
Provable Tensor Methods for Learning
Mixtures of Generalized Linear Models

Hanie Sedghi Majid Janzamin Anima Anandkumar
Allen Institute for AI University of California, Irvine University of California, Irvine

Abstract

We consider the problem of learning mixtures
of generalized linear models (GLM) which
arise in classification and regression prob-
lems. Typical learning approaches such as ex-
pectation maximization (EM) or variational
Bayes can get stuck in spurious local optima.
In contrast, we present a tensor decomposi-
tion method which is guaranteed to correctly
recover the parameters. The key insight is
to employ certain feature transformations of
the input, which depend on the input gen-
erative model. Specifically, we employ score
function tensors of the input and compute
their cross-correlation with the response vari-
able. We establish that the decomposition of
this tensor consistently recovers the parame-
ters, under mild non-degeneracy conditions.
We demonstrate that the computational and
sample complexity of our method is a low or-
der polynomial of the input and the latent
dimensions.

Keywords: Mixture of generalized linear models,
score function, spectral/tensor decomposition.

1 Introduction

A generalized linear model (GLM) is a flexible exten-
sion of linear regression which allows the response or
the output to be a non-linear function of the input
via an activation function. In other words, in a GLM,
the linear regression of the input is passed through an
activation function to generate the response. GLMs
unify popular frameworks such as logistic regression
and Poisson regression with linear regression. At the

Appearing in Proceedings of the 19th International Con-
ference on Artificial Intelligence and Statistics (AISTATS)
2016, Cadiz, Spain. JMLR: W&CP volume 41. Copyright
2016 by the authors.

same time, they can be learnt with guarantees using
simple iterative methods [Kakade et al., 2011].

In many scenarios, however, GLMs may be too sim-
plistic, and mixtures of GLMs can be much more ef-
fective since they combine the expressive power of la-
tent variables with the predictive capabilities of the
GLM. Mixtures of GLMs have widespread applicabil-
ity including object recognition [Quattoni et al., 2004],
human action recognition [Wang and Mori, 2009], syn-
tactic parsing [Petrov and Klein, 2007], and machine
translation [Liang et al., 2006].

Traditionally, mixture models are learnt through
heuristics such as expectation maximization
(EM) [Jordan and Jacobs, 1994, Xu et al., 1995]
or variational Bayes [Bishop and Svensen, 2003].
However, these methods can converge to spurious
local optima and have slow convergence rates for
high dimensional models. In contrast, we employ a
method-of-moments approach for guaranteed learning
of mixtures of GLMs.

The method of moments paradigm dates back to Pear-
son [Pearson, 1894], and involves fitting the observed
moments to parametric distributions. Recently, it has
been highly successful in unsupervised learning of a
wide range of latent variable models such as Gaus-
sian mixtures, topic models, hidden Markov mod-
els [Anandkumar et al., 2014a], network community
models [Anandkumar et al., 2013], mixture of rank-
ing models [Awasthi et al., 2014, Oh and Shah, 2014],
and so on. The basic idea is to find an efficient spec-
tral decomposition of low order observed moment ten-
sors. Under natural non-degeneracy assumptions, the
tensor method is guaranteed to correctly recover the
underlying model parameters with low computational
and sample complexities. Moreover, in practice, these
methods are embarrassingly parallel and scalable to
large-scale datasets [Huang et al., 2014].

Earlier works on tensor methods [Anandkumar et al.,
2014a] consider unsupervised learning and a key as-
sumption is that the observables are linear functions
of the latent variables (in expectation). However, here,

1223

Provable Tensor Methods for Learning Mixtures of Generalized Linear Models

we consider mixtures of GLMs, which are non-linear,
and this rules out a direct application of tensor meth-
ods.

We address the above challenges with the following
insight: we have additional flexibility in the regres-
sion setting since we have both the response and the
input. We can therefore form different moments in-
volving transformations of the input and the response.
What are the appropriate transforms for forming the
moments which are amenable to tensor decomposition
methods? As detailed below, the key ingredient is
using a specific feature transformation of the input,
based on its probability distribution.

1.1 Summary of Result

The main contribution of this work is to provide a
guaranteed method for learning mixtures of GLMs us-
ing score function transformations. The mth order
score function Sm(x) is related to the normalized mth

order derivative of the pdf of input x, see (9). We as-
sume knowledge of these score functions, and this can
be estimated via various unsupervised learning meth-
ods using only unlabeled samples (e.g. spectral meth-
ods).

We then construct the cross-moment tensor between
the response variable and the input score function. We
establish that the decomposition of this tensor consis-
tently recovers the components of the GLM mixture
under some simple non-degeneracy assumptions. Let
the response or the output y be generated from a mix-
ture of GLMs: E[y|h, x] = g(〈Uh, x〉) + 〈b̃, h〉), where
g(·) is the activation function, x is the input and h
is the hidden choice variable. Let r be the number
of mixture components, d be the input dimension and
smin(U) be the rth largest singular value of U . Assume
the weight matrix U = [u1| . . . |ur] is full column rank.
Then, we have the following result.

