A Supplementary Material for "Non-Gaussian Component Analysis with Log-Density Gradient Estimation"

Hiroaki Sasaki

Grad. School of Info. Sci.
Nara Institute of Sci. \& Tech.
Nara, Japan
hsasaki@is.naist.jp

Gang Niu

Grad. School of Frontier Sci.
The University of Tokyo Tokyo, Japan
gang@ms.k.u-tokyo.ac.jp

Masashi Sugiyama

Grad. School of Frontier Sci.
The University of Tokyo
Tokyo, Japan
sugi@k.u-tokyo.ac.jp

1 Proof of Theorem 1

Our proof can be divided into two parts as mentioned in the main manuscript.

1.1 Part One: Convergence of LSLDG

1.1.1 Step 1.1

First of all, we establish the growth condition of LSLDG (see Definition 6.1 in Bonnans and Shapiro (1998) for the detailed definition of the growth condition). Denote the expected and empirical objective functions by

$$
\begin{aligned}
J_{j}^{*}(\boldsymbol{\theta}) & =\boldsymbol{\theta}^{\top} \mathbf{G}_{j}^{*} \boldsymbol{\theta}+2 \boldsymbol{\theta}^{\top} \boldsymbol{h}_{j}^{*}+\lambda_{j}^{*} \boldsymbol{\theta}^{\top} \boldsymbol{\theta}, \\
\widehat{J}_{j}(\boldsymbol{\theta}) & =\boldsymbol{\theta}^{\top} \widehat{\mathbf{G}}_{j} \boldsymbol{\theta}+2 \boldsymbol{\theta}^{\top} \widehat{\boldsymbol{h}}_{j}+\lambda_{j} \boldsymbol{\theta}^{\top} \boldsymbol{\theta} .
\end{aligned}
$$

Then $\boldsymbol{\theta}_{j}^{*}=\operatorname{argmin}_{\boldsymbol{\theta}} J_{j}^{*}(\boldsymbol{\theta})$ and $\widehat{\boldsymbol{\theta}}_{j}=\operatorname{argmin}_{\boldsymbol{\theta}} \widehat{J}_{j}(\boldsymbol{\theta})$, and we have
Lemma 1. The following second-order growth condition holds

$$
J_{j}^{*}(\boldsymbol{\theta}) \geq J_{j}^{*}\left(\boldsymbol{\theta}_{j}^{*}\right)+\epsilon_{\lambda}\left\|\boldsymbol{\theta}-\boldsymbol{\theta}_{j}^{*}\right\|_{2}^{2}
$$

Proof. $J_{j}^{*}(\boldsymbol{\theta})$ is strongly convex with parameter at least $2 \lambda_{j}^{*}$, since \mathbf{G}_{j}^{*} is symmetric and positive-definite. Hence,

$$
\begin{aligned}
J_{j}^{*}(\boldsymbol{\theta}) & \geq J_{j}^{*}\left(\boldsymbol{\theta}_{j}^{*}\right)+\left(\nabla J_{j}^{*}\left(\boldsymbol{\theta}_{j}^{*}\right)\right)^{\top}\left(\boldsymbol{\theta}-\boldsymbol{\theta}_{j}^{*}\right)+\lambda_{j}^{*}\left\|\boldsymbol{\theta}-\boldsymbol{\theta}_{j}^{*}\right\|_{2}^{2} \\
& \geq J_{j}^{*}\left(\boldsymbol{\theta}_{j}^{*}\right)+\epsilon_{\lambda}\left\|\boldsymbol{\theta}-\boldsymbol{\theta}_{j}^{*}\right\|_{2}^{2},
\end{aligned}
$$

where we used the optimality condition $\nabla J_{j}^{*}\left(\boldsymbol{\theta}_{j}^{*}\right)=\mathbf{0}$ and the first condition $\lambda_{j}^{*} \geq \epsilon_{\lambda}$ of the theorem.

