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1 Proof of Theorem 1

Our proof can be divided into two parts as mentioned in the main manuscript.

1.1 Part One: Convergence of LSLDG

1.1.1 Step 1.1

First of all, we establish the growth condition of LSLDG (see Definition 6.1 in Bonnans and Shapiro (1998) for
the detailed definition of the growth condition). Denote the expected and empirical objective functions by

J∗
j (θ) = θ

⊤G∗
jθ + 2θ⊤h∗

j + λ∗jθ
⊤θ,

Ĵj(θ) = θ
⊤Ĝjθ + 2θ⊤ĥj + λjθ

⊤θ.

Then θ∗j = argminθ J
∗
j (θ) and θ̂j = argminθ Ĵj(θ), and we have

Lemma 1. The following second-order growth condition holds

J∗
j (θ) ≥ J∗

j (θ
∗
j ) + ϵλ∥θ − θ∗j ∥22.

Proof. J∗
j (θ) is strongly convex with parameter at least 2λ∗j , since G

∗
j is symmetric and positive-definite. Hence,

J∗
j (θ) ≥ J∗

j (θ
∗
j ) + (∇J∗

j (θ
∗
j ))

⊤(θ − θ∗j ) + λ∗j∥θ − θ∗j ∥22
≥ J∗

j (θ
∗
j ) + ϵλ∥θ − θ∗j ∥22,

where we used the optimality condition ∇J∗
j (θ

∗
j ) = 0 and the first condition λ∗j ≥ ϵλ of the theorem.
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1.1.2 Step 1.2

Second, we study the stability (with respect to perturbation) of J∗
j (θ) at θ

∗
j . Let

u = {uG ∈ Sb
+,uh ∈ Rb, uλ ∈ R}

be a set of perturbation parameters, where b is the number of centers in ψij(x) and Sb
+ ⊂ Rb×b is the cone of

b-by-b symmetric positive semi-definite matrices. Define our perturbed objective function by

Jj(θ,u) = θ
⊤(G∗

j + uG)θ + 2θ⊤(h∗
j + uh) + (λ∗j + uλ)θ

⊤θ.

It is clear that J∗
j (θ) = Jj(θ,0), and then the stability of J∗

j (θ) at θ
∗
j can be characterized as follows.

Lemma 2. The difference function Jj(·,u)− J∗
j (·) is Lipschitz continuous modulus

ω(u) = O(∥uG∥Fro + ∥uh∥2 + |uλ|)

on a sufficiently small neighborhood of θ∗j .

Proof. The difference function is

Jj(θ,u)− J∗
j (θ) = θ

⊤uGθ + 2θ⊤uh + uλθ
⊤θ,

with a partial gradient

∂

∂θ
(Jj(θ,u)− J∗

j (θ)) = 2uGθ + 2uh + 2uλθ.

Notice that due to the ℓ2-regularization in J∗
j (θ), ∃M > 0 such that ∥θ∗j ∥2 ≤M . Now given a δ-ball of θ∗j , i.e.,

Bδ(θ
∗
j ) = {θ | ∥θ − θ∗j ∥2 ≤ δ}, it is easy to see that ∀θ ∈ Bδ(θ

∗
j ),

∥θ∥2 ≤ ∥θ − θ∗j ∥2 + ∥θ∗j ∥2 ≤ δ +M,

and consequently ∥∥∥∥ ∂∂θ (Jj(θ,u)− J∗
j (θ))

∥∥∥∥
2

≤ 2(δ +M)(∥uG∥Fro + |uλ|) + 2∥uh∥2.

This says that the gradient ∂
∂θ (Jj(θ,u)− J∗

j (θ)) has a bounded norm of order O(∥uG∥Fro + ∥uh∥2 + |uλ|), and
proves that the difference function Jj(θ,u)− J∗

j (θ) is Lipschitz continuous on the ball Bδ(θ
∗
j ), with a Lipschitz

constant of the same order.

1.1.3 Step 1.3

Intuitively, Lemma 1 guarantees that the unperturbed objective function J∗
j (θ) grows quickly when θ leaves θ∗j .