Theorem 1 (Informal Result). We recover the weight
vectors {ui} (up to scaling) by performing tensor de-
composition on the cross-moment tensor E[y · S3(x)].

If we have n = Õ
(

d3r4

ε2s2min(U)

)
samples, the error in

recovering each weight vector ui is bounded by ε.

The above result requires third order score function
S3(x) to consistently estimate the weight vectors {ui}
of the GLM components in the mixture. Note that
the second order score function S2(x) is only a matrix
(assuming a vector input x) and can only identify the
weights {ui} up to the subspace. Thus, we require
at least the third order score function to consistently
estimate the GLM mixture model. When the number
of components exceeds the input dimension, the full
column rank assumption on U is violated, and in this

case, we can resort to higher order score functions to
consistently estimate the parameters.

We employ the tensor decomposition methods
from [Anandkumar et al., 2014a,b] to learn the weight
vectors ui (up to scaling). The tensor method is effi-
cient to implement and does not suffer from spurious
local optima. Thus, we guarantee consistent estima-
tion of the weight vectors of GLM mixtures through
decomposition of the cross-moment tensor involving
the response variable and the input score functions.
Our method is shown in Algorithm 1.

1.2 Overview of Techniques

Representation learning is the key: A crucial in-
gredient in this work is to first learn the probabilistic
model of the input, and employ transformations based
on the model for learning the GLM mixture. Thus, we
characterize how unsupervised learning on the input
can be carried over for learning conditional models of
the output via tensor methods.

The feature transformations we employ are the (higher
order) score functions,1 which capture local variation
of the probability density function of the input. This
follows a recent key result that the cross-moments be-
tween the response variable and the input score func-
tions yield (expected) derivatives of the response, as a
function of the input [Janzamin et al., 2014].

Incorporating score functions into tensor de-
composition framework: In this paper, we exploit
the above result to form the expected derivatives of the
output as a function of the input. We then show that
the expected derivatives have a nice relationship with
the unknown parameters of the GLM mixture, and
the form reduces to a tensor CP decomposition form.
We require only a mild assumption on the activation
function that it has non-vanishing third derivative (in
expectation). For linear regression, this condition is vi-
olated, but we can easily overcome this by considering
higher powers of the output in the moment estimation
framework.

2 Problem Formulation

Notations: Let [n] denote the set {1, 2, . . . , n}. Let
ei ∈ Rd denote the standard basis vectors in Rd. Let

1In this paper, we refer to the derivative of the log of the
density function with respect to the variable as the score
function. In other works, typically, the derivative is taken
with respect to some model parameter [Jaakkola et al.,
1999]. Note that if the model parameter is a location pa-
rameter, the two quantities only differ in the sign. Higher
order score functions involve higher order derivatives of the
density function. For the exact form, refer to [Janzamin
et al., 2014].

1224

Sedghi, Janzamin, Anandkumar

Id ∈ Rd×d denote the identity matrix. Õ denotes the
order when ignoring polylog factors. Throughout this

paper, ∇(m)
x denotes the m-th order derivative w.r.t.

variable x and notation ⊗ represents tensor (outer)
product.

A real p-th order tensor T ∈ ⊗p
i=1 Rdi is a mem-

ber of the tensor product of Euclidean spaces Rdi ,
i ∈ [p]. As is the case for vectors (where p = 1)
and matrices (where p = 2), we may identify a p-
th order tensor with the p-way array of real num-
bers [Ti1,i2,...,ip : i1, i2, . . . , ip ∈ [d]], where Ti1,i2,...,ip
is the (i1, i2, . . . , ip)-th coordinate of T with respect to
a canonical basis.

CP decomposition and tensor rank: A 3rd order
tensor T ∈ Rd×d×d is said to be rank-1 if it can be
written in the form T = a ⊗ b ⊗ c ⇔ T (ei, ej , el) =
a(i) · b(j) · c(l), where notation ⊗ represents the tensor
product. A tensor T is said to have a CP rank k ≥ 1
if it can be written as the sum of k rank-1 tensors
T =

∑
i∈[k] ai ⊗ bi ⊗ ci.

2.1 Learning Problem

Let y denote the output and x ∈ Rd be the input.
We consider both the regression setting, where y can
be continuous or discrete, or the classification setting,
where y is discrete. For simplicity, we assume y to be
a scalar: in the classification setting, this corresponds
to binary classification (y ∈ {−1, 1}).
We consider the realizable setting, where we assume
that the output y is drawn from an associative model
p(y|x), given input x. In addition, we assume that
the input x is drawn from some continuous probabil-
ity distribution with density function p(x). We will
incorporate this generative model in our algorithm for
learning the associative model.

We first consider mixtures of generalized linear mod-
els (GLM) [Agarwal et al., 2014, Kakade et al., 2011]
and then extend to mixture of GLMs with nonlinear
transformations. The class of GLMs is given by

E[y|x] = g(〈u, x〉+ b), (1)

where g is the activation function, u is the weight vec-
tor, and b is the bias. g(·) is usually chosen to be
the logistic function, although we do not impose this
limitation. In the binary classification setting, (1) cor-
responds to a single classifier. Note that a linear re-
gression can be modeled using a linear activation func-
tion. Throughout this paper we assume that noise is
independent of the input.