1.1.2 Step 1.2

Second, we study the stability (with respect to perturbation) of $J_{j}^{*}(\boldsymbol{\theta})$ at $\boldsymbol{\theta}_{j}^{*}$. Let

$$
\boldsymbol{u}=\left\{\boldsymbol{u}_{G} \in \mathcal{S}_{+}^{b}, \boldsymbol{u}_{h} \in \mathbb{R}^{b}, u_{\lambda} \in \mathbb{R}\right\}
$$

be a set of perturbation parameters, where b is the number of centers in $\psi_{i j}(\boldsymbol{x})$ and $\mathcal{S}_{+}^{b} \subset \mathbb{R}^{b \times b}$ is the cone of b-by- b symmetric positive semi-definite matrices. Define our perturbed objective function by

$$
J_{j}(\boldsymbol{\theta}, \boldsymbol{u})=\boldsymbol{\theta}^{\top}\left(\mathbf{G}_{j}^{*}+\boldsymbol{u}_{G}\right) \boldsymbol{\theta}+2 \boldsymbol{\theta}^{\top}\left(\boldsymbol{h}_{j}^{*}+\boldsymbol{u}_{h}\right)+\left(\lambda_{j}^{*}+u_{\lambda}\right) \boldsymbol{\theta}^{\top} \boldsymbol{\theta}
$$

It is clear that $J_{j}^{*}(\boldsymbol{\theta})=J_{j}(\boldsymbol{\theta}, \mathbf{0})$, and then the stability of $J_{j}^{*}(\boldsymbol{\theta})$ at $\boldsymbol{\theta}_{j}^{*}$ can be characterized as follows.
Lemma 2. The difference function $J_{j}(\cdot, \boldsymbol{u})-J_{j}^{*}(\cdot)$ is Lipschitz continuous modulus

$$
\omega(\boldsymbol{u})=\mathcal{O}\left(\left\|\boldsymbol{u}_{G}\right\|_{\mathrm{Fro}}+\left\|\boldsymbol{u}_{h}\right\|_{2}+\left|u_{\lambda}\right|\right)
$$

on a sufficiently small neighborhood of $\boldsymbol{\theta}_{j}^{*}$.

Proof. The difference function is

$$
J_{j}(\boldsymbol{\theta}, \boldsymbol{u})-J_{j}^{*}(\boldsymbol{\theta})=\boldsymbol{\theta}^{\top} \boldsymbol{u}_{G} \boldsymbol{\theta}+2 \boldsymbol{\theta}^{\top} \boldsymbol{u}_{h}+u_{\lambda} \boldsymbol{\theta}^{\top} \boldsymbol{\theta}
$$

with a partial gradient

$$
\frac{\partial}{\partial \boldsymbol{\theta}}\left(J_{j}(\boldsymbol{\theta}, \boldsymbol{u})-J_{j}^{*}(\boldsymbol{\theta})\right)=2 \boldsymbol{u}_{G} \boldsymbol{\theta}+2 \boldsymbol{u}_{h}+2 u_{\lambda} \boldsymbol{\theta}
$$

Notice that due to the ℓ_{2}-regularization in $J_{j}^{*}(\boldsymbol{\theta}), \exists M>0$ such that $\left\|\boldsymbol{\theta}_{j}^{*}\right\|_{2} \leq M$. Now given a δ-ball of $\boldsymbol{\theta}_{j}^{*}$, i.e., $B_{\delta}\left(\boldsymbol{\theta}_{j}^{*}\right)=\left\{\boldsymbol{\theta} \mid\left\|\boldsymbol{\theta}-\boldsymbol{\theta}_{j}^{*}\right\|_{2} \leq \delta\right\}$, it is easy to see that $\forall \boldsymbol{\theta} \in B_{\delta}\left(\boldsymbol{\theta}_{j}^{*}\right)$,

$$
\|\boldsymbol{\theta}\|_{2} \leq\left\|\boldsymbol{\theta}-\boldsymbol{\theta}_{j}^{*}\right\|_{2}+\left\|\boldsymbol{\theta}_{j}^{*}\right\|_{2} \leq \delta+M
$$

and consequently

$$
\left\|\frac{\partial}{\partial \boldsymbol{\theta}}\left(J_{j}(\boldsymbol{\theta}, \boldsymbol{u})-J_{j}^{*}(\boldsymbol{\theta})\right)\right\|_{2} \leq 2(\delta+M)\left(\left\|\boldsymbol{u}_{G}\right\|_{\mathrm{Fro}}+\left|u_{\lambda}\right|\right)+2\left\|\boldsymbol{u}_{h}\right\|_{2}
$$

This says that the gradient $\frac{\partial}{\partial \boldsymbol{\theta}}\left(J_{j}(\boldsymbol{\theta}, \boldsymbol{u})-J_{j}^{*}(\boldsymbol{\theta})\right)$ has a bounded norm of order $\mathcal{O}\left(\left\|\boldsymbol{u}_{G}\right\|_{\text {Fro }}+\left\|\boldsymbol{u}_{h}\right\|_{2}+\left|u_{\lambda}\right|\right)$, and proves that the difference function $J_{j}(\boldsymbol{\theta}, \boldsymbol{u})-J_{j}^{*}(\boldsymbol{\theta})$ is Lipschitz continuous on the ball $B_{\delta}\left(\boldsymbol{\theta}_{j}^{*}\right)$, with a Lipschitz constant of the same order.

