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Abstract

Non-Gaussian component analysis (NGCA)
is aimed at identifying a linear subspace
such that the projected data follows a non-
Gaussian distribution. In this paper, we pro-
pose a novel NGCA algorithm based on log-
density gradient estimation. Unlike exist-
ing methods, the proposed NGCA algorithm
identifies the linear subspace by using the
eigenvalue decomposition without any itera-
tive procedures, and thus is computationally
reasonable. Furthermore, through theoreti-
cal analysis, we prove that the identified sub-
space converges to the true subspace at the
optimal parametric rate. Finally, the prac-
tical performance of the proposed algorithm
is demonstrated on both artificial and bench-
mark datasets.

1 Introduction

A popular way to alleviate difficulties in statistical
data analysis is to reduce the dimensionality of data.
Real-world applications imply that a small number
of non-Gaussian signal components in data often in-
clude “interesting” information, while the remaining
Gaussian components are “uninteresting” (Blanchard
et al., 2006). This is the fundamental motivation
of non-Gaussian-based unsupervised dimension reduc-
tion methods.

A well-known method is projection pursuit (PP),
which estimates directions on which the projected
data is as non-Gaussian as possible (Friedman and
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Tukey, 1974; Huber, 1985). In practice, PP algo-
rithms maximize a single index function measuring
non-Gaussianity of the data projected on a direction.
However, some index functions are suitable for measur-
ing super-Gaussianity, while others are good at mea-
suring sub-Gaussianity (Hyvärinen et al., 2001). Thus,
PP algorithms might not work well when super- and
sub-Gaussian signal components are mixtured in data.

Non-Gaussian component analysis (NGCA) (Blan-
chard et al., 2006) copes with this problem. NGCA
is a semi-parametric framework for unsupervised lin-
ear dimension reduction, and aimed at identifying a
subspace such that the projected data follows a non-
Gaussian distribution. Compared with independent
component analysis (ICA) (Comon, 1994; Hyvärinen
et al., 2001), NGCA stands on a more general setting:
There is no restriction about the number of Gaus-
sian components and non-Gaussian signal components
can be dependent of each other, while ICA makes a
stronger assumption that at most one Gaussian com-
ponent is allowed and all the signal components are
statistically independent of each other.

To take into account both super- and sub-Gaussian
components, the first practical NGCA algorithm called
the multi-index projection pursuit (MIPP) heuris-
tically makes use of multiple index functions in
PP (Blanchard et al., 2006), but it seems unclear
whether this heuristic works well in general. To im-
prove the performance of MIPP, iterative metric adap-
tation for radial kernel functions (IMAK) has been
proposed (Kawanabe et al., 2007). IMAK does not
rely on index functions, but instead estimates alter-
native functions from data. However, IMAK involves
an iterative optimization procedure, and its computa-
tional cost is expensive.

In this paper, based on log-density gradient estima-
tion, we propose a novel NGCA algorithm which we
call the least-squares NGCA (LSNGCA). The ratio-
nale in LSNGCA is that as we show later, the target
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subspace contains the log-gradient for the data den-
sity subtracted by the log-gradient for a Gaussian den-
sity. Thus, the subspace can be identified using the
eigenvalue decomposition. Unlike MIPP and IMAK,
LSNGCA neither requires index functions nor any it-
erative procedures, and thus is computationally rea-
sonable.

A technical challenge in LSNGCA is to accurately esti-
mate the gradient of the log-density for data. To over-
come it, we employ a direct estimator called the least
squares log-density gradients (LSLDG) (Cox, 1985;
Sasaki et al., 2014). LSLDG accurately and efficiently
estimates log-density gradients in a closed form with-
out going through density estimation. In addition, it
includes an automatic parameter tuning method. In
this paper, based on LSLDG, we theoretically prove
that the subspace identified by LSNGCA converges to
the true subspace at the optimal parametric rate, and
finally demonstrate that LSNGCA reasonably works
well on both artificial and benchmark datasets.

