,i,j

z̃ihwjhκhµhhxij + λh(1−
∑
j

wjhµ
2
hh)

Taking the derivative with respect to µhh, yields:

∂L(µ, λ)

∂µh
=
∑
i,j

z̃ihwjhκhxij − 2λw.hµhh

where w.h =
∑
j wjh. Setting this derivative to zero,

we obtain:

λµhh =

∑
i,j z̃ihwjhκhxij

2w.h

Thus,

λ2µ2
hh =

(
∑
i,j z̃ihwjhκhxij)

2

4w2
.h

Multiplying both sides by w.h, yields:

λ2w.hµ
2
hh =

(
∑
i,j z̃ihwjhκhxij)

2

4w.h
(4)

hence, we obtain

λ = κh

√
w.h(

∑
i,j z̃ihwjhxij)

2

2w.h

= κh
‖rwh ‖
2w.h

where rwh is a d dimensional vector: let j′ = 1, . . . , d,
rwhj′ = rwh =

∑
i,j z̃ihwjhxij if wjh = 1 and rwhj′ = 0,

otherwize. Hence, the maximizing value of the param-



Running heading title breaks the line

eter µhh is given by:

µ̂hh =

∑
i,j z̃ihwjhxij

‖rwh ‖

=

∑
i,j z̃ihwjhxij√

w.h(
∑
i,j z̃ihwjhxij)

2

= ± 1
√
w.h

(5)

according to whether rwh =
∑
i,j z̃ihwjhxij is positive

or negative. It follows from equation (5) that given the
column partition w and the sign of rwh , the centroid
parameter µw

h can be deduced directly.

Next we concentrate on maximizing equation (1), with
respect to the concentration parameters κh’s, subject
to the constraint κh > 0, ∀h. The Lagrangian up to
terms which do not contains κh is given by

L(κ) =
∑
h

z̃.h log(cd(κh)) +
∑
h,i,j

z̃ihwjhκhµ̂hhxij(6)

note that, by KKT conditions, the Lagrangian multi-
plier for the constraint κh > 0 has to be equal to zero.
Taking the partial derivative of equation (6) with re-
spect to κh, we obtain

∂L(κ)

∂κh
= z̃.h

c′d(κh)

cd(κh)
+
∑
i,j

z̃ihwjhµ̂hhxij

Setting this derivative equal to zero, leads to:

c′d(κh)

cd(κh)
= −

µ̂hh ×
∑
i,j z̃ihwjhxij

z̃.h

replacing µ̂hh by
∑
i,j z̃ihwjhxij

‖rwh ‖
(see, equation 5), we

obtain:

c′d(κh)

cd(κh)
= − ‖r

w
h ‖

z̃.hŵ.h

let s = d/2− 1, then:

c′d(κh) =
sκs−1
h (2π)s+1Is(κh)− κsh(2π)s+1I ′s(κh)

(2π)2s+2I2
s (κh)

=
sκs−1
h

(2π)s+1Is(κh)
− κshI

′
s(κh)

(2π)s+1I2
s (κh)

= cd(κh)

(
s

κh
− I ′s(κh)

Is(κh)

)
(7)

Hence,

−c′d(κh)

cd(κh)
=
Is+1(κh)

Is(κh)
=

Id/2(κh)

Id/2−1(κh)
(8)

The above equation (8), arises from the use of the fol-
lowing recurrence formula [Abramowitz and Stegun,
1964]:

κhIs+1(κh) = κhI
′
s(κh)− sIs(κh) (9)

Note that computing the maximizing value κ̂h from
equation (7) implies to inverse a ratio of Bessel func-
tion, a problem for which there is no closed-form so-
lution. Thus, Following Banerjee et al. [2005], we can
derive an accurate approximation of the concentration
parameter, by using the following continued fraction
formula:

Id/2(κh)

Id/2−1(κh)
=

1
d
κh

+ 1
d+2
κh

+...

. (10)

Letting r̄wh =
‖rwh ‖
z̃.hŵ.h

=
Id/2(κh)

Id/2−1(κh) and using equation

(10), we obtain:

1

r̄wh
≈ d

κh
+ r̄wh

which yields the following approximation:

κ̂h =
dr̄wh

1− (r̄wh )2

Finally, the authors in [Banerjee et al., 2005] have em-
pirically shown that adding the following correction

term
−(r̄wh )3

1−(r̄wh )2 results in a better approximation of κ̂h,

which leads to:

κ̂h =
dr̄wh − (r̄wh )3

1− (r̄wh )2
(11)

As opposed to the classical movMFs where it is easy
to verify that r̄h ≤ 1 (see equation 6c) given the def-
inition of r, it is not straightforward to verify that
r̄wh ≤ 1, without careful analysis. Such a result is im-
perative, to guarantee that the concentration parame-
ters are positive, i.e, κh > 0 , ∀h, specially when using
the approximation of equation (11). Hence, the follow-
ing Proposition provides theoretical guarantee about
the fact that 0 ≤ r̄wh ≤ 1, thereby it ensures that κh
estimated from equation (11) is always positive.

