
Supplementary Material for the AISTATS 2016

Paper:

Provable Tensor Methods for Learning

Mixtures of Generalized Linear Models

Hanie Sedghi∗ Majid Janzamin† Anima Anandkumar‡

1 Proofs

1.1 Proof of Lemma 3

Notation: Tensor as multilinear forms: We view a tensor T ∈ Rd×d×d as
a multilinear form. Consider matrices Mr ∈ Rd×dr , r ∈ {1, 2, 3}. Then tensor
T (M1,M2,M3) ∈ Rd1 ⊗ Rd2 ⊗ Rd3 is defined as

T (M1,M2,M3)i1,i2,i3 :=
∑

j1,j2,j3∈[d]

Tj1,j2,j3 ·M1(j1, i1) ·M2(j2, i2) ·M3(j3, i3).

(1)

In particular, for vectors u, v, w ∈ Rd, we have 1

T (I, v, w) =
∑
j,l∈[d]

vjwlT (:, j, l) ∈ Rd, (2)

which is a multilinear combination of the tensor mode-1 fibers. Similarly T (u, v, w) ∈
R is a multilinear combination of the tensor entries, and T (I, I, w) ∈ Rd×d is a
linear combination of the tensor slices.

Now, let us proceed with the proof.
Proof: Let x′ := 〈u, x〉+ b. Define l(x) := y · x⊗ x. We have

E[y · x⊗3] = E[l(x)⊗ x] = E[∇xl(x)],

∗Allen Institute for Artificial Intelligence. Email: hanies@allenai.org. This work was done
while the author was a visiting researcher at University of California, Irvine.
†University of California, Irvine. Email: mjanzami@uci.edu
‡University of California, Irvine. Email: a.anandkumar@uci.edu
1Compare with the matrix case where for M ∈ Rd×d, we have M(I, u) = Mu :=∑
j∈[d] ujM(:, j) ∈ Rd.

1

by applying Stein’s lemma. We now simplify the gradient of l(x).

E [∇xl(x)] = E[y · ∇x(x⊗ x)] + E[(∇x′g(x′))(x⊗ x⊗ u)]. (3)

We now analyze the first term. We have

∇x(x⊗ x)i1,i2,j =
∂xi1xi2
∂xj

=

xi2 , i1 = j,

xi1 , i2 = j, (4)

2xj , i1 = i2 = j,

0, o.w.

This can be written succinctly as

∇x(x⊗ x) =
∑
i

ei ⊗ x⊗ ei +
∑
i

x⊗ ei ⊗ ei +
∑
i

2xi(ei ⊗ ei ⊗ ei)

and therefore, the expectation for the first term in (3) is given by

E[y·∇x(x⊗x)] =
∑
i

(E[y · ei ⊗ x⊗ ei] + E[y · x⊗ ei ⊗ ei] + 2E[y · xi · ei ⊗ ei ⊗ ei]) .

Now for the second term in (3), let f(x) := ∇x′g(x′) · x⊗ u. The transposition
of the second term in (3) is given by

E[(∇x′g(x′) · x⊗ u)⊗ x] = E[f(x)⊗ x]

= E[∇xf(x)],

where we have swapped modes 2 and 3 in E[(∇x′g(x′))(x ⊗ x ⊗ u)] to obtain
the above. We will compute ∇xf(x) and then switch the tensor modes again to
obtain the final result. We have

∇xf(x) = ∇x (∇x′g(x′)x⊗ u)

= (∇(2)
x′ g(x′)) · x⊗ u⊗ u+ (∇x′g(x′)) · ∇x(x⊗ u), (5)

The first term is given by

E
[
(∇(2)

x′ g(x′)) · x⊗ u⊗ u
]

= E
[
(∇(3)

x′ g(x′)) · u⊗ u⊗ u
]

So the second term in (5) is given by∑
i

(∇x′g(x′)) · (ei ⊗ u⊗ ei).

Note that

E [(∇x′g(x′)) · (ei ⊗ u⊗ ei)] = E [ei ⊗∇xg(〈x, u〉)⊗ ei] = E [g(x′) · (ei ⊗ x⊗ ei)] ,

since if we apply Stein’s left to right-hand side, we obtain the left hand side
of the equation. Swapping the modes 2 and 3 above, we obtain the result by
substituting in (3).