A mixture of r GLM models is then given by employing
a hidden choice variable h ∈ {e1, e2, . . . , er}, where ei

Algorithm 1 Learning mixture of associative models
E[y|x, h] = g(〈Uh, x〉+ 〈b̃, h〉)
input Labeled samples (xi, yi), i ∈ [n].
input Score function of the input S3(x) as in Equa-

tion (9).

1: Compute M̂3 = 1
n

∑
i yi · S3(xi), Empirical esti-

mate of M3.
2: {ûj}j∈[r] = tensor power decomposition(M̂3).

(Algorithm 4 in the Appendix)
3: Recover scale and biases using EM (as in Ap-

pendix 3).

is the basis vector in Rr to select of the r GLM models,
i.e.

E[y|x, h] = g(〈Uh, x〉+ 〈b̃, h〉), (2)

where U = [u1|u2 . . . ur] ∈ Rdx×r has the r weight
vectors of component GLMs as columns and b̃ ∈ Rr
is the vector of biases for the component GLMs. Let
w := E[h] be the probability vector for selecting the
different GLMs.

We then extend our results to learning mixture of
GLMs with nonlinear transformations where

E[y|x, h] = g(〈Uh, φ(x)〉, 〈b̃, h〉), (3)

for some known function φ(·).
Given training samples {xi, yi}, our goal is to learn
the parameters of the associative mixture described
above. We consider a moment-based approach, which
involves cross-moments of y and a function of x. We
first assume that the exact moments are available, and
we later carry out sample analysis, when empirical mo-
ments are used.

Throughout this paper we make the following assump-
tions unless otherwise stated. Derivative and expecta-
tion are interchangeable. The activation function g is
differentiable up to the third order. The choice vari-
able is independent of the input x, i.e., h does not de-
pend on x. The score function ∇x log p(x) exists and
all the entries of g(x)·p(x) go to zero on the boundaries
of support of p(x).

3 Learning under Gaussian Input

We now present the method for learning the mixture
models in (2) and (3). We first start with the sim-
ple case, where the input x is Gaussian, and we have
a single GLM model, instead of a mixture, and then
extend to more general cases.

1225

Provable Tensor Methods for Learning Mixtures of Generalized Linear Models

3.1 Toy Example: single GLM

We first assume a white Gaussian input x ∼ N (0, Id)
to demonstrate our ideas. Assuming that y is gener-
ated from a GLM

E[y|x] = g(〈u, x〉+ b),

we have the following result on the cross-moment E[y ·
x].

Lemma 2 (Moment form for Gaussian input and sin-
gle GLM). We have

M1 = E[y · x] = E[∇x′g(x′)] · u,

where the expectation is over x′ := 〈u, x〉+ b, and x ∼
N (0, Id).

Proof follows from Stein’s identity [Stein, 1972] as dis-
cussed below. Thus, by forming the first-order cross-
moment M1, we can recover the weight vector u up to
scaling. Note that the scaling and the bias b are just
scalar parameters which can be estimated separately.

The main message behind Lemma 2 is that the cross-
moments between the output y and the input x contain
valuable information about the associative model. In
the special case of Gaussian input and single GLM, the
first order moment is sufficient to learn almost all the
parameters of the GLM. But how general is this frame-
work? Can we use a moment-based framework when
there are mixture of GLMs? We exhibit that higher
order moments can be used to learn the GLM mix-
ture under Gaussian input in the next section. What
about the case when the input is not Gaussian, but
has some general distribution? We consider this set-
ting in Section 4 and show that surprisingly we can
form the appropriate cross-moments for learning un-
der any general (continuous) input distribution.

Stein’s Identity: The proof of Lemma 2 follows from
the Stein’s identity for Gaussian distribution. It states
that for all functions G(x) satisfying mild regularity
conditions, we have [Stein, 1972]

E[G(x) · x] = E[∇xG(x)]. (4)

Thus, Lemma 2 is a direct application of the Stein’s
identity by substituting G(x) with g(〈u, x〉+ b).

3.2 Learning GLM mixtures

We now consider learning mixture of GLMs

E[y|x, h] = g(〈Uh, x〉+ 〈b̃, h〉),

where U = [u1|u2 . . . ur] has the r weight vectors of
component GLMs as columns and b̃ is the vector of

biases for the component GLMs. Recall that w := E[h]
is the probability vector for selecting different GLMs.

For the mixture of GLMs, the first order moment
M1 := E[y · x] is now a combination of (scaled) weight
vectors ui’s, i.e.

M1 := E[y · x] =
∑

j∈[r]
wjE[∇x′

j
g(x′j)]uj ,

where the expectation is over x′j = 〈uj , x〉 + b̃j , and
x ∼ N (0, Id). Thus, the first order moment does not
suffice for learning mixture of GLMs.

