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Abstract
A vast body of recent works in the literature have
shown that exploring structures beyond data low-
rankness can boost the performance of subspace
clustering methods such as Low-Rank Represen-
tation (LRR). It has also been well recognized
that the matrix factorization framework might of-
fer more flexibility on pursuing underlying struc-
tures of the data. In this paper, we propose to
learn structured LRR by factorizing the nuclear
norm regularized matrix, which leads to our pro-
posed non-convex formulation NLRR.

Interestingly, this formulation of NLRR provides
a general framework for unifying a variety of
popular algorithms including LRR, dictionary
learning, robust principal component analysis,
sparse subspace clustering, etc. Several variants
of NLRR are also proposed, for example, to pro-
mote sparsity while preserving low-rankness. We
design a practical algorithm for NLRR and its
variants, and establish theoretical guarantee for
the stability of the solution and the convergence
of the algorithm. Perhaps surprisingly, the com-
putational and memory cost of NLRR can be re-
duced by roughly one order of magnitude com-
pared to the cost of LRR. Experiments on exten-
sive simulations and real datasets confirm the ro-
bustness of efficiency of NLRR and the variants.

1 Introduction
In the face of big data, a fundamental component in scien-
tific and engineering applications is to find a compact repre-
sentation for the underlying data. To tackle problems in dif-
ferent scenarios, a large number of celebrated models have
been investigated, including dimension reduction [19], sub-
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space clustering [40], dictionary learning [29], matrix fac-
torization [21], compressed sensing [9], etc. In this paper,
we are particularly interested in two quintessential prob-
lems: (i) subspace clustering; and (ii) matrix factorization.

Subspace Clustering. It is well known that when the
data lie in a low-dimensional subspace, principal compo-
nent analysis (PCA) [19] and robust PCA [7] are effective
tools for finding the best fitted subspace. More generally,
the data may be collected from different sources, yielding
the research on subspace clustering [40], whose goal is to
segment the data into the correct subspace they belong to.

In the last decade, a considerable number of algorithms for
subspace clustering have been presented in the literature.
For instance, Generalized PCA (GPCA) [42] attempted to
extend the classical PCA to the regime of multiple sub-
spaces. Sparse Subspace Clustering (SSC) [11] pursued
sparse representation for each sample with respect to the
remaining, and the robustness of SSC was further analyzed
in [38]. In [27], Liu et al. considered a convex program
termed Low-Rank Representation (LRR) which is an ex-
tension of Robust PCA to the subspace clustering problem.
Compared to GPCA, LRR is guaranteed with robust seg-
mentation under some mild conditions.

Structured Matrix Factorization. In parallel to the lit-
erature of subspace clustering, matrix factorization (MF)
is another emerging field that finds successful applications
in dictionary learning [29, 28], recommender system [21],
imaging science [30], etc. Recently, some researchers have
attempted to figure out how the factors can be manipulated
so as to produce structured solution of MF. For instance,
[3] showed that as long as the intrinsic dimension of the
factors is allowed to expand infinitely, some structured MF
formulations are equivalent to a convex program. [15] ex-
tended the analysis of [3] and demonstrated the efficacy of
structured MF on image processing problems.

LRR and MF. Notably, the results obtained in [3, 15]
indicate that by imposing various kinds of constraints on
the factors, it is possible to recover a structured subspace
comparable to PCA, Sparse PCA [18, 20] and Robust
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PCA. However, it is not straightforward to extend the re-
sults to the setting of multiple subspaces (see details in
Section 2). On the other hand, as researchers have ob-
served [44, 25, 24], one may improve the clustering per-
formance of LRR by imposing structures beyond the low-
rankness. Nevertheless, those models only work with the
primal variables of LRR, which is not flexible compared to
the factors [15] and is thus less effective in practice.