This paper is organized as follows: In Section 2, af-
ter stating the problem of NGCA, we review MIPP
and IMAK, and discuss their drawbacks. We propose
LSNGCA, and then overview LSLDG in Section 3.
Section 4 performs theoretical analysis of LSNGCA.
The performance of LSNGCA on artificial datasets is
illustrated in Sections 5. Application to binary classi-
fication on benchmark datasets is given in Section 6.
Section 7 concludes this paper.

2 Review of Existing Algorithms

In this section, we first describe the problem of NGCA,
and then review existing NGCA algorithms.

2.1 Problem Setting

Suppose that a number of samples X = {xi =

(x
(1)
i , x

(2)
i , . . . , x

(dx)
i )⊤}n

i=1 are generated according to
the following model:

x = As+ n, (1)

where s = (s(1), s(2), . . . , s(ds))⊤ denotes a random sig-
nal vector, A is a dx-by-ds matrix, n is a Gaussian
noise vector with the mean vector 0 and covariance
matrix C. Assume further that the dimensionality of
s is lower than that of x, namely ds < dx, and s and
n are statistically independent of each other.

Lemma 1 in Blanchard et al. (2006) states that when
data samples follow the generative model (1), the
probability density p(x) can be described as a semi-
parametric model:

p(x) = fx(B⊤x)ϕC(x), (2)

where B is a dx-by-ds matrix, fx is a positive function
and ϕC denotes the Gaussian density with the mean
0 and covariance matrix C.

The decomposition in (2) is not unique because fx, B
and C are not identifiable from p. However, as shown
in Theis and Kawanabe (2006), the following linear
ds-dimensional subspace is identifiable:

L = Ker(B⊤)⊥ = Range(B). (3)

L is called the non-Gaussian index space. Here, the
problem is to identify L from X . In this paper, we
assume that ds is known.

2.2 Multi-Index Projection Pursuit

The first algorithm of NGCA called the multi-index
projection pursuit (MIPP) was proposed based on the
following key result (Blanchard et al., 2006):

Proposition 1. Let x be a random variable whose
density p(x) has the semi-parametric form (2), and
suppose that h(x) is a smooth real function on Rdx .
Denoting by Idx the dx-by-dx identity matrix, assume
further that E{x} = 0 and E{xx⊤} = Idx . Then,
under mild regularity conditions on h, the following
β(h) belongs to the target space L:

β(h) = E{xh(x) − ∇xh(x)},

where ∇x is the differential operator with respect to x.

The condition that E{xx⊤} = Idx seems to be strong,
but in practice it can be satisfied by whitening data.
Based on Proposition 1, after whitening data samples
as yi = Σ̂−1/2xi where Σ̂ = 1

n

∑n
i=1 xix

⊤
i , for a bunch

of functions {hk}K
k=1, MIPP estimates β(hk) = βk as

β̂k =
1

n

n∑

i=1

yihk(yi) − ∇yhk(yi). (4)

Then, MIPP applies PCA to {β̂k}K
k=1 and estimates L

by pulling back the ds-dimensional space spanned by
the first ds principal directions into the original (non-
whitened) space.

Although the basic procedure of MIPP is simple, there
are two implementation issues: normalization of β̂k

and choice of functions hk. The normalization issue
comes from the fact that since (4) is a linear mapping,

β̂k with larger norm can be dominant in the PCA step,
and they are not necessarily informative in practice.
To cope with this problem, Blanchard et al. (2006)
proposed the following normalization scheme:

β̂k√∑n
i=1 ∥yihk(yi) − ∇yhk(yi)∥2 − ∥β̂k∥2

. (5)
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After normalization, since the squared norm of each
vector is proportional to its signal-to-noise ratio,
longer vectors are more informative.

MIPP is supported by theoretical analysis (Blanchard
et al., 2006, Theorem 3), but the practical performance
strongly depends on the choice of h. To find an infor-
mative h, the form was restricted as

hr,ω(y) = r(ω⊤y),

where ω ∈ Rdx denotes a unit-norm vector, and r
is some function. As a heuristic, the FastICA algo-
rithm (Hyvärinen, 1999) was employed to find a good
ω. Although MIPP was numerically demonstrated
to outperform PP algorithms, it is unclear whether
these heuristic restriction and preprocessing work well
in general.

