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A Proof of Lemma 1

In the notation of Definition 1, let E
`

(` = 1, . . . , k) be the event that some set S of cardinality ` fails to satisfy
the expansion property, i.e., |N

X

(S)| < (1 � ✏)d|S|. We start with the following non-asymptotic bound given
in [8]:
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Applying the bounds log
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(✏), we obtain
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Since k = ⇥(1), we obtain from the union bound that P
⇥

[
`=1,...,k

E
s

⇤

! 0 provided that (46) tends to �1 for
all `. This is true provided that in (2) holds; the dominant condition is the one with ` = k.

B Proof of Theorem 3

Recall the definitions of the random variables in (10)–(11), and the information densities in (25)–(27). We fix
the constants �

1

, . . . , �
k

arbitrarily, and consider a decoder that searches for the unique set s 2 S such that

ı̃(x
sdif ;y|xseq) > �|sdif | (47)

for all 2k � 1 partitions (s
dif

, s
eq

) of s with s
dif

6= ;. If no such s exists, or if multiple exist, then an error is
declared.

Since the joint distribution of (�
s

,X
s

,Y
s

|S = s) is the same for all s in our setup (cf., Section 1.2), and the
decoder that we have chosen exhibits a similar symmetry, we can condition on S = s = {1, . . . , k}. By the union
bound, the error probability is upper bounded by
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where here and subsequently we let the condition s
dif

6= ; remain implicit. In the summand of the second term,
we have upper bounded the probability of an intersection of 2k � 1 events by just one such event, namely, the
one with the information density corresponding to s

dif

= s\s and s
eq

= s \ s.

As mentioned previously, a key tool in the proof is the following change of measure (with ` := |s
dif

|):
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where we have used the definitions in (23)–(24), and (50) follows from (12). By an identical argument, we have
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where eP
Y|Xseq�s

:= Pn

Y |Xseq�s
has an i.i.d. law.

We can weaken the second probability in (48) as follows (with ` := |s\s|):
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where in (53) we used the fact that the output vector depends only on the columns of x
s

corresponding to entries
of s that are also in s, (54) follows from (51), and (55) follows by bounding eP

Y|Xseq
using the event within the

indicator function, and then upper bounding the indicator function by one. Substituting (56) into (48) gives
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where the combinatorial terms arise from a standard counting argument [7].

We now fix the constants �0
1

, . . . , �0
k

arbitrarily, and recall the following steps from [17] (again writing ` := |s
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|):
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The second term in (60) is upper bounded as
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where (61) follows from the union bound, and the remaining steps follow the arguments used in (53)–(56) (with
(52) used in place of (51)).

We now upper bound the first term in (60), again following [17]. The numerator in the first term in (60) equals
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Using the same steps as those used in (58)–(60), we can upper bound this by
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for any constant �. Reversing the step in (66), this can equivalently be written as
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The first logarithm in the first term is the information density in (26). Moreover, the choices
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make (65) and the second term in (57) be upper bounded by �
1

each. Hence, and combining (60) with (65) and
(68), and recalling that ` = |s
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|, we obtain (28).

C Proof of Theorem 2
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Before proving these, we show how they yield the theorem. Using (16), it is readily verified that each I
sdif ,seq(�s

),
with an i.i.d. Gaussian vector �
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, is a continuous random variable having no mass points. By taking ⌘ ! 0
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bounded away from zero and infinity), we conclude that (71)–(72) remain true when ⌘ is replaced by zero, and its
contribution is factored into the o(1) terms. Hence, we obtain Theorem 2 by (i) dropping the condition �

s

2 B
0

from the first probability in (71); (ii) using the identity P[A
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The following is a straightforward extension of [17, Prop. 4] to expander-based measurements.
Proposition 1. The quantities I
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Proof. See Appendix E.

We can now obtain (71)–(72) using the steps of the previous subsection; the condition P[�
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and (39) due to the fact that this condition was used to obtain a bounded variance in (32), and the first two
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D Proof of Lemma 3
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, Y ) and (X 0
s

, Y 0
) correspond to two different indices in {1, · · · , n}; here (80) follows by simple symmetry

considerations for the cases i = j and i 6= j.
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To compute the covariance term in (80), we first find the joint distribution of (X
s

, Y ) and (X 0
s

, Y 0
). As noted

in [29, Sec. IV-B], a uniform permutation of a vector with d ones and n�d zeros can be interpreted as successively
performing uniform sampling from a collection of symbols without replacement (n times in total), where the initial
collection contains d ones and n� d zeros. By considering the first two steps of this procedure, we obtain
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We now consider the various terms arising by substituting (82) into (84) and performing a binomial-type expan-
sion of the product:
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E Proof of Proposition 1
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where (88) follows from the identity det(I +AB) = det(I +BA), (89) follows by writing the determinant as a
product of eigenvalues (denoted by �

i

(·)), and (90) follows from Jensen’s inequality and the following calculation:
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since the squared norm of X
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is d almost surely. This concludes the proof of (76).
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Z

⇠ N(0,�2

I) and
P
Y|XS

(·|x
s

) ⇠ N(0,�2

I + �2

�

x

s

x

T

s

). Observe now that 1

�

2Z
T

Z is a sum of n independent �2 random variables
with one degree of freedom (each having a variance of 2), and hence the second term in (93) has a variance of n

2

.
Moreover, by writing M

�1

= (M

� 1
2
)

T

M

� 1
2 for the symmetric positive definite matrix M = �2

I+ �2

�

X

s

X

T

s

, we
similarly observe that the final term in (93) is a sum of �2 variables (this is true conditioned on any X

s

= x

s

,
and hence also true unconditionally), again yielding a variance of n

2

. We thus obtain (77) using the identity
Var[A+B]  Var[A] + Var[B] + 2max{Var[A],Var[B]}.


