Supplementary Material for the AISTATS 2016 Paper:
 Provable Tensor Methods for Learning Mixtures of Generalized Linear Models

Hanie Sedghi* Majid Janzamin ${ }^{\dagger}$ Anima Anandkumar ${ }^{\ddagger}$

1 Proofs

1.1 Proof of Lemma 3

Notation: Tensor as multilinear forms: We view a tensor $T \in \mathbb{R}^{d \times d \times d}$ as a multilinear form. Consider matrices $M_{r} \in \mathbb{R}^{d \times d_{r}}, r \in\{1,2,3\}$. Then tensor $T\left(M_{1}, M_{2}, M_{3}\right) \in \mathbb{R}^{d_{1}} \otimes \mathbb{R}^{d_{2}} \otimes \mathbb{R}^{d_{3}}$ is defined as

$$
\begin{equation*}
T\left(M_{1}, M_{2}, M_{3}\right)_{i_{1}, i_{2}, i_{3}}:=\sum_{j_{1}, j_{2}, j_{3} \in[d]} T_{j_{1}, j_{2}, j_{3}} \cdot M_{1}\left(j_{1}, i_{1}\right) \cdot M_{2}\left(j_{2}, i_{2}\right) \cdot M_{3}\left(j_{3}, i_{3}\right) . \tag{1}
\end{equation*}
$$

In particular, for vectors $u, v, w \in \mathbb{R}^{d}$, we have ${ }^{1}$

$$
\begin{equation*}
T(I, v, w)=\sum_{j, l \in[d]} v_{j} w_{l} T(:, j, l) \in \mathbb{R}^{d} \tag{2}
\end{equation*}
$$

which is a multilinear combination of the tensor mode- 1 fibers. Similarly $T(u, v, w) \in$ \mathbb{R} is a multilinear combination of the tensor entries, and $T(I, I, w) \in \mathbb{R}^{d \times d}$ is a linear combination of the tensor slices.

Now, let us proceed with the proof.
Proof: Let $x^{\prime}:=\langle u, x\rangle+b$. Define $l(x):=y \cdot x \otimes x$. We have

$$
\mathbb{E}\left[y \cdot x^{\otimes 3}\right]=\mathbb{E}[l(x) \otimes x]=\mathbb{E}\left[\nabla_{x} l(x)\right],
$$

[^0]by applying Stein's lemma. We now simplify the gradient of $l(x)$.
\[

$$
\begin{equation*}
\mathbb{E}\left[\nabla_{x} l(x)\right]=\mathbb{E}\left[y \cdot \nabla_{x}(x \otimes x)\right]+\mathbb{E}\left[\left(\nabla_{x^{\prime}} g\left(x^{\prime}\right)\right)(x \otimes x \otimes u)\right] \tag{3}
\end{equation*}
$$

\]

We now analyze the first term. We have

$$
\nabla_{x}(x \otimes x)_{i_{1}, i_{2}, j}=\frac{\partial x_{i_{1}} x_{i_{2}}}{\partial x_{j}}= \begin{cases}x_{i_{2}}, & i_{1}=j \tag{4}\\ x_{i_{1}}, & i_{2}=j \\ 2 x_{j}, & i_{1}=i_{2}=j \\ 0, & \text { o.w. }\end{cases}
$$

This can be written succinctly as

$$
\nabla_{x}(x \otimes x)=\sum_{i} e_{i} \otimes x \otimes e_{i}+\sum_{i} x \otimes e_{i} \otimes e_{i}+\sum_{i} 2 x_{i}\left(e_{i} \otimes e_{i} \otimes e_{i}\right)
$$

and therefore, the expectation for the first term in (3) is given by
$\mathbb{E}\left[y \cdot \nabla_{x}(x \otimes x)\right]=\sum_{i}\left(\mathbb{E}\left[y \cdot e_{i} \otimes x \otimes e_{i}\right]+\mathbb{E}\left[y \cdot x \otimes e_{i} \otimes e_{i}\right]+2 \mathbb{E}\left[y \cdot x_{i} \cdot e_{i} \otimes e_{i} \otimes e_{i}\right]\right)$.
Now for the second term in (3), let $f(x):=\nabla_{x^{\prime}} g\left(x^{\prime}\right) \cdot x \otimes u$. The transposition of the second term in (3) is given by

$$
\begin{aligned}
\mathbb{E}\left[\left(\nabla_{x^{\prime}} g\left(x^{\prime}\right) \cdot x \otimes u\right) \otimes x\right] & =\mathbb{E}[f(x) \otimes x] \\
& =\mathbb{E}\left[\nabla_{x} f(x)\right]
\end{aligned}
$$