Now, let us look at the second order moment,

M2 := E[y · (x⊗x−I)] =
∑

j∈[r]
E[∇(2)

x′
j
g(x′j)]wj ·uj⊗uj ,

where, as before, the expectation is over x′j = 〈uj , x〉+
b̃j . If the expectations (and wj ’s) are non-zero, then
we can recover the subspace spanned by the weight
vectors uj ’s. However, we cannot recover the individ-

ual weight vectors uj ’s. Moreover, if the biases b̃ = 0
and g is a symmetric function, then the expectations
are zero, and the second order moment M2 vanishes.
A mirror trick is introduced in [Sun et al., 2013b] to
alleviate this problem, but this still only recovers the
subspace spanned by the uj ’s.

We now consider the third order moment M3 in the
hope of recovering the weight vectors uj ’s for mixture
of GLMs. We show that by adjusting the moment
E[y · x ⊗ x ⊗ x] appropriately, we obtain a CP tensor
form in terms of the weight vectors uj ’s. Specifically,
consider

M3 := E[y · x⊗ x⊗ x]−
∑

j∈[d]
E[y · ej ⊗ x⊗ ej] (5)

−
∑

j∈[d]
E[y · ej ⊗ ej ⊗ x]−

∑

j∈[d]
E[y · x⊗ ej ⊗ ej].

Note that M3 can be considered as a special case of the
form E[y·S3(x)] for white Gaussian input x ∼ N (0, Id),
where S3(x) is the third order score function of the
input as defined in Section 4.1.

Lemma 3 (Adjusted third order moments). We have

M3 =
∑

j∈[r]
ρjwj · uj ⊗ uj ⊗ uj , (6)

where ρj := E[∇(3)
x′
j
g(x′j)] and the expectation is over

x′j = 〈uj , x〉+ b̃j.

The proof follows from Stein’s Identity. See Ap-
pendix 1.1 for details. Having the CP-form allows us
to recover the component weight vectors through the
tensor decomposition method. We present the result
below.

1226

Sedghi, Janzamin, Anandkumar

Theorem 4 (Recovery of mixture of GLMs). Assum-
ing that the weight matrix U ∈ Rd×r is full column
rank, ρj , wj 6= 0 ∀ j ∈ [r], given M3, we can recover
the component weight vectors uj , j ∈ [r], up to scal-
ing, using tensor method given in Algorithm 4 (in the
Appendix).

The proof follows from Lemma 3. The computational
complexity of tensor decomposition in this factor form
is O(nrdL), where n is the number of samples and L
is the number of initialization. Having recovered the
normalized weight vectors, we can then estimate the
scaling and the biases through expectation maximiza-
tion or other methods. These are just 2r additional
parameters, and thus, the majority of the parameters
are estimated by the tensor method.

Theorem 5 (Sample Complexity). Assume the con-
ditions for Theorem 4 are met. Suppose the sample
complexity

n = Õ

(
d3r4

ε2s2min(U)

)
,

then for each weight vector uj, the estimate ûj from
line 2 Algorithm 1 satisfies w.h.p

‖uj − ûj‖ ≤ Õ(ε), j ∈ [r].

Proof outline: From Lemma 3, we know that the
exact cross-moment E[y · S3(x)] has rank-one compo-
nents as columns of matrix U ; see Equation (6) for
the tensor decomposition form. Thus given the exact
moment, the theorem is proved by applying the ten-
sor decomposition guarantees in Anandkumar et al.
[2014c]. In the noisy case where the moment is empir-
ically formed by observed samples, we use the analysis
and results of tensor power iteration in Anandkumar
et al. [2014d]. They show that when the perturbation
tensor is small, the tensor power iteration initialized by
the SVD-based Procedure 3 in the Appendix recovers
the rank-1 components up to some small error. The
sample complexity is also proved by applying stan-
dard matrix concentration inequalities. In particular,
we matricize the error tensor between exact moment
and the empirical moment, and bound its norm with
matrix Bernstein’s inequality.

Remark : We can also handle the case when the full
column rank assumption on U ∈ Rd×r is violated un-
der some additional constraints. In the overcomplete
regime, we have the latent dimensionality exceeding
the input dimensionality, i.e. r > d. The tensor
method can still recover the weight vectors uj , if we
assume they are incoherent. A detailed analysis of
overcomplete tensor decomposition is given in [Anand-
kumar et al., 2014d].

Remark : If we assume the uj are normalized, the
above approach suffices to completely learn the param-
eters wj . This is because we obtain wjρj and we have
the knowledge of ρj , where the activation function and
the input distributions are known. Otherwise, we need
to perform EM to fully learn the weights. Note that
initializing with our method results in performing EM
in a low dimension instead of input dimension. The
reason is that the only unknown parameters are the
scale and biases of the components. We initialize with
the output of our method (Algorithm 1) and proceed
with EM algorithm as proposed by Xu et al. [1995].
For details see Appendix 3.

Remark: If ρj = 0, which is the case for mixture of
linear regression, we cannot recover the weight vectors
from the tensor given in (5). In this case, we form a
slightly different tensor to recover the weight vectors.
We elaborate on this in the next section.

Remark: Our results can be easily extended
to multi-label and multi-class settings (one-versus-all
strategy) as well as vector-valued regression problems.