Summary of Contributions. In this paper, motivated by
recent progress in structured LRR [44, 25] and matrix fac-
torization [3, 15], we propose incorporating MF into LRR.
Interestingly, by further introducing a dummy but crucial
variable, we can unify LRR and other important algorithms
including dictionary learning (DL) [28], RPCA [7] and
SSC [11, 12]. This connection suggests several structured
variants of non-convex LRR (NLRR) such as Elastic NLRR
and Lasso NLRR, which are capable of producing sparse
solutions besides the low-rankness. Remarkably, such vari-
ants are only applicable to LRR but RPCA, due to the
regime of multiple subspaces of LRR.

Next, since it is computationally and memory expensive to
optimize an NLRR program, we devise a scalable imple-
mentation which is one order of magnitude more efficient
in terms of both time complexity and storage cost com-
pared to LRR. Parallel to the Elastic Net [50], we show
that the solution of NLRR and Elastic NLRR is stable and
converges to a stationary point. Finally, we investigabte the
performance of NLRR and its variants with synthetic and
realistic datasets, justifying the robustness and efficiency.

More Discussions on Related Works. Matrix factoriza-
tion has been adopted in many applications such as collab-
orative filtering [21]. It was showed in [3, 15] that an MF
problem could be equivalent to a convex program as long
as the intrinsic dimension is allowed to go to infinity. [41]
studied a non-convex low-rank subspace clustering prob-
lem in the context of matrix factorization for clean data,
while that of our work emerges in the representation ma-
trix. Due to the non-convexity nature, a large body of works
are devoted to characterizing the conditions for global opti-
mum [5, 6, 1, 17]. Another interesting line is bi-directional
random projection for efficient MF learning, e.g., [43].

More in line with our work is subspace clustering. Some
prior works concern the theoretical analysis of subspace
clustering algorithms. For example, [37] considered the ro-
bustness of SSC in the presence of outliers from a geomet-
ric view. The results therein were subsequently extended to
the Gaussian noise [38]. Most of the theoretical guarantees
of LRR are derived in [26, 25], where [26] established ex-
act recovery for outliers and [25] tackled the coherent data
raised by [8, 7]. There are also some interesting works such
as [2] that considered a probabilistic formulation for sub-
space clustering. Other works addressed practical issues
like missing entries [47] and computational efficiency [48].

2 Problem Formulation
Notation. We use bold lowercase letters to denote vectors
and capital letters for matrices. For a vector v, we denote
its ℓ1 norm and ℓ2 norm by ∥v∥1 and ∥v∥2, respectively.
For a matrix M , ∥M∥∗ denotes the nuclear norm, which is
a sum of its singular values. ∥M∥F denotes the Frobenius
norm and ∥M∥1 is used to denote the matrix ℓ1 norm seen
as a long vector. The ith row and jth column of a matrix
M are denoted by m(i) and mj , respectively. The trace
of a squared matrix M is denoted by Tr(M). The capital
letter I is reserved for the identity matrix, and its subscript
variant (e.g.,) In indicates the size of n× n.

Let Z ∈ Rp×n be the observation matrix with n samples
in p dimensions generated from a union of subspaces. The
data may be corrupted by some sparse noise E ∈ Rp×n,
and LRR aims to robustly segment the data into their own
subspace by solving the following convex program:

min
X,E

β

2
∥Z −AX − E∥2F + ∥X∥∗ + λ ∥E∥1 , (2.1)

where β and λ are two tunable parameters. To understand
LRR, note that C

def
= AX is the clean data we aim to

recover [27] where A is some given dictionary (typically
equal to Z). As the inequality rank(AX) ≤ rank(X) al-
ways holds, minimizing the nuclear norm of X amounts to
bounding the rank of C, hence a low-rank structure.

In this paper, we propose a new formulation for LRR, for
handling data which exhibit extra structure beyond low-
rankness. We utilize a standard reformulation of the nu-
clear norm which is shown to be more flexible to manipu-
late [3, 15]. Specially, as shown in [13, 33], we have

∥X∥∗ = min
U,V,X=UV ⊤

1

2

(
∥U∥2F + ∥V ∥2F

)
, (2.2)

where U ∈ Rn×d and V ∈ Rn×d, and d is an upper bound
on the rank of the matrix X (thus the rank of the clean data
C is bounded by d). Note that d is typically picked as a
smaller value than p since C is assumed to be low-rank.

