
Alan D. Saul, James Hensman, Aki Vehtari, Neil D. Lawrence

A Supplementary Material

A.1 Collapsed Heteroscedastic

Lazaro-Gredilla and Titsias [2011] form a bound by ‘col-
lapsing out’ the q(f) distribution, such that it need not take
a Gaussian form. As a brief review their bound can be de-
rived as follows.

log p(y|f) � E
q(f)

h
log p(y|f ,g)

i
+ logE

q(g)

h
p(g)

q(g)

i

= logN
⇣
y|f , emf i�

vf i
2

⌘
� 1

4

nX

i=1

v
f

i

= L

0

L =

Z
p(y|f)p(f)df

�
Z

e

L

0
p(f)df

=

Z
N

⇣
y|f , emf i�

vf i
2

⌘
N (f |0,K

↵

)� 1

4

nX

i=1

v
f

i

� KL (q(g) k p(g))

= N
⇣
y|0,K

↵

+ e

mf i�
vf i
2

⌘
� 1

4

nX

i=1

v
f

i

� KL (q(g) k p(g))

The bound that we assumes a sparse approximation, how-
ever it also constrains q(f) to be Gaussian. This leads to an
additional KL divergence since the optimal is not chosen,
and additional penalty term arising from the mismatch of
the constrained form of q(f).

A.2 Quadrature and Monte Carlo

Computing the expected likelihood requires many low-
dimensional integrals. Recently, there has been progress
in using stochastic methods to obtain unbiased estimates
in this area using centered representations [Kingma and
Welling, 2014, Rezende et al., 2014]. In this section, we
re-examine the effectiveness of Gauss-Hermite quadrature
in this setting. Gauss-Hermite quadrature approximates
Gaussian integrals in one dimension using a pre-defined
grid. For expectations of polynomial functions, the method
is exact when the grid size meets the degree of the polyno-
mial; for non-polynomial functions as we will encounter
in general, we must accept a small amount of bias. To
integrate higher dimensional functions, we must nest the
quadrature, doing an integral across one dimension for
each quadrature point in the other. Our experiments sug-
gest that even in this case, the amount of bias is negligi-
ble, as Figure 7 investigates, examining the accuracy of

0.5 1 1.5 2 2.5 3

�2

�1

0

1

2

3

(a) Test locations marked

4 16 64 256 1024 4096 1638410

�6

10

�5

10

�4

10

�3

10

�2

10

�1

10

0

10

1

Function evaluations

A
bs

ol
ut

e
er

ro
rf

ro
m

M
C

gr
ou

nd
tru

th

(b) Student-t mode

4 16 64 256 1024 4096 1638410

�6

10

�5

10

�4

10

�3

10

�2

10

�1

10

0

Function evaluations

A
bs

ol
ut

e
er

ro
rf

ro
m

M
C

gr
ou

nd
tru

th

(c) Student-t shoulder

4 16 64 256 1024 4096 1638410

�6

10

�5

10

�4

10

�3

10

�2

10

�1

10

0

Function evaluations

A
bs

ol
ut

e
er

ro
rf

ro
m

M
C

gr
ou

nd
tru

th

(d) Student-t tail

Figure 7: Two dimensional Gauss-Hermite quadrature vs
Monte Carlo. Each plot shows the log absolute error in es-
timating the two dimension integral required by our Het-
eroscedastic Student-t model (see section 4.2). In each
case, the bias introduced by quadrature (circles) is small: a
long way into the tail of the variance from the MC approxi-
mation. In fact, for small numbers of quadrature points, we
often do better than the expected value using many more
MC samples. Boxplots shows the absolute error on 1000
separate reruns of MC, whereas quadrature is determinis-
tic. The error was evaluated at various points in the tail of
the distribution as shown in a).

nested quadrature as compared to Monte Carlo estimates
using the centered parameterization [Kingma and Welling,
2014]. Inspired by an examination of quadrature for ex-
pectation propagation [Jylänki et al., 2011], we examine
the effectiveness for a several positions of the integral of a
Student-t.

Gauss-Hermite quadrature is appropriate for our integral
as the Gaussian posteriors q(f

i

)q(g

i

) are convolved with
a function p(y

i

|g
i

, f

i

). Monte Carlo integration is exact in
the limit of infinite samples, however in practice a subset of
samples must be used. Gauss-Hermite requires phb evalu-
ations per point in the mini-batch, where h is the number
of Gauss-Hermite points used, p is the number of output
dimensions, and b is the number of latent functions. Since
Monte Carlo is unbiased, using a stochastic optimizer with
the stochastic estimates of the integral and its gradients will
work effectively [Nguyen and Bonilla, 2014, Kingma and
Welling, 2014], though we find the bias introduced by the
quadrature approach to be negligible. For higher number of
latent functions it may be more efficient to make use of low
variance Monte Carlo estimates for the integrals. Gradients
for the model can be computed in a similar way with the
Gaussian idenities used by Opper and Archambeau [2009].



Chained Gaussian Processes

A.3 Gradients and Optimization

Gradients can be computed similarly to [Hensman et al.,
2015] using the equalities,

@

@µ

EN (x|µ,�2)

h
f(x)

i
= EN (x|µ,�2)

h
@

@x

f(x)

i
(11)

@

@�

2
EN (x|µ,�2)

h
f(x)

i
=

1

2

EN (x|µ,�2)

h
@

@x

2
f(x)

i
(12)

and the chain rule.