2.3 Iterative Metric Adaptation for Radial
Kernel Functions

To improve the performance of MIPP, the iterative
metric adaptation for radial kernel functions (IMAK)
estimates h by directly maximizing the informative
normalization criterion, which is the squared norm of
(5) used for normalization in MIPP (Kawanabe et al.,
2007). To estimate h, a linear-in-parameter model is
used as

hσ2,M,α(y) =
n∑

i=1

αi exp

{
− 1

2σ2
(y − yi)

⊤M(y − yi)

}

=
n∑

i=1

αikσ2,M(y,yi),

where y = Σ−1/2x, Σ = E{xx⊤}, α = (α1, . . . , αn) is
a vector of parameters to be estimated, M is a positive
semidefinite matrix and σ is a fixed scale parameter.
This model allows us to represent the squared norm of
the informative criterion (5) as

∥β̂k∥2

∑n
i=1 ∥yihk(yi) − ∇yhk(yi)∥2 − ∥β̂k∥2

=
α⊤Fα

α⊤Gα
.

(6)

F and G in (6) are given by

F =
1

n2

dx∑

r=1

(
e⊤

r YK − 1⊤
n ∂rK

)⊤ (
e⊤

r YK − 1⊤
n ∂rK

)

G + F

=
1

n

dx∑

r=1

{
diag(e⊤

r Y)K − ∂rK
}⊤ {

diag(e⊤
r Y)K − ∂rK

}
,

where er denotes the r-th basis vector in Rdx , Y is
a dx-by-n matrix whose column vectors are yi, K is

the Gram matrix whose (i, j)-th element is [K]ij =
kσ2,M (yi,yj), ∂r denotes the partial derivative with
respect to the r-th coordinate in y, and

[∂rK]ij =
1

σ2
([Myi]r − [Myj ]r)

× k′
σ2,M

(
− 1

2σ2
(yi − yj)

⊤M(yi − yj)

)
.

The maximizer of (6) can be obtained by solving the
following generalized eigenvalue problem:

Fα = ηGα,

where η is the generalized eigenvalue. Once α is es-
timated, β can be also estimated according to (4).
Then, the metric M in h is updated as

M ∝
∑

k

β̂kβ̂
⊤
k ,

where M is scaled so that its trace equals to dx. IMAK
alternately and iteratively updates α and β. It was
experimentally shown that IMAK improves the per-
formance of MIPP. However, IMAK makes use of the
above alternate and iterative procedure to estimate a
number of functions hσ2,M,α with different parameter
values for σ. Thus, IMAK is computationally costly.

3 Least-Squares Non-Gaussian
Component Analysis (LSNGCA)

In this section, we propose a novel algorithm for
NGCA, which is based on the gradients of log-
densities. Then, we overview an existing useful es-
timator for log-density gradients.

3.1 A Log-Density-Gradient-Based
Algorithm for NGCA

In contrast to MIPP and IMAK, our algorithm does
not rely on Proposition 1, but is derived more directly
from the semi-parametric model (2). As stated be-
fore, the noise covariance matrix C in (2) cannot be
identified in general. However, after whitening data,
the semi-parametric model (2) is significantly simpli-
fied by following the proof of Lemma 3 in Sugiyama
et al. (2008) as

p(y) = fy(B′⊤y)ϕIdx
(y), (7)

where fy is a positive function, and B′ is a dx-by-
ds matrix such that B′⊤B′ = Ids . Thus, under (7),
the non-Gaussian index subspace can be represented
as L = Range(B) = Σ−1/2Range(B′).

To estimate Range(B′), we take a novel approach
based on the gradients of log-densities. The reason
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of using the gradients comes from the following equa-
tion, which can be easily derived by computing the
gradient of the both-hand sides of (7) after taking the
logarithm:

∇y[log p(y) − log ϕIdx
(y)] = B′∇z log fy(z = B′⊤y).