We need to mention that, Lemma 3 can be directly proved by Theorem 9 as
specific form of score function for Gaussian input. Here, we have provided step
by step first principles proof of the lemma for easy understanding. �

2

1.2 Proof of Lemma 6

By replacing y by y3 in Proof of Lemma 3 (Appendix 1.1), we have that

M3 = Ex
[
∇3
x(y3)

]
= Ex

[
∇3
xEh

[
y3|h = ej

]]
= Ex

∇3
x

∑
j∈[r]

(wj〈uj , x〉+ bj)
3

 =
∑
j∈[r]

ρjwj · uj ⊗ uj ⊗ uj .

Note that the third equation results from the fact that for each sample only
one of the uj , j ∈ [r] is chosen by h and no other terms are present. Therefore,the
expression has no cross terms.

1.3 Proof of Theorem 11

Proof.

M3 = Ex[y3 · S3(x)] = Eh
[
Ex[y3 · S3(x)|h = ej]

]
= Ex

[
Eh[y3 · S3(x)|h = ej]

]
= Ex

∑
j∈[r]

(wj〈uj , x〉+ bj)
3

= Ex

∇3
x

∑
j∈[r]

(wi〈uj , x〉+ bj)
3

 =
∑
j∈[r]

wj · u⊗3j .

Note that the fourth equation results from the fact that for each sample only one
of the uj , j ∈ [r] is chosen by h and no other terms are present. Therefore,the
expression has no cross terms. �

2 Tensor Decomposition Method

We now recap the tensor decomposition method Anandkumar et al. [2014] to
obtain the rank-1 components of a given tensor. This is given in Algorithm 4.
Let M̂3 denote the empirical moment tensor input to the algorithm.

Since in our case modes are the same, the asymmetric power updates in [Anand-
kumar et al., 2014] are simplified to one update. These can be considered as
rank-1 form of the standard alternating least squares (ALS) method. If we as-
sume the weight matrix U (i.e. the tensor components) has incoherent columns,

then we can directly perform tensor power method on the input tensor M̂3 to
find the components. Otherwise, we need to whiten the tensor first. We take a
random slice of the empirical estimate of M̂3 and use it to find the whitening
matrix2. Let V̂ be the average of the random slices. The whitening matrix Ŵ
can be found by using a rank-r SVD on V̂ as shown in Procedure 2.

2If E[y|x] is a symmetric function of x, then the second moment M2 is zero. Therefore,
we cannot use it for whitening. Instead, we use random slices of the third moment M3 for
whitening.

3

Procedure 2 Whitening

input Tensor T ∈ Rd×d×d.
1: Draw a random standard Gaussian vector θ ∼ N (0, Id).

2: Compute V̂ = T (I, I, θ) ∈ Rd×d.
3: Compute the rank-r SVD V̂ = Ũ Diag(λ̃)Ũ>.

4: Compute the whitening matrix Ŵ = Ũ Diag(λ̃−1/2).

5: return T
(
Ŵ , Ŵ , Ŵ

)
.

Procedure 3 SVD-based initialization when r = O(d) [Anandkumar et al.,
2014]

input Tensor T ∈ Rr×r×r.
1: Draw a random standard Gaussian vector θ ∼ N (0, Ir).
2: Compute u1 as the top left and right singular vector of T (I, I, θ) ∈ Rr×r.
3: â0 ← u1.
4: return â0.

Since the tensor decomposition problem is non-convex, it requires good ini-
tialization. We use the initialization algorithm from [Anandkumar et al., 2014]
as shown in Procedure 3. The initialization for different runs of tensor power
iteration is performed by the SVD-based technique proposed in Procedure 3.
This helps to initialize non-convex power iteration with good initialization vec-
tors when we have large enough number of initializations. Then, the clustering
algorithm is applied where its purpose is to identify which initializations are
successful in recovering the true rank-1 components of the tensor.