Since our posterior assumes factorization between q(f) and
q(g) we simply do the gradients independently. That is
calculate

@

@µ
f

EN (xi|mf ,vf )

h
log p(y|f ,g)

i

@

@µ
g

EN (xi|mg,vg)

h
log p(y|f ,g)

i

@

@v
f

EN (xi|mf ,vf )

h
log p(y|f ,g)

i

@

@v
g

EN (xi|mg,vg)

h
log p(y|f ,g)

i
,

independently using (11) and (12). The expectations can
then be done using quadrature, or Monte Carlo sampling.
As before

m
f

= K

fufK
�1
ufuf

µ
f

v
f

= K

↵

+K

fufK
�1
ufuf

(S
f

�K

ufuf )K
�1
ufuf

K

uf f

m
g

= K

gugK
�1
ugug

µ
g

v
g

= K

gg

+K

gugK
�1
ugug

(S
g

�K

ugug )K
�1
ugug

K

ugg.

We then can chain using
@

@mf
EN (xi|mf ,vf )

h
log p(y|f ,g)

i
@mf

@Kfuf

@Kfuf

@✓

, where
✓ is a hyper parameter of the kernel k

f

. Similar chain rules
can be written for the other derivatives.

The model contains variational parameters corresponding
to q(u

f

) = N (u

f

|µ
f

,S
f

) and q(u

g

) = N (u

g

|µ
g

,S
g

)

and the latent input locations, Z. As such the parame-
ters do not scale with n. Naively the number of parame-
ters is O(b(m

2
+m) +m) however we can reduce this to

O(b(

m

2

2 +m)) by parameterizing the Choleksy of the co-
variance matrices, S

f

= L

f

L

>
f

and S
g

= L

g

L

>
g

. This has
the added benefit of enforcing that S

f

and S
g

are symmet-
rical and positive definite.

We initialize the model with random or informed length-
scales within the right region, µ

f

and µ
g

are assigned small
random values, S

g

and S
f

are given an identity form. In
practice during optimization we find it helpful to initially
fix all the kernel hyperparameters and Z at their initial lo-
cations, optimize for a small number of steps, then allow
the optimization to run freely. This allows the latent means

µ
f

and µ
g

to move to sensible locations before the model
is allowed to completely change the form of the function
through the modification of the kernel hyperparameters.
True convergence can be difficult to achieve due to the po-
tentially number of strongly dependent parameters and the
non-convex optimization problem, and in practice we find
it helpful to monitor convergence. It is important to note
however that the number of parameters to be optimized is
fixed with respect to n.

A.4 Further Twitter experiment details

The model used to model the twitter data has some interest-
ing properties, such as the ability to model a transition from
a unimodal distribution to a bimodal distribution. The fol-
lowing plot shows how the distribution changes throughout
time for the Labour dataset.

0

5

/

0

2

/

1

5

0

5

/

0

3

/

1

5

0

5

/

0

4

/

1

5

0

5

/

0

5

/

1

5

0

5

/

0

6

/

1

5

0

5

/

0

7

/

1

5

0

5

/

0

8

/

1

5

1.0

1.5

2.0

2.5

Posterior GP for latent functions of Beta(↵,�)

�

↵

The latent functions ↵ and � which are modelled in Sec-
tion 4.2.2 can be plotted themselves. If both latent func-
tions went below 1.0 then the distribution at that time
would turn into a bathtub shape. If both are larger than one
but one is larger than the other, we have a skewed distri-
bution. If one is below zero and the over above, it appears
exponential or negative exponential.

A.5 Survival details

To generate the synthetic survival dataset we first define
latent functions that we wish to infer. These are a complex
function of an input, x, with two dimensions,



Alan D. Saul, James Hensman, Aki Vehtari, Neil D. Lawrence

↵ = exp

✓
2 exp(�30(x:,0 � 1

4

)

2
) + sin(⇡x

2
:,1)� 2

◆

� = exp (sin(2⇡x:,0) + cos(2⇡x:,1)) .

We then make 1000 synthetic individuals, with covariates
sampled uniformly from x

i,0 ⇠ Uniform(0, 1) and x

i,1 ⇠
Uniform(0, 1).

Using these two latent functions, ↵
i

and �

i

, computed us-
ing covariates x

i

for individual i, we sample a simulated
failure time from a log-logistic distribution,

y ⇠ LL(↵,�) =

⇣
�

↵

⌘ �
y

↵

�
��1

⇣
1 +

y

↵

�

⌘2 .

These are then the true failure times of individuals with
covariates x

i

. 20% of the data is chosen to be censored
censor. A time is uniformly drawn, t

i

2 [0,y

i

], and the
observed time is truncated to this time, y

i

= t

i

. Otherwise
t

i

= y

i

. Additionally a indicator �

i

= 1 is provided to
the model if censoring occurs, and �

i

= 0 if the real failure
time was observed. This mimics patients dropping out of a
trial, with the assumption that the time at which they drop
out is independent of the failure time and covariates. For
these censored times, we only know that T

i

> t

i

, and for
the uncensored individuals it is known that T

i

= t

i

.

As such the likelihood is decomposed into P (t

i

 y

i

<

t

i

+ �t|↵
i

,�

i

, �

i

= 0) and P (y

i

|↵
i

,�

i

, �

i

= 1) = 1 �
P (y

i

> t

i

|↵
i

,�

i

, �

i

= 1)

p(y|↵,�, �) =
K:� 6=1Y

i

⇣
�i

↵i

⌘⇣
yi

↵i

⌘
�i�1

⇣
1 +

yi

↵i

�i

⌘2

M :�=1Y

j

1

1 +

⇣
yj

↵j

⌘
�j

The task is then to infer ↵ and �, such that we know how
the failure time distribution varies in response to covariate
information.