1.1.3 Step 1.3

Intuitively, Lemma 1 guarantees that the unperturbed objective function $J_{j}^{*}(\boldsymbol{\theta})$ grows quickly when $\boldsymbol{\theta}$ leaves $\boldsymbol{\theta}_{j}^{*}$. Lemma 2 guarantees that the perturbed objective function $J_{j}(\boldsymbol{\theta}, \boldsymbol{u})$ changes slowly for $\boldsymbol{\theta}$ around $\boldsymbol{\theta}_{j}^{*}$, where the slowness is with respect to the perturbation \boldsymbol{u} it suffers. Based on Lemma 1, Lemma 2, and Proposition 6.1 in Bonnans and Shapiro (1998),

$$
\left\|\widehat{\boldsymbol{\theta}}_{j}-\boldsymbol{\theta}_{j}^{*}\right\|_{2} \leq \frac{\omega(\boldsymbol{u})}{\epsilon_{\lambda}}=\mathcal{O}\left(\left\|\boldsymbol{u}_{G}\right\|_{\mathrm{Fro}}+\left\|\boldsymbol{u}_{h}\right\|_{2}+\left|u_{\lambda}\right|\right)
$$

since $\widehat{\boldsymbol{\theta}}_{j}$ is the exact solution to $\widehat{J}_{j}(\boldsymbol{\theta})=J_{j}(\boldsymbol{\theta}, \boldsymbol{u})$ given $\boldsymbol{u}_{G}=\widehat{\mathbf{G}}_{j}-\mathbf{G}_{j}^{*}, \boldsymbol{u}_{h}=\widehat{\mathbf{h}}_{j}-\mathbf{h}_{j}^{*}$, and $u_{\lambda}=\lambda_{j}-\lambda_{j}^{*}$.
According to the central limit theorem (CLT), $\left\|\boldsymbol{u}_{G}\right\|_{\text {Fro }}=\mathcal{O}_{p}\left(n^{-1 / 2}\right)$ and $\left\|\boldsymbol{u}_{h}\right\|_{2}=\mathcal{O}_{p}\left(n^{-1 / 2}\right)$. Furthermore, we have already assumed that $\left|u_{\lambda}\right|=\mathcal{O}\left(n^{-1 / 2}\right)$ in the first condition of the theorem. Hence, as $n \rightarrow \infty$,

$$
\begin{equation*}
\left\|\widehat{\boldsymbol{\theta}}_{j}-\boldsymbol{\theta}_{j}^{*}\right\|_{2}=\mathcal{O}_{p}\left(n^{-1 / 2}\right) . \tag{1}
\end{equation*}
$$

1.1.4 Step 1.4

Considering the empirical estimate of the log-density gradient $\widehat{g}^{(j)}(\boldsymbol{x})$ and the optimal estimate of the log-density gradient $g^{*(j)}(\boldsymbol{x})$, their gap in terms of the infinity norm is bounded below:

$$
\begin{aligned}
\left\|\widehat{g}^{(j)}-g^{*(j)}\right\|_{\infty} & =\sup _{\boldsymbol{x}}\left|\widehat{g}^{(j)}(\boldsymbol{x})-g^{*(j)}(\boldsymbol{x})\right| \\
& =\sup _{\boldsymbol{x}}\left|\left(\widehat{\boldsymbol{\theta}}_{j}-\boldsymbol{\theta}_{j}^{*}\right)^{\top} \boldsymbol{\psi}_{j}(\boldsymbol{x})\right| \\
& \leq\left\|\widehat{\boldsymbol{\theta}}_{j}-\boldsymbol{\theta}_{j}^{*}\right\|_{2} \cdot \sup _{\boldsymbol{x}}\left\|\boldsymbol{\psi}_{j}(\boldsymbol{x})\right\|_{2}
\end{aligned}
$$