Lemma 2 guarantees that the perturbed objective function Jj(θ,u) changes slowly for θ around θ∗j , where the
slowness is with respect to the perturbation u it suffers. Based on Lemma 1, Lemma 2, and Proposition 6.1 in
Bonnans and Shapiro (1998),

∥θ̂j − θ∗j ∥2 ≤ ω(u)

ϵλ
= O(∥uG∥Fro + ∥uh∥2 + |uλ|),

since θ̂j is the exact solution to Ĵj(θ) = Jj(θ,u) given uG = Ĝj −G∗
j , uh = ĥj − h∗

j , and uλ = λj − λ∗j .

According to the central limit theorem (CLT), ∥uG∥Fro = Op(n
−1/2) and ∥uh∥2 = Op(n

−1/2). Furthermore, we
have already assumed that |uλ| = O(n−1/2) in the first condition of the theorem. Hence, as n→ ∞,

∥θ̂j − θ∗j ∥2 = Op

(
n−1/2

)
. (1)
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1.1.4 Step 1.4

Considering the empirical estimate of the log-density gradient ĝ(j)(x) and the optimal estimate of the log-density
gradient g∗(j)(x), their gap in terms of the infinity norm is bounded below:

∥ĝ(j) − g∗(j)∥∞ = supx |ĝ(j)(x)− g∗(j)(x)|

= supx |(θ̂j − θ∗j )⊤ψj(x)|

≤ ∥θ̂j − θ∗j ∥2 · supx ∥ψj(x)∥2,

where the Cauchy-Schwarz inequality is used. Recall that c1, . . . , cb are the centers, and for any i,

|ψij(x)| =
|[ci − x](j)|

σ2
j

exp

(
−∥x− ci∥22

2σ2
j

)
≤ |[ci − x](j)|

σ2
j

(
− ([x− ci](j))2

2σ2
j

)
.

It is obvious that |ψij(x)| is bounded, since exp(−z2) converges to zero much faster than |z| diverges to infinity.
Therefore, supx ∥ψj(x)∥2 is a finite number, and we could know from Eq. (1) that

∥ĝ(j) − g∗(j)∥∞ ≤ O(∥θ̂j − θ∗j ∥2) = Op

(
n−1/2

)
. (2)

1.2 Part Two: Convergence of LSNGCA

1.2.1 Step 2.1

To begin with, we focus on the convergence of Γ̂. Given any y, let ẑ = ĝ(y) and z∗ = g∗(y), then

(ẑ + y)(ẑ + y)⊤ − (z∗ + y)(z∗ + y)⊤ = ẑẑ⊤ − z∗z∗⊤ + (ẑ − z∗)y⊤ + y(ẑ − z∗)⊤

= (ẑ − z∗)ẑ⊤ + z∗(ẑ − z∗)⊤ + (ẑ − z∗)y⊤ + y(ẑ − z∗)⊤.

As a result, based on Eq. (2),

∥(ẑ + y)(ẑ + y)⊤ − (z∗ + y)(z∗ + y)⊤∥Fro ≤ ∥(ẑ − z∗)ẑ⊤∥Fro + ∥z∗(ẑ − z∗)⊤∥Fro
+ ∥(ẑ − z∗)y⊤∥Fro + ∥y(ẑ − z∗)⊤∥Fro

≤ (∥ẑ∥2 + ∥z∗∥2 + 2∥y∥) · ∥ẑ − z∗∥2
= O(∥ẑ − z∗∥2)

= Op

(
n−1/2

)
.

This has proved the point-wise convergence from (ĝ(y) + y)(ĝ(y) + y)⊤ to (g∗(y) + y)(g∗(y) + y)⊤.

Define an intermediate matrix based on y1, . . . ,yn as

Γ̃ =
1

n

n∑
i=1

(g∗(yi) + yi)(g
∗(yi) + yi)

⊤.