(8)

Eq.(8) indicates that ∇y[log p(y) − log ϕIdx
(y)] =

∇y log p(y) + y is contained in Range(B′). Thus, an

orthonormal basis {e′
i}ds

i=1 in Range(B′) is estimated
as the minimizer of the following PCA-like problem:

E{∥ν −
ds∑

i=1

(ν⊤e′
i)e

′
i∥2}

= E{∥ν∥2} −
ds∑

i=1

e′⊤
i E{νν⊤}e′

i, (9)

where ν = ∇y log p(y) + y, ∥ei∥ = 1 and e⊤
i ej = 0

for i ̸= j. Eq.(9) indicates that minimizing the left-
hand side with respect to ei is equivalent to maxi-
mizing the second term in the right-hand side. Thus,
an orthonormal basis {ei}ds

i=1 can be estimated by
applying the eigenvalue decomposition to E{νν⊤} =
E{(∇y log p(y) + y)(∇y log p(y) + y)⊤}.

The proposed LSNGCA algorithm is summarized
in Fig.1. Compared with MIPP and IMAK, LSNGCA
estimates L without specifying or estimating h in
Proposition 1 and any iteration procedures. The key
challenge in LSNGCA is to estimate log-density gradi-
ents ∇y log p(y) in Step 2. To overcome this chal-
lenge, we employ a method called the least-squares
log-density gradients (LSLDG) (Cox, 1985; Sasaki
et al., 2014), which directly estimates log-density gra-
dients without going through density estimation. As
overviewed below, with LSLDG, LSNGCA can com-
pute all the solutions in a closed form, and thus would
be computationally efficient.

3.2 Least-Squares Log-Density Gradients
(LSLDG)

The fundamental idea of LSLDG is to directly fit a
gradient model g(j)(x) to the true log-density gradient
under the squared-loss:

J(g(j))

=

∫ {
g(j)(x) − ∂j log p(x)

}2

p(x)dx− C(j)

=

∫ {
g(j)(x)

}2

p(x)dx− 2

∫
g(j)(x)∂jp(x)dx

=

∫ {
g(j)(x)

}2

p(x)dx+ 2

∫ {
∂jg

(j)(x)
}
p(x)dx,

Input: Data samples, {xi}n
i=1.

Step 1 Whiten xi after subtracting the empirical
mean values from them.

Step 2 Estimate the gradient of the log-density for
the whitened data yi = Σ̂−1/2xi.

Step 3 Using the estimated gradients ĝ(yi), compute

Γ̂ = 1
n

∑n
i=1{ĝ(yi) + yi}{ĝ(yi) + yi}⊤.

Step 4 Perform the eigenvalue decomposition to Γ̂,
and let Î be the space spanned by the ds di-
rections corresponding to the largest ds eigen-
values.

Output: L̂ = Σ̂−1/2Î.

Figure 1: The LSNGCA algorithm.

C(j) =
∫

{∂j log p(x)}2
p(x)dx, ∂j = ∂

∂x(j) and the
last equality comes from the integration by parts under
a mild assumption that lim|x(j)|→∞ g(j)(x)p(x) = 0.

Thus, J(g(j)) is empirically approximated as

J̃(g(j)) =
1

n

n∑

i=1

g(j)(xi)
2 + 2∂jg

(j)(xi). (10)

To estimate log-density gradients, we use a linear-in-
parameter model as

g(j)(x) =

b∑

i=1

θijψij(x) = θ⊤
j ψj(x),

where θij is a parameter to be estimated, ψij(x) is a
fixed basis function, and b denotes the number of basis
functions and is fixed to b = min(n, 100) in this paper.
As in Sasaki et al. (2014), the derivatives of Gaussian
functions centered at ci are used for ψij(x):

ψij(x) =
[ci − x](j)