where the Cauchy-Schwarz inequality is used. Recall that $\boldsymbol{c}_{1}, \ldots, \boldsymbol{c}_{b}$ are the centers, and for any i,

$$
\left|\psi_{i j}(\boldsymbol{x})\right|=\frac{\left|\left[\boldsymbol{c}_{i}-\boldsymbol{x}\right]^{(j)}\right|}{\sigma_{j}^{2}} \exp \left(-\frac{\left\|\boldsymbol{x}-\boldsymbol{c}_{i}\right\|_{2}^{2}}{2 \sigma_{j}^{2}}\right) \leq \frac{\left|\left[\boldsymbol{c}_{i}-\boldsymbol{x}\right]^{(j)}\right|}{\sigma_{j}^{2}}\left(-\frac{\left(\left[\boldsymbol{x}-\boldsymbol{c}_{i}\right]^{(j)}\right)^{2}}{2 \sigma_{j}^{2}}\right) .
$$

It is obvious that $\left|\psi_{i j}(\boldsymbol{x})\right|$ is bounded, since $\exp \left(-z^{2}\right)$ converges to zero much faster than $|z|$ diverges to infinity. Therefore, $\sup _{\boldsymbol{x}}\left\|\boldsymbol{\psi}_{j}(\boldsymbol{x})\right\|_{2}$ is a finite number, and we could know from Eq. (1) that

$$
\begin{equation*}
\left\|\widehat{g}^{(j)}-g^{*(j)}\right\|_{\infty} \leq \mathcal{O}\left(\left\|\widehat{\boldsymbol{\theta}}_{j}-\boldsymbol{\theta}_{j}^{*}\right\|_{2}\right)=\mathcal{O}_{p}\left(n^{-1 / 2}\right) \tag{2}
\end{equation*}
$$

1.2 Part Two: Convergence of LSNGCA

1.2.1 Step 2.1

To begin with, we focus on the convergence of $\widehat{\boldsymbol{\Gamma}}$. Given any \boldsymbol{y}, let $\widehat{\boldsymbol{z}}=\widehat{\boldsymbol{g}}(\boldsymbol{y})$ and $\boldsymbol{z}^{*}=\boldsymbol{g}^{*}(\boldsymbol{y})$, then

$$
\begin{aligned}
(\widehat{z}+\boldsymbol{y})(\widehat{\boldsymbol{z}}+\boldsymbol{y})^{\top}-\left(\boldsymbol{z}^{*}+\boldsymbol{y}\right)\left(\boldsymbol{z}^{*}+\boldsymbol{y}\right)^{\top} & =\widehat{\boldsymbol{z}} \widehat{\boldsymbol{z}}^{\top}-\boldsymbol{z}^{*} \boldsymbol{z}^{* \top}+\left(\widehat{z}-\boldsymbol{z}^{*}\right) \boldsymbol{y}^{\top}+\boldsymbol{y}\left(\widehat{z}-\boldsymbol{z}^{*}\right)^{\top} \\
& =\left(\widehat{\boldsymbol{z}}-\boldsymbol{z}^{*}\right) \widehat{\boldsymbol{z}}^{\top}+\boldsymbol{z}^{*}\left(\widehat{\boldsymbol{z}}-\boldsymbol{z}^{*}\right)^{\top}+\left(\widehat{\boldsymbol{z}}-\boldsymbol{z}^{*}\right) \boldsymbol{y}^{\top}+\boldsymbol{y}\left(\widehat{\boldsymbol{z}}-\boldsymbol{z}^{*}\right)^{\top}
\end{aligned}
$$