Plugging (2.2) back to (2.1), we have an equivalent but
non-convex formulation of LRR:

(NLRR) min
U,V,E

β

2

∥∥Z −AUV ⊤ − E
∥∥2

F
+

1

2
∥U∥2F

+
1

2
∥V ∥2F + λ ∥E∥1 . (2.3)

Note that (2.3) and (2.1) are equivalent in the sense that
they can attain the same minimal objective value. In the
sequel, we will pose our main observation which estab-
lishes the connection between LRR, RPCA [7], DL [28]
and SSC [11], hence motivating new variants of NLRR.

Crucial Observation 1. Putting D = AU ∈ Rp×d gives

C = DV ⊤. (2.4)
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Since C is the clean data, D can be accounted as a “basis
dictionary” of the multiple subspaces and V is the associ-
ated coefficients, with v(j) being the coefficients for cj .
Also by the above equation, we know that d should be cho-
sen as large as the rank of C.

Remark. Similar idea was also shown in [35], but they
focused on online algorithm for LRR while this work is
devoted to structured LRR. Another difference is that the
theoretical analysis of [35] was carried out to establish the
convergence of online LRR, which that of our work justifies
the stability of NLRR and its variants.

Plugging (2.4) back to (2.3), we have

min
D,U,V,E

β

2

∥∥Z −DV ⊤ − E
∥∥2

F
+

1

2
∥U∥2F

+
1

2
∥V ∥2F + λ ∥E∥1 ,

s.t. D = AU.

(2.5)

Let DNLRR = {D | D = AU, ∥U∥F ≤ ū} and carefully
choosing ū, we have an equivalent problem to the above:

min
D,U,V,E

β

2

∥∥Z −DV ⊤ − E
∥∥2

F
+

1

2
∥V ∥2F + λ ∥E∥1 ,

s.t. D ∈ DNLRR. (2.6)

2.1 Connections to Other Methods

Robust PCA. By applying the reformulation (2.2), Feng
et al. [14] presented a non-convex formulation of RPCA
which can be solved in online fashion:

min
D,V,E

β

2

∥∥Z −DV ⊤ − E
∥∥2

F
+

1

2
∥V ∥2F + λ ∥E∥1 ,

s.t. D ∈ DNRPCA, (2.7)

where DNRPCA = {D | D = U, ∥U∥F ≤ ũ} for some con-
stant ũ. Note that we use the term “NRPCA” to differentiate
it from the classical Robust PCA (RPCA) formulation.

Dictionary Learning. Recall the formulation of DL [28]:

min
D,V,E

β

2

∥∥Z −DV ⊤ − E
∥∥2

F
+ ∥V ∥1 + λ ∥E∥1 ,

s.t. D ∈ DDL, (2.8)

where DDL = {D | ∥dj∥2 ≤ 1, ∀ 1 ≤ j ≤ d}. Here, D
is overcomplete, i.e., the number of columns of D is much
more than the number of rows, hence a sparse solution V .

Sparse Subspace Clustering. Instead of pursuing a low-
rank representation matrix, SSC aims to find the most
sparse representation for each sample with respect to the
others. To this end, SSC solves the following program:

min
D,V,E

β

2

∥∥Z −DV ⊤ − E
∥∥2

F
+ ∥V ∥1 + λ ∥E∥1 ,

s.t. D ∈ DSSC, vjj = 0, ∀ 1 ≤ j ≤ n, (2.9)

where DSSC = {D | D = Z}. Note that SSC is actually
convex since D is identical to the data matrix Z.