σ2
j

exp

(
−∥x− ci∥2

2σ2
j

)
,

where [x](j) denotes the j-th element in x, σj is the
width parameter, and the center point ci is randomly
selected from data samples xi. After substituting the
linear-in-parameter model and adding the ℓ2 regular-
izer into (10), the solution is computed analytically:

θ̂j = argmin
θj

[
θ⊤

j Ĝjθj + 2θ⊤
j ĥj + λjθ

⊤
j θj

]

= −(Ĝj + λjIb)
−1ĥj ,

where λj denotes the regularization parameter,

Ĝj =
1

n

n∑

i=1

ψj(xi)ψj(xi)
⊤ and ĥj =

1

n

n∑

i=1

∂jψj(xi).
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Finally, the estimator is obtained as

ĝ(j)(x) = θ̂⊤
j ψj(x).

As overviewed, LSLDG does not perform density es-
timation, but directly estimates log-density gradients.
The advantages of LSLDG can be summarized as fol-
lows:

• The solutions are efficiently computed in a closed
form.

• All the parameters, σj and λj , can be automati-
cally determined by cross-validation.

• Experimental results confirmed that LSLDG pro-
vides much more accurate estimates for log-
density gradients than an estimator based on
kernel density estimation especially for higher-
dimensional data (Sasaki et al., 2014).

4 Theoretical Analysis

We investigate the convergence rate of LSNGCA in a
parametric setting. Recall that

Ĝj =
1

n

n∑

i=1

ψj(xi)ψj(xi)
⊤, ĥj =

1

n

n∑

i=1

∂jψj(xi),

and denote their expectations by

G∗
j = E

[
ψj(x)ψj(x)⊤] , h∗

j = E [∂jψj(x)] .

Subsequently, let

θ∗
j = argminθ

{
θ⊤G∗

jθ + 2θ⊤h∗
j + λ∗

jθ
⊤θ
}
,

g∗(j)(x) = θ∗⊤
j ψj(x),

Γ∗ = E
[
(g∗(y) + y)(g∗(y) + y)⊤] ,

let I∗ be the eigen-space of Γ∗ with its largest ds eigen-
values, and L∗ = Σ−1/2I∗ be the optimal estimate. If
G∗

j is positive definite, λ∗
j = 0 is also allowed in our

analysis by assuming the smallest eigenvalue of G∗
j is

no less than ϵλ in the first condition in Theorem 1.

Theorem 1. Given the estimated space L̂ based on a
set of data samples of size n and the optimal space L∗,
denote by Ê ∈ Rdx×ds the matrix form of an arbitrary
orthonormal basis of L̂ and by E∗ ∈ Rdx×ds that of L∗.
Define the distance between spaces L̂ and L∗ as

D(L̂,L∗) = infÊ,E∗ ∥Ê − E∗∥Fro,

where ∥ · ∥Fro stands for the Frobenius norm. Then, as
n → ∞,

D(L̂,L∗) = Op

(
n−1/2

)
,

provided that

1. λj for all j converge in O(n−1/2) to the non-zero
limits, i.e., limn→∞ n1/2|λj − λ∗

j | < ∞, and there
exists ϵλ > 0 such that λ∗

j ≥ ϵλ;

2. ψij(x) for all i and j have well-chosen centers and
widths, such that the first ds eigenvalues of Γ∗ are
neither 0 nor +∞.

Theorem 1 shows that LSNGCA is consistent, and its
convergence rate is Op(n

−1/2) under mild conditions.
The first is about the limits of ℓ2-regularizations, and
it is easy to control. The second is also reasonable and
easy to satisfy, as long as the centers are not located
in regions with extremely low densities and the band-
widths are neither too large (Γ̂ might be all-zero) nor

too small (Γ̂ might be unbounded).