3.3 Learning Mixtures of Linear Regression

We now consider mixtures of linear regressions:

E[y|x, h = ej] = wj〈uj , x〉+ bj ,

where ej ∈ Rr denotes the j-th basis vector.

In this case higher order derivatives (m ≥ 2) of the ac-
tivation function vanish. Therefore, the cross-moment
matrix and tensor defined in Section 3.2 can not yield
the parameters. For this setting, we form

M2 := E[y2 · (x⊗ x− I)]

M3 := E[y3 · x⊗ x⊗ x]−
∑

j∈[d]
E[y3 · ej ⊗ x⊗ ej] (7)

−
∑

j∈[d]
E[y3 · ej ⊗ ej ⊗ x]−

∑

j∈[d]
E[y3 · x⊗ ej ⊗ ej].

Lemma 6 (Adjusted third order moments). We have

M3 =
∑

j∈[r]
ρ̃jwj · uj ⊗ uj ⊗ uj . (8)

The proof follows from Stein’s Identity and it is pro-
vided in Appendix 1.2. Having the CP-form allows us
to recover the component weight vectors through the
tensor decomposition method. We present the result
below.

Theorem 7 (Recovery of linear regression mixtures).
Assuming that the weight matrix U ∈ Rd×r is full col-
umn rank, ρj , wj 6= 0 ∀ j ∈ [r], given M3 as in (7), we
can recover the component weight vectors uj , j ∈ [r],

1227

Provable Tensor Methods for Learning Mixtures of Generalized Linear Models

up to scaling, using tensor method given in Algorithm 4
(in the Appendix).

The proof is similar to Lemma 6.

Theorem 8 (Sample Complexity). Assume the con-
ditions for Theorem 7 are met. Suppose the sample
complexity

n = Õ

(
d3r4

ε2s2min(U)

)
,

then for each weight vector uj, the estimate ûj in line 2
Algorithm 1 satisfies w.h.p

‖uj − ûj‖ ≤ Õ(ε), j ∈ [r].

The proof follows the same approach as the one de-
scribed for Theorem 5.

4 Learning GLM Mixtures under
General Input Distribution

In the previous section, we established consistent esti-
mation of the parameters of mixture of GLMs under
Gaussian input. However, this assumption is limiting,
since the input is usually far from Gaussian in any real
scenario. We now extend the results in the previous
section to any general (continuous) input.

4.1 Extensions of Stein’s identity

The key ingredient that enabled learning in the pre-
vious section is the ability to compute the expected
derivatives of the output as a function of the input.
Stein’s identity shows that these derivatives can be
obtained using the cross-moments between the output
and the score function of input. Is there a general uni-
fied framework where we can compute the expected
derivatives under any general input distribution?

Janzamin et al. [2014] provide an affirmative answer.
They show that by computing the cross-moment be-
tween the output and the (higher order) score func-
tions of the input, we compute expected derivatives
of any order. This key result allows us to extend the
results in the previous section to any general input
distribution.

Definition: Score function The score of x ∈ Rd
with pdf p(x), denoted by S1(x), is the random vec-
tor ∇x log p(x). Janzamin et al. [2014], define the mth

order score function as

Sm(x) := (−1)m
∇(m)p(x)

p(x)
. (9)

They have also shown that score function can be equiv-
alently derived using the recursive form

Sm(x) = −Sm−1(x)⊗∇x log p(x)−∇xSm−1(x).
(10)

Theorem 9 (Higher order derivatives [Janzamin
et al., 2014]). For random vector x ∈ Rd, let p(x) and
Sm(x) respectively denote the pdf and the correspond-
ing m-th order score function. Consider any contin-
uously differentiable output-function E[y|x] = g(x) :
Rd → R satisfying some mild regularity conditions.
Then we have

E [y · Sm(x)] = E [g(x) · Sm(x)] = E
[
∇(m)
x g(x)

]
.

For details, see [Janzamin et al., 2014]. In order to
learn mixture of GLMs for general input distributions,
we utilize score function Sm(·) of order m = 3.

4.2 Moment forms

We now consider the cross-moment M3 := E[y ·S3(x)],
which is a third order tensor. By alluding to Theo-
rem 9, we show that the moment M3 has a CP decom-
position where the components are the weight vectors
uj ’s.

Theorem 10 (Recovery of mixture of GLMs under
general input). Given score function S3(x) as in (9),
we have

M3 := E[y · S3(x)] =
∑

j∈[r]
ρj · wj · u⊗3j ,

where ρj := E[∇(3)
x′
j
g(x′j)] and the expectation is with

respect to x′j := 〈uj , x〉+ b̃j.

Assuming that matrix U is full column rank and
ρj , wj > 0, ∀j, we can recover the weight vectors
uj , j ∈ [r], up to scaling, using tensor decomposition
on M3 given in Algorithm 4 (in the Appendix).

The proof follows from Theorem 9. Thus, we have a
guaranteed recovery of the weight vectors of mixture
of GLMs under any general input distribution.