3 Expectation Maximization for Learning Un-
normalized Weights

If we assume the weight vectors are normalized, our proposed algorithm suffices
to completely learn the parameters wi. Otherwise, we need to perform EM
to fully learn the weights. Note that initializing with our method results in
performing EM in a lower dimension than the input dimension. In addition, we
can also remove the independence of selection parameter from input features
when doing EM. We initialize with the output of our method (Algorithm 1) and
proceed with EM algorithm as proposed by Xu et al. [1995], Section 3. Below
we repeat the procedure in our notation for completeness.

Consider the gating network

gj(x, ν) =
wjp(x|νj)∑
i wip(x|νi)

,
∑
i

wi = 1, wi ≥ 0,

p(x|νj) = aj(νj)
−1bj(x) exp{cj(νj)>tj(x)},

4

Algorithm 4 Robust tensor power method [Anandkumar et al., 2014]

input symmetric tensor T ∈ Rd×d×d, number of iterations N , number of ini-
tializations L, parameter ν.

output the estimated eigenvector/eigenvalue pair.
1: Whiten T using the whitening method n Procedure 2.
2: for τ = 1 to L do
3: Initialize â

(τ)
0 with SVD-based method in Procedure 3.

4: for t = 1 to N do
5: Compute power iteration update

â
(τ)
t :=

T (I, â
(τ)
t−1, â

(τ)
t−1)

‖T (I, â
(τ)
t−1, â

(τ)
t−1)‖

(6)

6: end for
7: end for
8: S :=

{
a
(N+1)
τ : τ ∈ [L]

}
9: while S is not empty do

10: Choose a ∈ S which maximizes |T (a, a, a)|.
11: Do N more iterations of (6) starting from a.
12: Output the result of iterations denoted by â.
13: Remove all the a ∈ S with |〈a, â〉| > ν/2.
14: end while

where ν = {wj , νj , j = 1, · · · , r}, and the p(x|νj)’s are density functions from
the exponential family.

In the above equation, gj(x, ν) is actually the posterior probability p(j|x)
that x is assigned to the partition corresponding to the j−th expert net. From
Bayes’ rule:

gj(x, ν) = p(j|x) =
wjp(x|νj)
p(x, ν)

, p(x, ν) =
∑
i

wip(x|νi).

Hence,

p(y|x,Θ) =
∑
j

wjp(x|νj)
p(x, ν)

p(y|x, uj),

5

where Θ includes uj , j = 1, · · · , r and ν. Let

Qg(ν) =
∑
t

∑
j

f
(k)
j (y(t)|x(t)) ln g

(k)
j (x(t), ν(t)),

Qgj (νj) =
∑
t

f
(k)
j (y(t)|x(t)) ln p(x(t)|νj), j ∈ [r]

Qej(θj) =
∑
t

f
(k)
j (y(t)|x(t)) ln p(y(t)|x(t), θj), j ∈ [r]

Qw =
∑
t

∑
j

f
(k)
j (y(t)|x(t)) lnwj , with w = {w1, . . . , wr}

The EM algorithm is as follows:

1. E-step. Compute

f
(k)
j (y(t)|x(t)) =

w
(k)
j p(x(t)|ν(k)j)p(y(t)|x(t), u(k)j)∑
i w

(k)
i p(x(t)|ν(k)i)p(y(t)|x(t), u(k)i)

.

2. M-Step Find a new estimate for j = 1, · · · , r

u
(k+1)
j = arg max

uj

Qej(uj), ν
(k+1)
j = arg max

νj

Qgj (νj),

w(k+1) = arg max
w

Qw, s.t.
∑
i

wi = 1.

References

Animashree Anandkumar, Rong Ge, and Majid Janzamin. Guaranteed Non-
Orthogonal Tensor Decomposition via Alternating Rank-1 Updates. arXiv
preprint arXiv:1402.5180, Feb. 2014.

Lei Xu, Michael I Jordan, and Geoffrey E Hinton. An alternative model for
mixtures of experts. Advances in Neural Information Processing Systems,
pages 633–640, 1995.

6

	Proofs
	Proof of Lemma 3
	Proof of Lemma 6
	Proof of Theorem 11

	Tensor Decomposition Method
	Expectation Maximization for Learning Un-normalized Weights