where we have swapped modes 2 and 3 in $\mathbb{E}\left[\left(\nabla_{x^{\prime}} g\left(x^{\prime}\right)\right)(x \otimes x \otimes u)\right]$ to obtain the above. We will compute $\nabla_{x} f(x)$ and then switch the tensor modes again to obtain the final result. We have

$$
\begin{align*}
\nabla_{x} f(x) & =\nabla_{x}\left(\nabla_{x^{\prime}} g\left(x^{\prime}\right) x \otimes u\right) \\
& =\left(\nabla_{x^{\prime}}^{(2)} g\left(x^{\prime}\right)\right) \cdot x \otimes u \otimes u+\left(\nabla_{x^{\prime}} g\left(x^{\prime}\right)\right) \cdot \nabla_{x}(x \otimes u) \tag{5}
\end{align*}
$$

The first term is given by

$$
\mathbb{E}\left[\left(\nabla_{x^{\prime}}^{(2)} g\left(x^{\prime}\right)\right) \cdot x \otimes u \otimes u\right]=\mathbb{E}\left[\left(\nabla_{x^{\prime}}^{(3)} g\left(x^{\prime}\right)\right) \cdot u \otimes u \otimes u\right]
$$

So the second term in 5 is given by

$$
\sum_{i}\left(\nabla_{x^{\prime}} g\left(x^{\prime}\right)\right) \cdot\left(e_{i} \otimes u \otimes e_{i}\right)
$$

Note that
$\mathbb{E}\left[\left(\nabla_{x^{\prime}} g\left(x^{\prime}\right)\right) \cdot\left(e_{i} \otimes u \otimes e_{i}\right)\right]=\mathbb{E}\left[e_{i} \otimes \nabla_{x} g(\langle x, u\rangle) \otimes e_{i}\right]=\mathbb{E}\left[g\left(x^{\prime}\right) \cdot\left(e_{i} \otimes x \otimes e_{i}\right)\right]$,
since if we apply Stein's left to right-hand side, we obtain the left hand side of the equation. Swapping the modes 2 and 3 above, we obtain the result by substituting in (3).

We need to mention that, Lemma 3 can be directly proved by Theorem 9 as specific form of score function for Gaussian input. Here, we have provided step by step first principles proof of the lemma for easy understanding.

1.2 Proof of Lemma 6

By replacing y by y^{3} in Proof of Lemma 3 (Appendix 1.1), we have that

$$
\begin{aligned}
M_{3} & =\mathbb{E}_{x}\left[\nabla_{x}^{3}\left(y^{3}\right)\right]=\mathbb{E}_{x}\left[\nabla_{x}^{3} \mathbb{E}_{h}\left[y^{3} \mid h=e_{j}\right]\right] \\
& =\mathbb{E}_{x}\left[\nabla_{x}^{3}\left(\sum_{j \in[r]}\left(w_{j}\left\langle u_{j}, x\right\rangle+b_{j}\right)^{3}\right)\right]=\sum_{j \in[r]} \rho_{j} w_{j} \cdot u_{j} \otimes u_{j} \otimes u_{j} .
\end{aligned}
$$

Note that the third equation results from the fact that for each sample only one of the $u_{j}, j \in[r]$ is chosen by h and no other terms are present. Therefore,the expression has no cross terms.

1.3 Proof of Theorem 11

Proof.

$$
\begin{aligned}
M_{3} & =\mathbb{E}_{x}\left[y^{3} \cdot \mathcal{S}_{3}(x)\right]=\mathbb{E}_{h}\left[\mathbb{E}_{x}\left[y^{3} \cdot \mathcal{S}_{3}(x) \mid h=e_{j}\right]\right] \\
& =\mathbb{E}_{x}\left[\mathbb{E}_{h}\left[y^{3} \cdot \mathcal{S}_{3}(x) \mid h=e_{j}\right]\right]=\mathbb{E}_{x}\left[\sum_{j \in[r]}\left(w_{j}\left\langle u_{j}, x\right\rangle+b_{j}\right)^{3}\right] \\
& =\mathbb{E}_{x}\left[\nabla_{x}^{3}\left[\sum_{j \in[r]}\left(w_{i}\left\langle u_{j}, x\right\rangle+b_{j}\right)^{3}\right]\right]=\sum_{j \in[r]} w_{j} \cdot u_{j}^{\otimes 3} .
\end{aligned}
$$

Note that the fourth equation results from the fact that for each sample only one of the $u_{j}, j \in[r]$ is chosen by h and no other terms are present. Therefore, the expression has no cross terms.

2 Tensor Decomposition Method

We now recap the tensor decomposition method Anandkumar et al. 2014 to obtain the rank-1 components of a given tensor. This is given in Algorithm 4 Let \widehat{M}_{3} denote the empirical moment tensor input to the algorithm.