Subsequently, Γ̂ converges to Γ̃ in Op(n
−1/2) due to the point-wise convergence from (ĝ(y) + y)(ĝ(y) + y)⊤ to

(g∗(y) + y)(g∗(y) + y)⊤ that was just proved, and Γ̃ converges to Γ∗ in Op(n
−1/2) due to CLT. A combination

of these two results gives us

∥Γ̂− Γ∗∥Fro ≤ ∥Γ̂− Γ̃∥Fro + ∥Γ̃− Γ∗∥Fro = Op

(
n−1/2

)
. (3)

1.2.2 Step 2.2

Now let us consider the eigenvalues of Γ∗. Let µ1 > · · · > µr > µr+1 be the first r+ 1 eigenvalues of Γ∗ counted
without multiplicity, such that µr is the ds-th largest eigenvalue of Γ∗ if counted with multiplicity. Define the
eigen-gap by

ϵµ = min
i=1,...,r

{µi − µi+1}.
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We have assumed that µ1 < +∞ and µr > 0 in the second condition of the theorem, and thus it must hold that
0 < ϵµ < +∞. In the case that Γ∗ has only one eigenvalue, we can simply assign ϵµ = 1.

According to Lemma 5.2 of Koltchinskii and Giné (2000) as well as the appendix of Koltchinskii (1998), we can

derive the stability of the eigen-decomposition of Γ∗ with respect to some perturbation uΣ = Γ̂−Γ∗. Whenever
∥uΣ∥Fro < ϵµ/4:

• The first r + 1 eigenvalues µ′
1 > · · · > µ′

r > µ′
r+1 of Γ̂ = Γ∗ + uΣ, counted without multiplicity, satisfy that

|µ′
i − µi| ≤ ∥uΣ∥Fro for 1 ≤ i ≤ r, and µr − µ′

r+1 ≥ ϵµ − ∥uΣ∥Fro;
• Denote by Πi(Γ

∗) the orthogonal projection onto the eigen-spaces of Γ∗ associated with µi, and by Πi(Γ̂)

that of Γ̂ = Γ∗ + uΣ associated with µ′
i, then for 1 ≤ i ≤ r,

∥Πi(Γ̂)−Πi(Γ
∗)∥Fro ≤ 4

ϵµ
∥uΣ∥Fro.

We have employed simplified notations above to avoid sophisticated names in operator theory. Intuitively, the
first item guarantees that the eigenvalues of the perturbed matrix Γ̂ are close to that of Γ∗, and the second item
guarantees that the eigen-spaces of Γ̂ are also close to that of Γ∗.

By noting that ∥Γ̂− Γ∗∥Fro was shown to have an order of Op(n
−1/2) in (3), whereas the eigen-gap ϵµ for fixed

Γ∗ is a constant value, we could obtain that as n→ ∞ for all i,

∥Πi(Γ̂)−Πi(Γ
∗)∥Fro = Op

(
n−1/2

)
. (4)

1.2.3 Step 2.3

Finally, we can bound D(L̂,L∗). The eigenvalues of Γ∗ and Γ̂ were counted without multiplicity, and hence the

bases of Πi(Γ̂) and Πi(Γ
∗) may not be unique. Nevertheless, let EI∗ be the matrix form of a fixed orthonormal

basis of I∗, then there exists a sequence of matrices {EÎ,1, . . . ,EÎ,n, . . .} such that

• EÎ,n is the matrix form of a certain orthonormal basis of Î based on a set of data samples of size n;

• The sequence converges to EI∗ in Op(n
−1/2), i.e.,

∥EÎ,n −EI∗∥Fro = Op

(
n−1/2

)
, (5)

based on Eq. (4). Denote by EL∗ = Σ−1/2EI∗ and EL̂,n = Σ̂−1/2EÎ,n, and then

EL̂,n −EL∗ = Σ̂−1/2EÎ,n −Σ−1/2EI∗ = (Σ̂−1/2 −Σ−1/2)EÎ,n +Σ−1/2(EÎ,n −EI∗).

Therefore, we can prove that

D(L̂,L∗) = infÊ,E∗ ∥Ê−E∗∥Fro
≤ ∥EL̂,n −EL∗∥Fro
≤ ∥EÎ,n∥Fro · ∥Σ̂

−1/2 −Σ−1/2∥Fro + ∥Σ−1/2∥Fro · ∥EÎ,n −EI∗∥Fro
= O(∥Σ̂−1/2 −Σ−1/2∥Fro) +O(∥EÎ,n −EI∗∥Fro)

= Op

(
n−1/2

)
,

according to CLT and Eq. (5).
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