Remark: Sample complexity: For general
input sample complexity can be found in a simi-
lar approach to Gaussian case. The general form

is n ≥ Õ
(
E
[
‖H3(x)H>3 (x)‖

]
d1.5r4

ε2s2min(U)

)
. Here

H3(x) ∈ Rd×d2 is the matricization of S3(x). Theo-
rem 5 follows from the fact that for Gaussian input
E
[
‖H3(x)H>3 (x)‖

]
= O(d1.5).

Remark: Score function estimation: There
are various efficient methods for estimating the score

1228

Sedghi, Janzamin, Anandkumar

function. The framework of score matching is pop-
ular for parameter estimation in probabilistic mod-
els [Hyvärinen, 2005, Swersky et al., 2011], where the
criterion is to fit parameters based on matching the
data score function. For instance, Swersky et al. [2011]
analyzes fitting the data to RBM (Restricted Boltz-
mann Machine) model. Therefore, one option is to use
this method for estimating S1(x) and use the recursive
form in (10) to estimate higher order score functions
for the active layer.

Remark: Computational Complexity: If we fit
the input data into an RBM model, the computational
complexity of our method, when performed in parallel,
is O(log(min(d, dh))) with O(rnLddh/ log(min(d, dh)))
processors. Here dh is the number of neurons of the
first layer of the RBM used for approximating the score
function.

4.3 Learning Mixtures of Linear Regression

As discussed earlier, our framework can easily handle
the case of mixtures of linear regression. Here, we
describe it under general input distribution. Let,

E[y|x, h = ej] = wj〈uj , x〉+ bj ,

where x, y respectively denote the input and output,
and h is the hidden variable that chooses the regression
parameter uj from the set {uj}j∈[r], wj = p(h = ej)
and bj is the bias.

Theorem 11 (Recovery of linear regression mixtures
under general input). Given score function S3(x) as
in Equation (9), we have

M3 = E[y3 · S3(x)] =
∑

j∈[r]
wj · u⊗3j .

Assuming that matrix U is full column rank, wj 6=
0, ∀j , we can recover the weight vectors uj , j ∈ [r],
up to scaling, using tensor decomposition on M3 given
in Algorithm 4 (in the Appendix).

For proof, see Appendix 1.3.

Remark: Sample complexity: For general
input sample complexity can be found in a simi-
lar approach to Gaussian case. The general form

is n ≥ Õ
(
E
[
‖H3(x)H>3 (x)‖

]
d1.5r4

ε2s2min(U)

)
. Here

H3(x) ∈ Rd×d2 is the matricization of S3(x). Theo-
rem 8 follows from the fact that for Gaussian input
E
[
‖H3(x)H>3 (x)‖

]
= O(d1.5).

Remark: Chaganty and Liang [2013] consider learn-
ing a mixture of linear regression models, using tensor
decomposition approach on the higher order moments

of the output y. They model the problem as an opti-
mization on a third order tensor and prove that the op-
timal tensor would have the weight vectors as its rank-
1 components. Minimizing an objective function over
a tensor variable is expensive (in fact, quadratic for
each variable [Liu and Vandenberghe, 2009], and their
computational complexity scales as O(nd12). Hence
their proposed method is not practical in large scale.
Whereas, as discussed earlier our computational com-
plexity is O(nd2). While we require the additional
knowledge of the input distribution, in many scenar-
ios, this is not a major limitation since there are large
amounts of unlabeled samples which can be used for
model estimation. Moreover, we can handle non-linear
mixtures, while Chaganty and Liang [2013] limit to lin-
ear ones.

4.4 Extension to Mixture of GLMs with
Nonlinear Transformations

We have so far provided guarantees for learning mix-
ture of GLMs. We now extend the results to cover
non-linear models. We consider the class of mixture of
GLMs with nonlinear transformations under the real-
izable setting as

E[y|x, h] = g
(
〈Uh, φ(x)〉+ b̃

)
, (11)

where φ(x) represents the nonlinear mapping of x. As-
suming that φ(·) is known, we propose simple ideas to
extend our previous results to the setting in (11).

The key idea is to compute the score function
Sm(φ(x)) corresponding to φ(x) rather than the in-
put x. There is a simple relationship between the
scores. The connection can be made from the prob-
ability density of the transformed variable as follows.

Let t = φ(x), Dt(i, j) :=
[
∂xi

∂tj

]
. We have

pφ(x)(t1, · · · , tp) = px(φ−11 (t), · · · , φ−1p (t))|det(Dt)|,

(12)

Sm(t) = (−1)m
∇(m)
t pφ(x)(t)

pφ(x)(t)
.

Theorem 12 (Recovery of mixture of GLMs with
nonlinear transformations under general input). Given
score function S3(φ(x)) as in Equation (12), we have

M3 := E[y · S3(φ(x))] =
∑

j∈[r]
ρj · wj · u⊗3j ,

where ρj := E[∇(3)
zj g(zj)] and the expectation is with

respect to zj := 〈uj , φ(x)〉+ b̃j.

Assuming that matrix U is full column rank, wj , ρj 6=
0, ∀j, we can recover the weight vectors uj , j ∈ [r],

1229

Provable Tensor Methods for Learning Mixtures of Generalized Linear Models

up to scaling, using tensor decomposition on M3 given
in Algorithm 4 (in the Appendix).