Comparing (2.6), (2.8), (2.7) and (2.9), we find that there
are essentially two key differences among them:

1. The way how the dictionary D is constrained. For
NLRR and NRPCA, D is restricted to be equal to a
product of two matrices, one of which is further con-
strained on its Frobenius norm. For DL, D is column-
wisely restricted. SSC simply imposes the identity to Z.

2. The way how the coefficient V is regularized. For
NLRR and NRPCA, V is regularized by the Frobenius
norm due to the formula (2.2). For DL and SSC, ℓ1
norm is used to promote sparsity owing to the overcom-
pleteness of D for DL and self-expressiveness of SSC.

Jointly studying the ways how D is constrained and how
V is regularized offers a unified view to distinguish the
problem structure of these methodologies. Such connec-
tion paves the way for us to derive new variants of NLRR.

2.2 Variants of NLRR

2.2.1 Sparsity Induced Variants

Crucial Observation 2. In (2.4), we have justified the use
of D as a basis dictionary of the clean data. Note that in
subspace clustering, we are considering the regime of mul-
tiple subspaces. Particularly, for LRR, it assumes they are
mutually disjoint [27]. This implies that for any given sam-
ple, its support w.r.t. D is supposed to be sparse where only
the subspace involved has non-zero coefficients.

Thus, to comply with the problem structure of LRR, it is
desirable to encourage sparsity patterns on V in (2.5):

(NLRR21) min
D,U,V,E

β

2

∥∥Z −DV ⊤ − E
∥∥2

F
+

1

2
∥U∥2F

+
1

2
∥V ∥2F + λ1 ∥V ∥1 + λ2 ∥E∥1 ,

s.t. D = AU. (2.10)

We call the above as Elastic NLRR (NLRR21), owing to its
similar form as the Elastic Net [50]. In Section 4, we also
show that NLRR21 enjoys similar stability property as of
Elastic Net, while promotes sparsity patterns in practice.

In addition to Elastic NLRR, we may also consider Lasso
NLRR, which performs like Lasso and DL that penalize the
variable only by the ℓ1 norm, hence is more aggressive.

(NLRR1) min
D,U,V,E

β

2

∥∥Z −DV ⊤ − E
∥∥2

F
+

1

2
∥U∥2F

+ λ1 ∥V ∥1 + λ2 ∥E∥1 ,

s.t. D = AU. (2.11)

Remark. Although similar with NLRR, it may not be suit-
able for NRPCA to introduce a sparse penalty because NR-
PCA addresses the data from a single subspace, for which
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V could be entirely dense if each sample is a combination
of all bases of the underlying subspace. Thus, the structure
of D and V also provides a new insight on the difference
of subspace recovery and subspace clustering.

2.2.2 The Max-Norm Variant

The max-norm regularizer is another popular surrogate to
the rank function. It has been shown to enjoy tighter gener-
alization error bound compared to the nuclear norm [23], as
well as perform better than the nuclear norm in applications
such as subspace recovery [36]. It is defined as follows:

∥X∥max
def
= min

U,V,X=UV ⊤
∥U∥2,∞ · ∥V ∥2,∞ , (2.12)

where ∥·∥2,∞ denotes the maximum ℓ2 row norm. Intu-
itively, the nuclear norm (2.2) constrains the row norms of
U and V on average, while the max-norm constrains the
largest ℓ2 row norm, hence is tighter. Interestingly, to ob-
tain a max-norm regularized variant of LRR, we only need
to replace ∥V ∥2F with ∥V ∥2,∞, and redefine the set of D:

Dmax = {D | D = AU, ∥U∥2,∞ ≤ 1}.

See Proposition 2.1 in [36] for the proof.

3 Algorithm

3.1 A Naive Approach

For this non-convex LRR problem, there is a seemingly
straightforward paradigm for solving Problem (2.3). That
is, updating the three variables U , V and E in an alternat-
ing manner until convergence. We argue that while (2.3)
appears amenable for alternating minimization, it is com-
putationally intensive even for a medium scale problem. To
see this, let us examine the computational cost of evaluat-
ing a local minimizer U given V and E.