Since in our case modes are the same, the asymmetric power updates in Anandkumar et al., 2014 are simplified to one update. These can be considered as rank-1 form of the standard alternating least squares (ALS) method. If we assume the weight matrix U (i.e. the tensor components) has incoherent columns, then we can directly perform tensor power method on the input tensor \widehat{M}_{3} to find the components. Otherwise, we need to whiten the tensor first. We take a random slice of the empirical estimate of \widehat{M}_{3} and use it to find the whitening matrix ${ }^{2}$. Let \widehat{V} be the average of the random slices. The whitening matrix \widehat{W} can be found by using a rank- r SVD on \widehat{V} as shown in Procedure 2 .

[^1]```
Procedure 2 Whitening
input Tensor \(T \in \mathbb{R}^{d \times d \times d}\).
 Draw a random standard Gaussian vector \(\theta \sim \mathcal{N}\left(0, I_{d}\right)\).
 Compute \(\widehat{V}=T(I, I, \theta) \in \mathbb{R}^{d \times d}\).
 Compute the rank-r SVD \(\widehat{V}=\tilde{U} \operatorname{Diag}(\tilde{\lambda}) \tilde{U}^{\top}\).
 Compute the whitening matrix \(\widehat{W}=\tilde{U} \operatorname{Diag}\left(\tilde{\lambda}^{-1 / 2}\right)\).
 return \(T(\widehat{W}, \widehat{W}, \widehat{W})\).
```

Procedure 3 SVD-based initialization when $r=O(d)$ Anandkumar et al. 2014
input Tensor $T \in \mathbb{R}^{r \times r \times r}$.
Draw a random standard Gaussian vector $\theta \sim \mathcal{N}\left(0, I_{r}\right)$
Compute $u_{1}$ as the top left and right singular vector of $T(I, I, \theta) \in \mathbb{R}^{r \times r}$.
$\hat{a}_{0} \leftarrow u_{1}$.
return $\hat{a}_{0}$.

Since the tensor decomposition problem is non-convex, it requires good initialization. We use the initialization algorithm from Anandkumar et al., 2014 as shown in Procedure 3. The initialization for different runs of tensor power iteration is performed by the SVD-based technique proposed in Procedure 3 This helps to initialize non-convex power iteration with good initialization vectors when we have large enough number of initializations. Then, the clustering algorithm is applied where its purpose is to identify which initializations are successful in recovering the true rank-1 components of the tensor.

## 3 Expectation Maximization for Learning Unnormalized Weights

If we assume the weight vectors are normalized, our proposed algorithm suffices to completely learn the parameters $w_{i}$. Otherwise, we need to perform EM to fully learn the weights. Note that initializing with our method results in performing EM in a lower dimension than the input dimension. In addition, we can also remove the independence of selection parameter from input features when doing EM. We initialize with the output of our method (Algorithm 1) and proceed with EM algorithm as proposed by Xu et al. 1995, Section 3. Below we repeat the procedure in our notation for completeness.

Consider the gating network

$$
\begin{aligned}
g_{j}(x, \nu) & =\frac{w_{j} p\left(x \mid \nu_{j}\right)}{\sum_{i} w_{i} p\left(x \mid \nu_{i}\right)}, \quad \sum_{i} w_{i}=1, \quad w_{i} \geq 0 \\
p\left(x \mid \nu_{j}\right) & =a_{j}\left(\nu_{j}\right)^{-1} b_{j}(x) \exp \left\{c_{j}\left(\nu_{j}\right)^{\top} t_{j}(x)\right\}
\end{aligned}
$$

