
Jie Shen, Ping Li

A Proof of Lemma 3.1

Proof. By the first order optimality condition of (2.3), we
have:

A⊤(AUV ⊤ + E − Z)V +
1

β
U = 0.

It follows by a simple calculation that

A⊤AUV ⊤V +
1

β
U = A⊤(Z − E)V.

It is known that the minimizer U in the above equation has
a closed form solution. To derive it, we need the vector-
ization operator vec(·) which stacks all the columns of a
matrix. Taking the vectorization form on both sides, and
note that

vec(A⊤AUV ⊤V) = (V ⊤V)⊗ (A⊤A)vec(U),

which together give(
(V ⊤V)⊗ (A⊤A) +

1

β
Idn

)
vec(U) = vec(A⊤(Z−E)V),

implying

vec(U) =(
(V ⊤V)⊗ (A⊤A) +

1

β
Idn

)−1

vec(A⊤(Z − E)V).

(A.1)

B Technical Lemmas

We propose Lemma B.1, which is essentially parallel to the
Elastic Net [50].
Lemma B.1. Given matrix M ∈ Rp×n and N ∈ Rp×d,
optimizing the following convex program:

min
V

β

2

∥∥M −NV ⊤∥∥2
F
+

1

2
∥V ∥2F + λ1 ∥V ∥1 ,

amounts to solving the the Lasso-type problem:

min
V

1

2

∥∥M ′ −N ′V ⊤∥∥2
F
+ λ1 ∥V ∥1 ,

where

M ′ =

[√
βM
0

]
, N ′ =

[√
βN
−I

]
.

Proof. By a simple algebraic calculation, we derive the de-
sired result.

Remark. Lemma B.1 tells us that optimizing a least-square
loss with a combination of Frobenius norm and an ℓ1 ma-
trix norm can be reduced to minimizing a Lasso by data
augmentation. With this lemma and put M = Z−E, N =
AU , the local minimizer of V for NLRR21 (2.10) can be
efficiently solved by popular Lasso solvers, e.g., [10, 22].

C Proof of Theorem 4.1

Proof. Put M = Z − E and consider the derivative of
g(D,U, V,E,W, µ) at the optimal points vij and vik, we
have:

−βd⊤
j (mi −Dv(i)⊤) + vij + λ1 sign(vij) = 0,

−βd⊤
k (mi −Dv(i)⊤) + vik + λ1 sign(vik) = 0.

Subtracting the first equation from the second one, and us-
ing the fact that sign(vij) = sign(vik) since vijvik > 0,
gives

vij − vik = β (dj − dk)
⊤ (

mi −Dv(i)⊤
)
. (C.1)

On the other hand, we have

g(D,U, V,E,W, µ)

=
1

2
∥U∥2F +

n∑
i=1

[β
2

∥∥zi − ei −Dv(i)⊤
∥∥2
2

+
1

2
∥v(i)∥22 + λ1 ∥v(i)∥1 + λ2 ∥ei∥1

]
+ ⟨W,D −AU⟩+ µ

2
∥D −AU∥2F ,

implying (U,v(i), ei) minimizes the ith term in the above
summations. Thus, constructing a trivial solution as
(U ′,v(i)′,e′i) = (0, 0,zi) and utilizing the optimality of
(U,v(i), ei) gives

β

2
∥zi − ei −Dv(i)∥22 ≤ λ2 ∥zi∥1 ≤ λ2c.

Thus,

∥zi − ei −Dv(i)∥2 ≤
√
2λ2c/β.

Using this inequality gives an upper bound for the left-hand
side of (C.1):

|vij − vik| ≤ β ∥dj − dk∥2 ·
∥∥mi −Dv(i)⊤

∥∥
2

≤
√
2λ2cβ ∥dj − dk∥2 .

Remark. The proof is essentially inspired by [50] with one
difference. In our work, we are working on the matrix case.
Thus, we require a uniform boundedness on the observation
Z, i.e., ∥zi∥1 ≤ c holds for any i. Furthermore, c should
be an absolute constant that cannot go to infinity, which is
commonly satisfied in real-world applications.

D Full Comparisons on MNIST

We record the full comparison results in Table 5. Note that
NRPCA and DL are not originally used for subspace clus-
tering. However, as suggested by [26], the matrix V V ⊤

Learning Structured Low-Rank Representation via Matrix Factorization

Table 5: Full results on MNIST dataset. Top: MNIST-2K. Bottom: MNIST-10K. We use A = Z for LRR, NLRR and
its variants, and use A = A0 for LRR2, NLRR2 and its variants.

NRPCA DL SSC LRSSC LRR LRR2 NLRR NLRR21 NLRR1 NLRR2 NLRR221 NLRR21

Acc. (%) 50.90 40.40 46.45 51.00 54.60 55.00 55.40 59.15 52.95 51.75 51.20 45.45

Acc. (%) 54.06 47.76 44.90 53.4 55.15 53.67 58.63 59.50 59.67 52.67 53.26 53.61

can be used as the similarity matrix for clustering, where V
is the optimal solution of (2.7). Likewise, we use the output
of DL. (2.8) for clustering.

Regarding the parameters of NRPCA and DL, we note that
from the unified formulation we discussed in Section 2, the
two problems are comparable to NLRR21. Hence, the pa-
rameters of NRPCA and DL are chosen as the correspond-
ing ones used in NLRR21. This setting also make us focus
on the effect of the difference of D and V for each problem
rather than parameter tuning. For LRSSC [44], we use the
parameters provided in their source code.

Although we observe from Figure 2 that setting A = A0

can boost the clustering accuracy for simulation data, it
does not hold for the realistic dataset MNIST. Even worse
is that using A = A0 will dramatically decrease the per-
formance of LRR, NLRR and its variants. See the bottom
panel of Table 5. We also emphasize that finding the A0

is computationally expensive. For MNIST-2K, it takes 34
minutes to learn A0 while that for MNIST-10K is 168 min-
utes, hence not practical.

The method LRSSC [44] combines LRR and SSC by penal-
izing a weighted nuclear norm of X (i.e., the one in (2.1))
in SSC (2.9). We find the resulted program is too slow to
optimize. Moreover, although theoretically sound, [44] did
not show how to pick a proper balancing parameter so as
to achieve their theoretical guarantee. In fact, we tried sev-
eral choices of the parameters for LRSSC, but the results
are comparable to the one shown in the table. Due to the
efficiency of LRSSC, it is hard for practitioners to tune the
parameters. Hence, LRSSC appears not practical for large
scale problems.