Lemma 3.1. Assume the variable V and E are fixed in
Problem (2.3), then the optimal minimizer U is given by:

vec(U) (3.1)

=
(
(V ⊤V )⊗ (A⊤A) + β−1Idn

)−1
vec(A⊤(Z − E)V ),

where “⊗” denotes the Kronecker product and vec(U)
stacks all the columns of U in a long vector.

Proof: See Appendix A.

Note that the size of (V ⊤V )⊗(A⊤A) is dn×dn since V ∈
Rn×d and A ∈ Rp×n. Due to the inverse computation of a
dn×dn matrix, the complexity of solution (3.1) is O(d3n3)
and the memory usage is O(d2n2), which are only practical
in small scale problems. In modern applications, n (the
number of samples) can be very large.

Next, to make NLRR applicable to large-scale applications,
we propose a simple and efficient technique to accelerate
the computation and reduce the memory cost.

3.2 A More Scalable Implementation

For the sake of mitigating the computational and memory
issue, we suggest to solve the optimization problem (2.5)
rather than the primal NLRR formulation (2.3). The rea-
sons for shifting to (2.5) is two-fold:

1. It is equivalent to (2.3). In fact, compared to (2.3), it
only introduces a dummy variable D = AU and thus
changes nothing on the optimality of (2.3).

2. As we showed, the computation of solution (3.1) is
dominated by the matrix inverse of a Kronecker prod-
uct, which is dated back to the simultaneous left and
right multiplications on U , i.e., the term AUV ⊤ in (2.3).
If the left and right multiplications are separated, then
we do not need to compute the Kronecker product and
hence a more efficient derivation for U .

Motivated by these observations, we now focus on (2.5). To
this end, we introduce the augmented Lagrangian function:

g(D,U, V, E,W, µ) (3.2)

=
β

2

∥∥Z −DV ⊤ − E
∥∥2

F
+

1

2
∥V ∥2F + λ2 ∥E∥1 +

1

2
∥U∥2F

+ ⟨W,D −AU⟩+ µ

2
∥D −AU∥2F .

Solve U . Differentiating g(D,U, V, E,W, µ) with respect
to U and arranging the other terms yields

U =
(
µA⊤A + In

)−1
A⊤(W + µD),

whose computational complexity is O(n3) and memory
cost is O(n2). Recall those of (3.1) are O(d3n3) and
O(d2n2) respectively. Hence, we improve both of them.

Although we have reduced the cost, the dependence on the
cube of n is still undesirable. Fortunately, we can update
the columns of U in a stochastic block coordinate fashion,
which will dramatically improve the computation. To see
this, let Si = AU − aiu(i) and note that we have:

1

2
∥U∥2F + ⟨W,D −AU⟩+ µ

2
∥D −AU∥2F

=
1

2

n∑

i=1

∥u(i)∥22 + ⟨W,D − Si − aiu(i)⟩

+
µ

2
∥D − Si − aiu(i)∥2F .

Assume all but the ith row of U have been computed. This
assumption always holds since we can initialize U in ad-
vance. Then we can update u(i)’s sequentially as follows:

u(i) =
µa⊤

i (D − Si) + a⊤
i W

1 + µ ∥ai∥22
, (3.3)
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which just involves simple matrix-vector multiplication.
Since the objective is strongly convex over U , the block
coordinate method will converge to the local minimum [4].

Remark. Note that the time complexity of (3.3) is O(pd).
Hence, a one-pass update on U only costs O(npd). Also, as
the objective is strongly convex w.r.t. U , the total iteration
number scales as O(log(1/ϵ)) to obtain an ϵ-suboptimal
solution [34]. Moreover, the storage cost is O(nd) which
is minimal for storing the matrix U . Since d≪ p≪ n, this
paradigm here can be orders of magnitude computationally
and memory more efficient than Solution (3.1).