```
Algorithm 4 Robust tensor power method [Anandkumar et al., 2014
input symmetric tensor \(T \in \mathbb{R}^{d \times d \times d}\), number of iterations \(N\), number of ini-
 tializations \(L\), parameter \(\nu\).
output the estimated eigenvector/eigenvalue pair.
 Whiten \(T\) using the whitening method \(n\) Procedure 2 ,
 for \(\tau=1\) to \(L\) do
 Initialize \(\hat{a}_{0}^{(\tau)}\) with SVD-based method in Procedure 3
 for \(t=1\) to \(N\) do
 Compute power iteration update
 \(\hat{a}_{t}^{(\tau)}:=\frac{T\left(I, \hat{a}_{t-1}^{(\tau)}, \hat{a}_{t-1}^{(\tau)}\right)}{\left\|T\left(I, \hat{a}_{t-1}^{(\tau)}, \hat{a}_{t-1}^{(\tau)}\right)\right\|}\)
 end for
 end for
 \(S:=\left\{a_{\tau}^{(N+1)}: \tau \in[L]\right\}\)
 while \(S\) is not empty do
 Choose \(a \in S\) which maximizes \(|T(a, a, a)|\).
 Do \(N\) more iterations of (6) starting from \(a\).
 Output the result of iterations denoted by \(\hat{a}\).
 Remove all the \(a \in S\) with \(|\langle a, \hat{a}\rangle|>\nu / 2\).
 end while
```

where $\nu=\left\{w_{j}, \nu_{j}, j=1, \cdots, r\right\}$, and the $p\left(x \mid \nu_{j}\right)$ 's are density functions from the exponential family.

In the above equation, $g_{j}(x, \nu)$ is actually the posterior probability $p(j \mid x)$ that $x$ is assigned to the partition corresponding to the $j$-th expert net. From Bayes' rule:

$$
g_{j}(x, \nu)=p(j \mid x)=\frac{w_{j} p\left(x \mid \nu_{j}\right)}{p(x, \nu)}, \quad p(x, \nu)=\sum_{i} w_{i} p\left(x \mid \nu_{i}\right)
$$

Hence,

$$
p(y \mid x, \Theta)=\sum_{j} \frac{w_{j} p\left(x \mid \nu_{j}\right)}{p(x, \nu)} p\left(y \mid x, u_{j}\right)
$$

where $\Theta$ includes $u_{j}, j=1, \cdots, r$ and $\nu$. Let

$$
\begin{aligned}
Q^{g}(\nu) & =\sum_{t} \sum_{j} f_{j}^{(k)}\left(y^{(t)} \mid x^{(t)}\right) \ln g_{j}^{(k)}\left(x^{(t)}, \nu^{(t)}\right), \\
Q_{j}^{g}\left(\nu_{j}\right) & =\sum_{t} f_{j}^{(k)}\left(y^{(t)} \mid x^{(t)}\right) \ln p\left(x^{(t)} \mid \nu_{j}\right), \quad j \in[r] \\
Q_{j}^{e}\left(\theta_{j}\right) & =\sum_{t} f_{j}^{(k)}\left(y^{(t)} \mid x^{(t)}\right) \ln p\left(y^{(t)} \mid x^{(t)}, \theta_{j}\right), \quad j \in[r] \\
Q^{w} & =\sum_{t} \sum_{j} f_{j}^{(k)}\left(y^{(t)} \mid x^{(t)}\right) \ln w_{j}, \quad \text { with } \quad w=\left\{w_{1}, \ldots, w_{r}\right\}
\end{aligned}
$$

The EM algorithm is as follows:

1. E-step. Compute

$$
f_{j}^{(k)}\left(y^{(t)} \mid x^{(t)}\right)=\frac{w_{j}^{(k)} p\left(x^{(t)} \mid \nu_{j}^{(k)}\right) p\left(y^{(t)} \mid x^{(t)}, u_{j}^{(k)}\right)}{\sum_{i} w_{i}^{(k)} p\left(x^{(t)} \mid \nu_{i}^{(k)}\right) p\left(y^{(t)} \mid x^{(t)}, u_{i}^{(k)}\right)} .
$$

2. M-Step Find a new estimate for $j=1, \cdots, r$

$$
\begin{aligned}
& u_{j}^{(k+1)}=\underset{u_{j}}{\arg \max } Q_{j}^{e}\left(u_{j}\right), \quad \nu_{j}^{(k+1)}=\underset{\nu_{j}}{\arg \max } Q_{j}^{g}\left(\nu_{j}\right), \\
& w^{(k+1)}=\underset{w}{\arg \max } Q^{w}, \quad \text { s.t. } \quad \sum_{i} w_{i}=1 .
\end{aligned}
$$

## References

Animashree Anandkumar, Rong Ge, and Majid Janzamin. Guaranteed NonOrthogonal Tensor Decomposition via Alternating Rank-1 Updates. arXiv preprint arXiv:1402.5180, Feb. 2014.

Lei Xu, Michael I Jordan, and Geoffrey E Hinton. An alternative model for mixtures of experts. Advances in Neural Information Processing Systems, pages 633-640, 1995.


[^0]:    *Allen Institute for Artificial Intelligence. Email: hanies@allenai.org. This work was done while the author was a visiting researcher at University of California, Irvine.
    $\dagger$ University of California, Irvine. Email: mjanzami@uci.edu
    $\ddagger$ University of California, Irvine. Email: a.anandkumar@uci.edu
    ${ }^{1}$ Compare with the matrix case where for $M \in \mathbb{R}^{d \times d}$, we have $M(I, u)=M u:=$ $\sum_{j \in[d]} u_{j} M(:, j) \in \mathbb{R}^{d}$.

[^1]:    ${ }^{2}$ If $\mathbb{E}[y \mid x]$ is a symmetric function of $x$, then the second moment $M_{2}$ is zero. Therefore, we cannot use it for whitening. Instead, we use random slices of the third moment $M_{3}$ for whitening.