As a result, based on Eq. (2),

$$
\begin{aligned}
\left\|(\widehat{\boldsymbol{z}}+\boldsymbol{y})(\widehat{\boldsymbol{z}}+\boldsymbol{y})^{\top}-\left(\boldsymbol{z}^{*}+\boldsymbol{y}\right)\left(\boldsymbol{z}^{*}+\boldsymbol{y}\right)^{\top}\right\|_{\text {Fro }} \leq & \left\|\left(\widehat{\boldsymbol{z}}-\boldsymbol{z}^{*}\right) \widehat{\boldsymbol{z}}^{\top}\right\|_{\text {Fro }}+\left\|\boldsymbol{z}^{*}\left(\widehat{\boldsymbol{z}}-\boldsymbol{z}^{*}\right)^{\top}\right\|_{\text {Fro }} \\
& +\left\|\left(\widehat{\boldsymbol{z}}-\boldsymbol{z}^{*}\right) \boldsymbol{y}^{\top}\right\|_{\mathrm{Fro}}+\left\|\boldsymbol{y}\left(\widehat{\boldsymbol{z}}-\boldsymbol{z}^{*}\right)^{\top}\right\|_{\text {Fro }} \\
\leq & \left(\|\widehat{\boldsymbol{z}}\|_{2}+\left\|\boldsymbol{z}^{*}\right\|_{2}+2\|\boldsymbol{y}\|\right) \cdot\left\|\widehat{\boldsymbol{z}}-\boldsymbol{z}^{*}\right\|_{2} \\
= & \mathcal{O}\left(\left\|\widehat{\boldsymbol{z}}-\boldsymbol{z}^{*}\right\|_{2}\right) \\
= & \mathcal{O}_{p}\left(n^{-1 / 2}\right) .
\end{aligned}
$$

This has proved the point-wise convergence from $(\widehat{\boldsymbol{g}}(\boldsymbol{y})+\boldsymbol{y})(\widehat{\boldsymbol{g}}(\boldsymbol{y})+\boldsymbol{y})^{\top}$ to $\left(\boldsymbol{g}^{*}(\boldsymbol{y})+\boldsymbol{y}\right)\left(\boldsymbol{g}^{*}(\boldsymbol{y})+\boldsymbol{y}\right)^{\top}$.
Define an intermediate matrix based on $\boldsymbol{y}_{1}, \ldots, \boldsymbol{y}_{n}$ as

$$
\widetilde{\boldsymbol{\Gamma}}=\frac{1}{n} \sum_{i=1}^{n}\left(\boldsymbol{g}^{*}\left(\boldsymbol{y}_{i}\right)+\boldsymbol{y}_{i}\right)\left(\boldsymbol{g}^{*}\left(\boldsymbol{y}_{i}\right)+\boldsymbol{y}_{i}\right)^{\top} .
$$

Subsequently, $\widehat{\boldsymbol{\Gamma}}$ converges to $\widetilde{\boldsymbol{\Gamma}}$ in $\mathcal{O}_{p}\left(n^{-1 / 2}\right)$ due to the point-wise convergence from $(\widehat{\boldsymbol{g}}(\boldsymbol{y})+\boldsymbol{y})(\widehat{\boldsymbol{g}}(\boldsymbol{y})+\boldsymbol{y})^{\top}$ to $\left(\boldsymbol{g}^{*}(\boldsymbol{y})+\boldsymbol{y}\right)\left(\boldsymbol{g}^{*}(\boldsymbol{y})+\boldsymbol{y}\right)^{\top}$ that was just proved, and $\widetilde{\boldsymbol{\Gamma}}$ converges to $\boldsymbol{\Gamma}^{*}$ in $\mathcal{O}_{p}\left(n^{-1 / 2}\right)$ due to CLT. A combination of these two results gives us

$$
\begin{equation*}
\left\|\widehat{\boldsymbol{\Gamma}}-\boldsymbol{\Gamma}^{*}\right\|_{\mathrm{Fro}} \leq\|\widehat{\boldsymbol{\Gamma}}-\widetilde{\boldsymbol{\Gamma}}\|_{\mathrm{Fro}}+\left\|\widetilde{\boldsymbol{\Gamma}}-\boldsymbol{\Gamma}^{*}\right\|_{\mathrm{Fro}}=\mathcal{O}_{p}\left(n^{-1 / 2}\right) \tag{3}
\end{equation*}
$$

1.2.2 Step 2.2

Now let us consider the eigenvalues of $\boldsymbol{\Gamma}^{*}$. Let $\mu_{1}>\cdots>\mu_{r}>\mu_{r+1}$ be the first $r+1$ eigenvalues of $\boldsymbol{\Gamma}^{*}$ counted without multiplicity, such that μ_{r} is the $d_{\mathbf{s}}$-th largest eigenvalue of Γ^{*} if counted with multiplicity. Define the eigen-gap by

$$
\epsilon_{\mu}=\min _{i=1, \ldots, r}\left\{\mu_{i}-\mu_{i+1}\right\}
$$

We have assumed that $\mu_{1}<+\infty$ and $\mu_{r}>0$ in the second condition of the theorem, and thus it must hold that $0<\epsilon_{\mu}<+\infty$. In the case that Γ^{*} has only one eigenvalue, we can simply assign $\epsilon_{\mu}=1$.