Our theorem is based on two powerful theories, one is
of perturbed optimizations (Bonnans and Cominetti,
1996; Bonnans and Shapiro, 1998), and the other is of
matrix approximation of integral operators (Koltchin-
skii, 1998; Koltchinskii and Giné, 2000) that covers a
theory of perturbed eigen-decompositions. According
to the former, we can prove that θ̂j converges to θ∗

j in

Op(n
−1/2) and thus Γ̂ to Γ∗ in Op(n

−1/2). According

to the latter, we can prove that Î converges to I∗ and
therefore L̂ to L∗ in Op

(
n−1/2

)
. The full proof can be

found in the supplementary material.

5 Illustration on Artificial Data

In this section, we experimentally illustrate how
LSNGCA works on artificial data, and compare its
performance with MIPP and IMAK.

Non-Gaussian signal components s = (s1, s2)
⊤ were

sampled from the following distributions:

• Gaussian mixture: p(s1, s2) ∝ ∏2
i=1 exp{−(si −

3)2/2} + exp{−(si + 3)2/2} (Fig. 2(a)).

• Super-Gaussian: p(s1, s2) ∝ ∏2
i=1 exp (−|si|/α)

where α is determined such that the variances of
s1 and s2 are 3 (Fig. 2(b)).

• Sub-Gaussian: p(s1, s2) ∝ ∏2
i=1 exp(−s4i /β)

where β is determined such that the variances of
s1 and s2 are 3 (Fig. 2(c)).

• Super- and sub-Gaussian: p(s1, s2) = p(s1)p(s2)
where p(s1) ∝ exp(−|s1|/α) and p(s2) ∝
exp(−s42/β). α and β are determined such that
the variances of s1 and s2 are 3 (Fig. 2(d)).

Then, a data vector was generated according to x =
(s1, s2, n3, . . . , n10) where ni for i = 3, . . . , 10 were
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(a) Gaussian mix-
ture

(b) Super-Gaussian (c) Sub-Gaussian (d) Super- and sub-
Gaussian

Figure 2: The two-dimensional distributions of four non-Gaussian densities.
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Figure 3: The average errors over 50 runs for four kinds of non-Gaussian signal components as the functions of
samples size n. The error bars denote standard deviations. The horizontal position of the markers for MIPP
and IMAK was slightly modified to improve visibility of their error bars.
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Figure 4: The average errors over 50 runs for four kinds of non-Gaussian signal components as the functions of
noise variances γ2 when n = 2, 000. The horizontal position of the markers for MIPP and IMAK was slightly
modified to improve visibility of their error bars.

sampled from the independent standard normal den-
sity. The error was measured by

E(L̂,L) =
1

ds

ds∑

i=1

∥êi − ΠLêi∥2,

where {êi}ds
i=1 is an orthonormal basis of L̂, and ΠL

denotes the orthogonal projection on L. For model
selection in LSLDG, a five-hold cross-validation was
performed with respect to the hold-out error of (10)
using the ten candidate values for σj (or λj) from 10−1

(or 10−5) to 10 at the regular interval in logarithmic
scale .

The results are presented in Fig. 3. For the Gaus-
sian mixture and super-Gaussian cases, LSNGCA al-
ways works better than MIPP and IMAK even when
the sample size is relatively small (Fig. 3(a) and (b)).
On the other hand, when the signal components in-
clude sub-Gaussian components and the number of
samples is insufficient, the performance of LSNGCA is
not good (Fig. 3(c) and (d)). This presumably comes
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Sample Size: n
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Figure 5: The average CPU time over 50 runs for the
Gaussian mixture as the functions of samples size n.
The vertical axis is in logarithmic scale.

from the fact that estimating the gradients for log-
arithmic sub-Gaussian densities is more challenging
than super-Gaussian densities. However, as long as
the number of samples is sufficient, the performance
of LSNGCA is comparable to or slightly better than
other methods.

Next, we investigate the performance of the three al-
gorithms when the non-Gaussian signal components in
data are contaminated by Gaussian noises such that
x = (s1 + n1, s2 + n2, n3, . . . , n10) where n1 and n2

are independently sampled from the Gaussian den-
sity with the mean 0 and variance γ2, while other ni

for i = 3, . . . , 10 are sampled as in the last experi-
ment. Fig. 4(a) and (b) show that as γ2 increases,
the estimation errors of LSNGCA for the Gaussian
mixture or super-Gaussian distribution more mildly
increases than MIPP and IMAK. When the data in-
cludes sub-Gaussian components, LSNGCA still works
better than MIPP and IMAK for weak noise, but all
methods are not robust to stronger noises.