5 Related Works

Mixture of Experts/ Regression Mixtures: The
mixture of experts model was introduced as an efficient
probabilistic “divide” and “conquer” paradigm in [Jor-
dan and Jacobs, 1994]. Since then, it has been consid-
ered in a number of works, e.g. [Xu et al., 1995, Bishop
and Svensen, 2003]. Learning is carried out usually
through EM [Jordan and Jacobs, 1994, Xu et al., 1995]
or variational approaches [Bishop and Svensen, 2003],
but the methods have no guarantees. Works with
guaranteed learning of associative mixture models are
fewer. Chaganty and Liang [2013] consider learning a
mixture of linear regression models, using tensor de-
composition approach on the higher order moments
of of the label y. Yi et al. [2013] also consider mixed
linear regression problem with two components and
provide consistency guarantees in the noiseless setting
for an alternating minimization method. Chen et al.
[2014] provide an alternative convex method for the
same setting under noise and established near opti-
mal sample complexity. However, all these guaranteed
methods are restricted to mixture of linear regressions
and do not extend to non-linear models.

Learning mixture of GLMs: For the mixture of
generalized linear models (GLM), Li [1992] and Sun
et al. [2013a] present methods for learning the sub-
space of the weight vectors of the component GLMs,
assuming that the input is white Gaussian distribu-
tion. Li [1992] propose the so-called principal Hessian
directions (PHd), where the eigenvectors of the second-
order moment matrix E[y · x ⊗ x] are used to learn
the desired subspace. However, the PHd method fails
when the output y is a symmetric function of the input
x, since the moment matrix vanishes in this case. Sun
et al. [2013a] overcome this drawback through their
clever “mirroring” trick which transforms the output
y to r(y) such that the resulting second order moment
E[r(y) · x⊗ x] matrix does not vanish.

Our work has some key differences: the works in [Li,
1992, Sun et al., 2013a] assume Gaussian input x, while
we allow for any probabilistic model (with continuous
density function). Another important difference be-
tween [Li, 1992, Sun et al., 2013a] and our work, is
that we use tensor-based learning techniques, while [Li,
1992, Sun et al., 2013a] only operate on matrices. Op-
erating on tensors allows us to learn the individual
weight vectors (up to scaling) of the mixture compo-
nents, while [Li, 1992, Sun et al., 2013a] only learn the
subspace of the weight vectors.

Spectral/Moment based methods for discrim-

inative learning: Karampatziakis and Mineiro
[2014] obtain discriminative features via generalized
eigenvectors. They consider the tensor E[y ⊗ x ⊗ x]
and then treat E[x ⊗ x|y = i] as the signal for class i
and E[x ⊗ x|y = j] as the noise due to class j. They
contrast their method against classical discriminative
procedures such as Fisher LDA and show good perfor-
mance on many real datasets. However, their method
has some drawbacks: they cannot handle continuous
y, and also when y has a large number of classes m
and x ∈ Rd has high dimensionality, the method is
not scalable since it requires m2 eigen-decompositions
of d×d matrices. Another line of moment based meth-
ods are the so-called sliced inverse regression (SIR) [Li,
1991], where input x is regressed against output y.
These methods project the input to a lower dimension
subspace that preserves the required information. Li
[1991] consider top eigen components of the moment
E[E[x|y]E[x|y]>] for dimensionality reduction.

6 Conclusion

In this paper, we propose a tensor method for effi-
cient learning of associative mixtures. In addition to
employing the learnt weight vectors in the mixture of
GLMs model for prediction, we can employ them in a
number of alternative ways. For instance, in practice
we can utilize the output of the tensor-based methods
as initializers for likelihood based techniques such as
EM. In general, these techniques can get stuck in bad
local optima. Initializing with the tensor methods can
lead to convergence to better local optima. Moreover,
we can employ the learnt weight vectors to construct
discriminative features and train a different classifier
using them. Thus, our method yields discriminative
information which is useful in myriad ways.

There are many future directions to consider. We as-
sume that the choice variable for selecting the mixture
components is independent of the input. This is also
the assumption in a number of other works for learn-
ing regression/classifier mixtures [Sun et al., 2013a,
Chaganty and Liang, 2013]. In the general mixture of
experts framework, the choice variable (known as the
gating variable), selects the classifier based on the in-
put. Considering this scenario is of interest. Moreover,
we have considered continuous input distributions, ex-
tending this framework to discrete input is of interest.

Acknowledgment: This work was done while H.
Sedghi was a visiting researcher at UC Irvine and was
supported by NSF Career award FG15890. M. Janza-
min is supported by NSF BIGDATA award FG16455.
A. Anandkumar is supported in part by Microsoft Fac-
ulty Fellowship, NSF Career award CCF-1254106, and
ONR Award N00014-14-1-0665.

1230

Sedghi, Janzamin, Anandkumar

References

Alekh Agarwal, Sham M Kakade, Nikos Karampatzi-
akis, Le Song, and Gregory Valiant. Least squares
revisited: Scalable approaches for multi-class pre-
diction. In Proc. of ICML, 2014.