According to Lemma 5.2 of Koltchinskii and Giné (2000) as well as the appendix of Koltchinskii (1998), we can derive the stability of the eigen-decomposition of $\boldsymbol{\Gamma}^{*}$ with respect to some perturbation $\boldsymbol{u}_{\Sigma}=\widehat{\boldsymbol{\Gamma}}-\boldsymbol{\Gamma}^{*}$. Whenever $\left\|\boldsymbol{u}_{\Sigma}\right\|_{\text {Fro }}<\epsilon_{\mu} / 4$:

- The first $r+1$ eigenvalues $\mu_{1}^{\prime}>\cdots>\mu_{r}^{\prime}>\mu_{r+1}^{\prime}$ of $\widehat{\boldsymbol{\Gamma}}=\boldsymbol{\Gamma}^{*}+\boldsymbol{u}_{\Sigma}$, counted without multiplicity, satisfy that $\left|\mu_{i}^{\prime}-\mu_{i}\right| \leq\left\|\boldsymbol{u}_{\Sigma}\right\|_{\text {Fro }}$ for $1 \leq i \leq r$, and $\mu_{r}-\mu_{r+1}^{\prime} \geq \epsilon_{\mu}-\left\|\boldsymbol{u}_{\Sigma}\right\|_{\text {Fro }}$;
- Denote by $\Pi_{i}\left(\boldsymbol{\Gamma}^{*}\right)$ the orthogonal projection onto the eigen-spaces of $\boldsymbol{\Gamma}^{*}$ associated with μ_{i}, and by $\Pi_{i}(\widehat{\boldsymbol{\Gamma}})$ that of $\widehat{\boldsymbol{\Gamma}}=\boldsymbol{\Gamma}^{*}+\boldsymbol{u}_{\Sigma}$ associated with μ_{i}^{\prime}, then for $1 \leq i \leq r$,

$$
\left\|\Pi_{i}(\widehat{\boldsymbol{\Gamma}})-\Pi_{i}\left(\boldsymbol{\Gamma}^{*}\right)\right\|_{\mathrm{Fro}} \leq \frac{4}{\epsilon_{\mu}}\left\|\boldsymbol{u}_{\Sigma}\right\|_{\mathrm{Fro}}
$$

We have employed simplified notations above to avoid sophisticated names in operator theory. Intuitively, the first item guarantees that the eigenvalues of the perturbed matrix $\widehat{\boldsymbol{\Gamma}}$ are close to that of $\boldsymbol{\Gamma}^{*}$, and the second item guarantees that the eigen-spaces of $\widehat{\boldsymbol{\Gamma}}$ are also close to that of $\boldsymbol{\Gamma}^{*}$.
By noting that $\left\|\widehat{\boldsymbol{\Gamma}}-\boldsymbol{\Gamma}^{*}\right\|_{\text {Fro }}$ was shown to have an order of $\mathcal{O}_{p}\left(n^{-1 / 2}\right)$ in (3), whereas the eigen-gap ϵ_{μ} for fixed $\boldsymbol{\Gamma}^{*}$ is a constant value, we could obtain that as $n \rightarrow \infty$ for all i,

$$
\begin{equation*}
\left\|\Pi_{i}(\widehat{\boldsymbol{\Gamma}})-\Pi_{i}\left(\boldsymbol{\Gamma}^{*}\right)\right\|_{\mathrm{Fro}}=\mathcal{O}_{p}\left(n^{-1 / 2}\right) \tag{4}
\end{equation*}
$$

1.2.3 Step 2.3

Finally, we can bound $\mathcal{D}\left(\widehat{\mathcal{L}}, \mathcal{L}^{*}\right)$. The eigenvalues of $\boldsymbol{\Gamma}^{*}$ and $\widehat{\boldsymbol{\Gamma}}$ were counted without multiplicity, and hence the bases of $\Pi_{i}(\widehat{\boldsymbol{\Gamma}})$ and $\Pi_{i}\left(\boldsymbol{\Gamma}^{*}\right)$ may not be unique. Nevertheless, let $\mathbf{E}_{\mathcal{I}^{*}}$ be the matrix form of a fixed orthonormal basis of \mathcal{I}^{*}, then there exists a sequence of matrices $\left\{\mathbf{E}_{\widehat{\mathcal{I}}, 1}, \ldots, \mathbf{E}_{\widehat{\mathcal{I}}, n}, \ldots\right\}$ such that