For computational costs, MIPP is the best method,
while IMAK consumes much time (Fig.5). MIPP es-
timates a bunch of βk by simply computing (4), and
FastICA used in MIPP is an iterative method, but its
convergence is fast. Therefore, MIPP is a quite effi-
cient method. As reviewed in Section 2.3, because of
the alternate and iterative procedure, IMAK is compu-
tationally demanding. LSNGCA is less efficient than
MIPP, but its computational time is still reasonable.

In short, LSNGCA is advantageous in terms of the
sample size and noise tolerance especially when the
non-Gaussian signal components follow multi-modal or
super-Gaussian distributions. Furthermore, LSNGCA
is not the most efficient algorithm, but its computa-
tional cost is reasonable.

6 Application to Binary Classification
on Benchmark Datasets

In this section, we apply LSNGCA to binary classi-
fication on benchmark datasets. For comparison, in
addition to MIPP and IMAK, we employed PCA and
locality preserving projections (LPP) (He and Niyogi,
2004)1. For LPP, the nearest-neighbor-based weight
matrix was constructed using the heat kernel whose
width parameter was fixed to titj : ti is the Euclidean
distance to the k-nearest neighbor sample of xi. Here
we set k = 7 as suggested by Zelnik-Manor and Perona
(2005).

We used datasets for binary classification2 which are
available at https://www.csie.ntu.edu.tw/~cjlin/
libsvmtools/datasets/. For each dataset, we ran-
domly selected n samples for the training phase, and
the remaining samples were used for the test phase.
For some large datasets, we randomly chose 1, 000
samples for the training phase as well as for the test
phase. As preprocessing, we separately subtracted the
empirical means from the training and test samples.
The projection matrix was estimated from the n train-
ing samples by each method. Then, the support vec-
tor machine (SVM) (Scholkopf and Smola, 2001) was
trained using the dimension-reduced training data.3

The averages and standard deviations for miss classi-
fication rates over 30 runs are summarized in Table 1.
This table shows that LSNGCA overall compares fa-
vorably with other algorithms.

7 Conclusion

In this paper, we proposed a novel algorithm for
non-Gaussian component analysis (NGCA) called the
least-squares NGCA (LSNGCA). The subspace iden-
tification in LSNGCA is performed using the eigen-
value decomposition without any iterative procedures,
and thus LSNGCA is computationally reasonable.
Through theoretical analysis, we established the op-
timal convergence rate in a parametric setting for the
subspace identification. The experimental results con-
firmed that LSNGCA performs better than existing al-
gorithms especially for multi-modal or super-Gaussian
signal components, and reasonably works on bench-
mark datasets.

1http://www.cad.zju.edu.cn/home/dengcai/Data/
DimensionReduction.html

2The “shuttle” and “vehicle” datasets originally include
samples from more than two classes. Here, we only used
samples in classes 1 and 4 in the “shuttle” dataset, while we
regarded samples in classes 1 and 3 as positive and others
as negative in the “vehicle” dataset.

3We employed a MATLAB software for SVM called
LIBSVM (Chang and Lin, 2011).
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Table 1: The averages and standard deviations of misclassification rates for benchmark datasets over 30 runs.
The numbers in the parentheses are standard deviations. The best and comparable methods judged by the
unpaired t-test at the significance level 1% are described in boldface. The symbol “-” in the table means that
IMAK unexpectedly stopped during the experiments because of a numerical problem.