Solve V . Now we move on the local solution for the vari-
able V . In fact, due to the quadratic form of V , we can
easily derive its closed form solution in the following way:

V = (Z − E)⊤D
(
D⊤D + β−1Id

)−1
. (3.4)

Although the above solution involves computing matrix in-
verse, it is typically efficient since d is not large. (Recall
that d is an upper bound of the rank)

Solve E. We utilize a standard result in the literature to
optimize the variable E. That is, the local minimizer of E
is given by the following soft-thresholding operator [16]:

E = Sλ2/β(Z −DV ⊤). (3.5)

Solve D. With all the other variables given, the basis dic-
tionary D can be updated as follows:

D = (µAU + β(Z − E)V −W )
(
βV ⊤V + µId

)−1
.

(3.6)
Again, it involves a matrix inverse of size d × d which is
cheap. Alternatively, one can update D with the strategy
of [28], which may further accelerate the computation.

Computation and Memory Cost. Note that in each iter-
ation, the computation of the local minimizers of NLRR
is O(npd log(1/ϵ)), while that of LRR is O(np2). Since
d is the rank and hence d ≪ p, NLRR is roughly one or-
der of magnitude faster than LRR. Regarding the memory
cost, it is easy to show that the memory cost of NLRR is
O(np), while that of LRR is O(n2) due to the storage of
X . Finally, we outline our scalable non-convex LRR im-
plementation in Algorithm 1.

3.3 Algorithm for the Variants

Generally, the variants of NLRR proposed in Section 2.2
can be solved like Algorithm 1. For example, to opti-
mize the variable V in NLRR21 (2.10), one may apply
Lemma B.1 to convert it to a Lass-type subproblem and
choose efficient Lasso solvers such as LARS [10] and [22].
The max-norm variant is a little complicated due to the
non-smoothness of the ℓ2,∞ norm. However, it can still be
solved efficiently by the algorithms in [36]. We note that as
we devise scalable way to compute U , the computation of
Elastic NLRR and Lasso NLRR is dominated by the Lasso
step, which can be efficiently solved by, e.g. [39].

Algorithm 1 Scalable Non-Convex LRR

Input: Z ∈ Rp×n, A ∈ Rp×n, non-negative parameters β
and λ2, initial estimation D0 ∈ Rp×d, E0 ∈ Rp×n and
W0 ∈ Rp×d, µ0 > 0, k = 0.

Output: (Dk, Uk, Vk, Ek).
1: repeat
2: Uk+1 = arg minU g(Dk, U, 0, 0,Wk, µk).
3: Vk+1 = arg minV g(Dk, 0, V, Ek, 0, 0).
4: Ek+1 = arg minE g(Dk, 0, Vk+1, E, 0, 0).
5: Dk+1 = arg minD g(D, Uk+1, Vk+1, Ek+1,Wk, µk).
6: Wk+1 = Wk + µk(Dk+1 −AUk+1).
7: µk+1 = 1.1µk.
8: k ← k + 1.
9: until convergence

4 Theoretical Analysis

4.1 Stability

The stability here refers to producing similar weights for
similar features of an algorithm, which is also known as
the “group effect” that is desired by a variety of applica-
tions [49]. It has been established that Lasso is not stable
due to the ℓ1 regularization [46]. In the sequel, we show
that our model NLRR21 performs like the Elastic Net [50]
which favors stability as well as sparsity.

Formally, we have the following theorem for NLRR21.

Theorem 4.1. Assume that for all data points zi,
1 ≤ i ≤ n, there exists an absolute constant c, such that
∥zi∥1 ≤ c always holds. Let (D,U, V, E) be the global
minimizer of the NLRR21 problem (2.10). Then, for any
entries vij , vik of V , if vijvik > 0, we have:

|vij − vik| ≤
√

2λ2cβ ∥dj − dk∥2 . (4.1)

Remark. The theorem shows that under some mild con-
ditions, when the two atoms in the dictionary are similar,
the algorithm produces similar coefficients, as long as the
samples are uniformly bounded. Note that the property of
uniform boundedness typically holds for real-world appli-
cations. The above theorem is actually an extension of The-
orem 1 in Elastic Net [50], from the vector case to the ma-
trix case. However, there are two key differences: First,
the formulation of [50] is based on linear regression, and
hence, the response is uncontrollable. In contrast, NLRR21

is derived from the subspace clustering problem where the
observed data matrix is always bounded. Second, [50] con-
sidered a convex problem while NLRR21 is non-convex.