Proposition 1 Let r be a non-zero vector in Rd (i.e.,
r = (r1, . . . , rd)

T , such as d ≥ 2) which results from a
weighted sum of n d-dimensional unit vector, i.e, r =∑
i pixi, xi ∈ Rd and ‖xi‖ = 1 , ∀i ∈ {1, . . . , n} , n ≥

2, the weights pi ≥ 0, ∀i. Let rd be a vector in Rd, such
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as all its components are equal to the sum of elements
of r (i.e, rd1 = · · · = rdd =

∑d
j=1 rj). Then 0 <

‖rd‖ ≤ d×
∑
i pi with equality only if all unit vectors

xi are equal/collinear.

Proof. We define two vectors d and r+ in Rd as fol-
lows: d = 1√

d
1 and r+

j = |rj |, ∀j ∈ {1, . . . , d}. as

‖rd‖ , d and ‖r‖ are all positive, we aim to show that
‖rd‖

d×
∑
i pi
≤ 1, we have:

‖rd‖
d

=

√
(rd1)2 + . . .+ (rdd)2

d

=

√
d×

(∑
j rj

)2

d

=

√
d×

∣∣∣∑j rj

∣∣∣
d

=
1√
d
×

∣∣∣∣∣∣
∑
j

rj

∣∣∣∣∣∣
≤ 1√

d
×
∑
j

|rj |

≤ dt.r+

≤ ‖d‖‖r+‖ cos(d, r+)

by definition of r+ and d, we have ‖r+‖ = ‖r‖ thereby
‖r+‖ ≤

∑
i pi (i.e, ‖r+‖ = ‖r‖ = ‖p1x1+· · ·+pnxn‖ ≤

‖pix1‖+ · · ·+ ‖pnxn‖ =
∑
i pi) and ‖d‖ = 1, hence

‖rd‖
d

≤
∑
i

pi × cos(d, r+) (12)

dividing both sides by
∑
i pi, we get

‖rd‖
d×

∑
i pi

≤ cos(d, r+) (13)

by definition both d and r+ are non-zero vectors and
lie on the first orthant of d-dimensional unit hyper-
sphere, thus,

0 <
‖rd‖

d×
∑
i pi

≤ cos(d, r+) ≤ 1

The equality holds only if d and r+ are collinear,
thereby all components of r are equal.

Appendix B. Experiments

B.1 Evaluation measures

In this appendix we give some details about the
clustering-evaluation measures—Normalized Mutual

Information NMI and Ajusted Rand Index ARI—used
in our experiments. The NMI is estimated as follows

NMI =

∑
k` πh` log πh`

πhπ̂`√
(
∑
h πh log πh)(

∑
` π̂` log π̂`)

where πh denotes the proportion of elements in the
resulting cluster h, while π̂l denotes the proportion
of class (true cluster) `, i.e, πh = nh/n, π̂` = n̂`/n;
n, nh and n̂` denote the total number of objects, the
number of objects in cluster h and the number of ob-
jects in class `, respectively. The proportion of objects
that are common to cluster h and class ` is denoted
by πh`. Intuitively NMI quantifies how much the esti-
mated clustering is informative about the true cluster-
ing, it can be shown that NMI lies in the range [0, 1]. If
the resulting clustering and the true one are identical,
then NMI = 1. However, when the obtained clusters
are substantially different from the true classes then
the value of the NMI will be low and close to zero for
a random clustering.

The ARI measures the correspondence between two
clusterings. As it has been demonstrated by Milligan
and Cooper [1986], ARI is a superior measure com-
pared to several other measures, for assessing the cor-
respondence between two clusterings. Formally, the
ARI is given by

ARI =

∑
h,`

(
nh`
2

)
−
∑
h

(
nh.
2

)∑
`

(
n.`
2

)
/
(
n
2

)
1
2

[∑
h

(
nh.
2

)
+
∑
`

(
n.`
2

)]
−
∑
h

(
nh.
2

)∑
`

(
n.`
2

)
/
(
n
2

)
where nh., n.`, nh` denote respectively the number of
objects in cluster h, in class `, that are in cluster h as
well as in class `.

Intuitively, the ARI measures the degree of agreement
between an estimated clustering and a reference clus-
tering. Hence, ARI = 1 if the estimated clustering and
the true one agree perfectly, and ARI is close to zero
for random clustering.
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