LSNGCA MIPP IMAK PCA LPP

australian (dx, n) = (14, 200)
ds = 2 20.20(5.09) 21.02(6.66) 33.43(4.99) 17.37(1.30) 17.50(1.08)
ds = 4 16.23(2.60) 15.90(2.14) 32.53(6.06) 14.92(1.17) 15.07(1.16)
ds = 6 15.41(2.32) 15.22(2.02) 30.71(5.71) 14.16(1.16) 14.39(1.10)

breast-cancer (Bache and Lichman) (dx, n) = (10, 400)
ds = 2 13.19(2.23) 3.73(0.92) 11.12(3.86) 2.71(0.80) 2.82(0.77)
ds = 4 9.26(1.76) 4.49(0.96) 6.50(1.55) 2.84(0.76) 2.97(0.76)
ds = 6 7.37(1.42) 4.91(0.92) 6.14(1.62) 2.80(0.80) 2.97(0.73)

cod-rna (Uzilov et al., 2006) (dx, n) = (8, 200)
ds = 2 18.20(5.48) 32.99(2.25) 35.77(2.81) 31.44(1.88) 14.26(1.84)
ds = 4 15.85(5.15) 20.52(9.94) 33.03(1.48) 29.94(2.09) 14.11(1.88)
ds = 6 13.34(4.74) 10.62(4.63) 32.99(1.48) 28.81(2.45) 14.03(1.89)

diabetes (Bache and Lichman) (dx, n) = (8, 400)
ds = 2 32.26(2.33) 33.81(1.97) 35.20(1.92) 29.27(1.66) 30.76(1.95)
ds = 4 32.57(2.18) 31.91(1.99) 35.64(2.02) 26.56(1.67) 27.10(1.71)
ds = 6 30.76(2.89) 29.63(1.79) 34.55(1.82) 25.38(1.82) 25.82(1.87)

liver-disorders (dx, n) = (6, 200)
ds = 2 39.31(3.62) 32.62(3.72) 33.15(5.21) 42.14(2.71) 42.00(2.96)
ds = 4 32.83(5.15) 32.02(3.67) 35.36(3.32) 42.02(2.64) 42.02(2.71)

german.numer (dx, n) = (24, 200)
ds = 2 30.27(0.74) 30.35(0.77) - 30.63(1.38) 30.82(1.52)
ds = 4 30.29(0.62) 30.45(0.86) 31.12(1.22) 29.90(1.68) 30.07(1.52)
ds = 6 30.54(1.01) 30.95(0.90) 31.23(1.12) 29.08(1.43) 29.46(1.09)

SUSY (dx, n) = (18, 1000)
ds = 2 29.58(1.86) 29.42(1.70) 34.37(1.82) 28.71(3.11) 35.26(1.87)
ds = 4 25.46(2.07) 25.91(1.70) 32.89(2.03) 27.05(1.55) 27.10(2.06)
ds = 6 23.32(1.73) 24.75(1.61) 31.74(2.16) 25.49(1.50) 25.56(1.56)

shuttle (dx, n) = (9, 1000)
ds = 2 11.29(2.53) 14.39(3.34) - 16.01(2.20) 11.41(3.53)
ds = 4 6.04(3.24) 10.45(1.12) 16.84(1.43) 8.18(0.93) 9.36(2.21)
ds = 6 3.03(1.73) 10.24(1.19) 16.84(1.43) 8.46(1.02) 11.03(2.91)

vehicle (dx, n) = (18, 200)
ds = 2 41.23(4.26) 43.36(3.78) 49.11(2.63) 38.88(2.47) 46.97(2.44)
ds = 4 35.16(3.76) 34.26(4.13) 50.04(1.42) 38.43(2.16) 45.85(3.11)
ds = 6 30.72(3.95) 26.60(2.24) 50.33(1.19) 34.30(2.99) 45.47(4.05)

svmguide3 (dx, n) = (21, 200)
ds = 2 22.58(1.55) 23.30(1.38) - 23.22(1.12) 23.92(0.52)
ds = 4 22.32(1.59) 21.63(1.28) 23.93(0.52) 21.74(0.92) 23.45(0.75)
ds = 6 22.20(1.54) 21.29(0.96) 23.92(0.52) 22.06(0.96) 23.53(0.68)
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