4.2 Convergence

Generally speaking, the alternating minimization paradigm
can be seen as a block coordinate descent method, with
each block being the matrix we are interested in. Note that
the objective function of NLRR and NLRR21 is strongly
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(but not jointly) convex over D, U , V and E. Thus, from
Proposition 2.7.1 in [4], we know that the sequence of
(Dk, Uk, Vk, Ek) in Alg. 1 converges to a stationary point.

It is, however, difficult to examine whether a stationary
point of a non-convex program is a global optimum [4].
The seminal work from [6] showed that for the noise free
case, as long as the rank we pick is sufficiently large, any
local minimum obtained by the alternating minimization
algorithm is also a global minimum. Unfortunately, in
practice, the algorithm may not reach a local minimum
since it gets stuck into some stationary point. In Section 5,
our empirical study shows that the obtained solutions of our
algorithms always work well.

Notably, recent works such as [17, 31, 1] obtain encour-
aging results on non-convex problems. Their analysis is
established on a carefully designed initial solution and a
stringent coherence condition. It would be an interesting
future work on studying the global optimality of NLRR.

5 Experiments
Baselines. We compare our algorithm NLRR with two
state-of-the-art methods for subspace clustering: SSC [11]
and LRR [27]. We also include the sparsity induced vari-
ants NLRR21 and NLRR1 to examine the performance of
sparse solution for multiple subspaces. To examine the role
of D and show that NLRR can be used for subspace recov-
ery, we compare NLRR with PCA to show robustness. If
not specified, the matrix A used in LRR and NLRR is set
to be the data matrix Z, which is also the strategy of SSC.

Parameters. We follow the default setting provided in the
source code of the baselines. For NLRR and its variants, β
is fixed with 1 and λ2 is fixed with 1/

√
n. We set λ1 to 0.3

for synthetic data and to 0.05 for realistic data.

Evaluation Metric. For the subspace clustering task, we
use the standard metric called subspace segmentation ac-
curacy [11] to evaluate the performance. Since we argued
in Section 2 that D works as a subspace dictionary for the
clean data (see also [35]), we confirm the role of it by in-
troducing the metric called Expressed Variance (EV) [45]:

EV(D, D0)
def
= Tr(D⊤D0D

⊤
0 D)/Tr(D0D

⊤
0 ), (5.1)

where D0 is the ground truth of the orthonormal bases and
D is the estimation by our algorithm. A higher value of EV
(which ranges from 0 to 1) means better subspace recovery.

Clustering Pipeline. We take a standard pipeline [11, 27]
for the clustering task: the full data matrix Z is passed to
an algorithm and the representation matrix produced by the
algorithm is then fed to a spectral clustering algorithm [32]
to obtain the final clustering result.

Data Generation. For synthetic data, we generate K dis-
joint subspaces {Sk}Kk=1 ⊂ Rp, whose bases are denoted
by {Lk}Kk=1 ⊂ Rp×dk . The clean data matrix Ck is pro-

duced by Ck = LkR⊤
k , where Rk ⊂ Rnk×dk . Thus, for

each subspace, we generate nk data points lying in p am-
bient dimensions, whose rank is actually dk and each entry
is sampled i.i.d. from the normal distribution. Then we
collect all the Ck’s to form the clean matrix C. Finally,
the observation matrix Z is produced by Z = C + E,
where E is the sparse corruption whose ρ fraction of en-
tries are non-zero and follow an i.i.d. uniform distribution
over [−10, 10]. In our experiments, ρ is set to be 0.3 if not
specified. For each experiment, we independently generate
10 folds of the data and report the averaged results.