- $\mathbf{E}_{\widehat{\mathcal{I}}, n}$ is the matrix form of a certain orthonormal basis of $\widehat{\mathcal{I}}$ based on a set of data samples of size n;
- The sequence converges to $\mathbf{E}_{\mathcal{I}^{*}}$ in $\mathcal{O}_{p}\left(n^{-1 / 2}\right)$, i.e.,

$$
\begin{equation*}
\left\|\mathbf{E}_{\widehat{\mathcal{I}}, n}-\mathbf{E}_{\mathcal{I}^{*}}\right\|_{\text {Fro }}=\mathcal{O}_{p}\left(n^{-1 / 2}\right) \tag{5}
\end{equation*}
$$

based on Eq. (4). Denote by $\mathbf{E}_{\mathcal{L}^{*}}=\boldsymbol{\Sigma}^{-1 / 2} \mathbf{E}_{\mathcal{I}^{*}}$ and $\mathbf{E}_{\widehat{\mathcal{L}}, n}=\widehat{\boldsymbol{\Sigma}}^{-1 / 2} \mathbf{E}_{\widehat{\mathcal{I}}, n}$, and then

$$
\mathbf{E}_{\widehat{\mathcal{L}}, n}-\mathbf{E}_{\mathcal{L}^{*}}=\widehat{\boldsymbol{\Sigma}}^{-1 / 2} \mathbf{E}_{\widehat{\mathcal{I}}, n}-\boldsymbol{\Sigma}^{-1 / 2} \mathbf{E}_{\mathcal{I}^{*}}=\left(\widehat{\boldsymbol{\Sigma}}^{-1 / 2}-\boldsymbol{\Sigma}^{-1 / 2}\right) \mathbf{E}_{\widehat{\mathcal{I}}, n}+\boldsymbol{\Sigma}^{-1 / 2}\left(\mathbf{E}_{\widehat{\mathcal{I}}, n}-\mathbf{E}_{\mathcal{I}^{*}}\right)
$$

Therefore, we can prove that

$$
\begin{aligned}
\mathcal{D}\left(\widehat{\mathcal{L}}, \mathcal{L}^{*}\right) & =\inf _{\widehat{\mathbf{E}}, \mathbf{E}^{*}}\left\|\widehat{\mathbf{E}}-\mathbf{E}^{*}\right\|_{\mathrm{Fro}} \\
& \leq\left\|\mathbf{E}_{\widehat{\mathcal{L}}, n}-\mathbf{E}_{\mathcal{L}^{*}}\right\|_{\mathrm{Fro}} \\
& \leq\left\|\mathbf{E}_{\widehat{\mathcal{I}}, n}\right\|_{\mathrm{Fro}} \cdot\left\|\widehat{\boldsymbol{\Sigma}}^{-1 / 2}-\boldsymbol{\Sigma}^{-1 / 2}\right\|_{\mathrm{Fro}}+\left\|\boldsymbol{\Sigma}^{-1 / 2}\right\|_{\mathrm{Fro}} \cdot\left\|\mathbf{E}_{\widehat{\mathcal{I}}, n}-\mathbf{E}_{\mathcal{I}^{*}}\right\|_{\mathrm{Fro}} \\
& =\mathcal{O}\left(\left\|\widehat{\boldsymbol{\Sigma}}^{-1 / 2}-\boldsymbol{\Sigma}^{-1 / 2}\right\|_{\mathrm{Fro}}\right)+\mathcal{O}\left(\left\|\mathbf{E}_{\widehat{\mathcal{I}}, n}-\mathbf{E}_{\mathcal{I}^{*}}\right\|_{\mathrm{Fro}}\right) \\
& =\mathcal{O}_{p}\left(n^{-1 / 2}\right)
\end{aligned}
$$

according to CLT and Eq. (5).

References

F. Bonnans and A. Shapiro. Optimization problems with perturbations, a guided tour. SIAM Review, 40(2): 228-264, 1998.
V. Koltchinskii. Asymptotics of spectral projections of some random matrices approximating integral operators. Progress in Probabilty, 43:191-227, 1998.
V. Koltchinskii and E. Giné. Random matrix approximation of spectra of integral operators. Bernoulli, 6: 113-167, 2000.