A. Anandkumar, R. Ge, D. Hsu, and S. M. Kakade. A
Tensor Spectral Approach to Learning Mixed Mem-
bership Community Models. In COLT, June 2013.

A. Anandkumar, R. Ge, D. Hsu, S. M. Kakade, and
M. Telgarsky. Tensor decompositions for learning
latent variable models. J. of Machine Learning Re-
search, 15:2773–2832, 2014a.

Anima Anandkumar, Rong Ge, and Majid Janzamin.
Sample Complexity Analysis for Learning Overcom-
plete Latent Variable Models through Tensor Meth-
ods. arXiv preprint arXiv:1408.0553, Aug. 2014b.

Animashree Anandkumar, Rong Ge, Daniel Hsu,
Sham M. Kakade, and Matus Telgarsky. Tensor
decompositions for learning latent variable models.
Journal of Machine Learning Research, 15:2773–
2832, 2014c.

Animashree Anandkumar, Rong Ge, and Majid Jan-
zamin. Guaranteed Non-Orthogonal Tensor Decom-
position via Alternating Rank-1 Updates. arXiv
preprint arXiv:1402.5180, Feb. 2014d.

Pranjal Awasthi, Avrim Blum, Or Sheffet, and Aravin-
dan Vijayaraghavan. Learning mixtures of ranking
models. In Proc. of NIPS, 2014.

Christopher M Bishop and Markus Svensen. Bayesian
hierarchical mixtures of experts. In Proc. of Uncer-
tainty in Artificial Intelligence, 2003.

Arun Chaganty and Percy Liang. Spectral experts for
estimating mixtures of linear regressions. In Proc.
of The 30th International Conference on Machine
Learning, 2013.

Yudong Chen, Xinyang Yi, and Constantine Carama-
nis. A convex formulation for mixed regression with
two components: Minimax optimal rates. In Conf.
on Learning Theory, 2014.

F. Huang, U.N. Niranjan, M. Hakeem, and A. Anand-
kumar. Online Tensor Methods for Learning Latent
Variable Models. Accepted to JMLR, 2014.

Aapo Hyvärinen. Estimation of non-normalized sta-
tistical models by score matching. In Journal of
Machine Learning Research, pages 695–709, 2005.

Tommi Jaakkola, David Haussler, et al. Exploiting
generative models in discriminative classifiers. In
Advances in neural information processing systems,
pages 487–493, 1999.

Majid Janzamin, Hanie Sedghi, and Anima Anand-
kumar. Score Function Features for Discriminative

Learning: Matrix and Tensor Frameworks. arXiv
preprint arXiv:1412.2863, Dec. 2014.

Michael I Jordan and Robert A Jacobs. Hierarchical
mixtures of experts and the em algorithm. Neural
computation, 6(2):181–214, 1994.

Sham M Kakade, Adam Kalai, Varun Kanade, and
Ohad Shamir. Efficient learning of generalized linear
and single index models with isotonic regression. In
NIPS, pages 927–935, 2011.

Nikos Karampatziakis and Paul Mineiro. Discrimina-
tive features via generalized eigenvectors. In Pro-
ceedings of The 31st International Conference on
Machine Learning, pages 494–502, 2014.

Ker-Chau Li. Sliced inverse regression for dimension
reduction. Journal of the American Statistical As-
sociation, 86(414):316–327, 1991.

Ker-Chau Li. On principal hessian directions for data
visualization and dimension reduction: another ap-
plication of stein’s lemma. Journal of the American
Statistical Association, 87(420):1025–1039, 1992.

Percy Liang, Alexandre Bouchard-Côté, Dan Klein,
and Ben Taskar. An end-to-end discriminative
approach to machine translation. In Proceedings
of the 21st International Conference on Computa-
tional Linguistics and the 44th annual meeting of the
Association for Computational Linguistics, pages
761–768. Association for Computational Linguistics,
2006.

Zhang Liu and Lieven Vandenberghe. Interior-point
method for nuclear norm approximation with appli-
cation to system identification. SIAM Journal on
Matrix Analysis and Applications, 31(3):1235–1256,
2009.

Seewong Oh and Devavrat Shah. Learning mixed
multinomial logit model from ordinal data. In Proc.
of NIPS, 2014.

K. Pearson. Contributions to the mathematical theory
of evolution. Philosophical Transactions of the Royal
Society, London, A., page 71, 1894.

Slav Petrov and Dan Klein. Discriminative log-linear
grammars with latent variables. In Advances in Neu-
ral Information Processing Systems, pages 1153–
1160, 2007.

Ariadna Quattoni, Michael Collins, and Trevor Dar-
rell. Conditional random fields for object recogni-
tion. In Advances in neural information processing
systems, pages 1097–1104, 2004.

Charles Stein. A bound for the error in the normal
approximation to the distribution of a sum of de-
pendent random variables. In Proceedings of the
Sixth Berkeley Symposium on Mathematical Statis-
tics and Probability, Volume 2: Probability Theory,

1231