5.1 Examining the Role of D

A crucial observation that motivates our formulation of
NLRR21 and NLRR1 is that, D = AU works as the basis
dictionary of the union of subspaces [35]. In this section,
hence, we justify this conjecture by numerical experiments.
We set p = 100, K = 4 and nk = 100, dk = 5 for all
small subspaces. We set the expected rank d to be 20. We
use EV(D, L) (see (5.1)) to measure the fitness of D and
the true subspace L (obtained by collecting the Lk’s).

Table 1: EV versus fraction of corruptions. A higher EV
means a better subspace recovery. The results demonstrate
that the variable D estimated by NLRR indeed works as
a basis dictionary and converges (or approximates) to the
true subspace. Moreover, NLRR is more robust than PCA
and LRR, since it explicitly models the basis dictionary.

ρ 0 0.01 0.05 0.1 0.15 0.2

PCA 1 0.99 0.98 0.97 0.94 0.92
LRR 1 1 0.98 0.97 0.95 0.93
NLRR 1 1 1 1 1 0.99

The results are shown in Table 1. Recall EV = 1 means
an exact recovery. From the table, we find that NLRR can
exactly recover the multiple subspaces when the noise level
ρ is less than 0.2, which confirms our claim in Section 2.
Thus, although this paper focuses on subspace clustering, a
by-product of our algorithm can also be used for subspace
recovery. In contrast, PCA and LRR degrade even for a
slightly corrupted data (e.g., ρ = 0.05), which indicates
that NLRR is more robust than its convex counterpart LRR.
The gain of NLRR is possibly due to the explicit modeling
of the basis dictionary D as argued in [35]. Yet, they veri-
fied such interesting phenomenon for an online non-convex
algorithm of LRR while our work confirms that this also
holds for batch setting.

5.2 Robustness for Subspace Clustering

In this subsection, we provide an experimental study to
compare NLRR with LRR, for assessing the robustness of
subspace clustering. Specifically, we demonstrate the clus-
tering accuracy of LRR and NLRR under different dimen-
sion dk and corruption fraction ρ. For this purpose, we gen-
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Figure 1: Subspace clustering accuracy under different
ranks and corruptions. Brighter color means higher accu-
racy. NLRR consistently outperforms LRR, especially for
the large corruption cases which are more challenging.

erate 4 disjoint subspaces, each of which has 100 points
lying in a 100-dimensional subspace. In the experiment,
the ratio dk/p ranges from 0.03 to 0.15, with a step size of
0.01. d is set to be the true rank. The corruption fraction ρ
ranges from 0 to 0.5, with a step size of 0.05.

We report the comparison results in Figure 1, where a
brighter block means a more accurate clustering. For LRR,
we observe that it is difficult to detect the correct cluster-
ing structure when data are a highly corrupted. In contrast,
NLRR is able to handle the challenging cases and achieves
significant improvement over LRR.

5.3 Effectiveness of the Sparsity Induced Variants

We now examine the efficacy of the sparsity induced vari-
ants NLRR21 and NLRR1 presented in Section 2.2. We fix
the ambient dimension p to 100 and set the intrinsic dimen-
sion of each subspace dk = 4. We set ρ = 0.3, a chal-
lenging case. We increase the number of subspaces from 2
to 10, and always generate 200 samples for each subspace.
We set d as the true rank. Note that recently, [25, 24] sug-
gested a heuristic algorithm which is effective for sparsely
corrupted data. Their key idea is utilizing a preprocessing
step to obtain an A0 as the choice of A (see (2.1)). Here,
we also record the results with such technique.

We illustrate the results in Figure 2. For the case of A equal
to Z, it shows that NLRR21, which penalizes the coeffi-
cients V by a combination of Frobenius norm and ℓ1 norm,
achieves the best accuracy. NLRR1 is formulated with ℓ1
penalty, which promotes sparsity patterns. However, it suf-
fers for the clustering task. In contrast, NLRR21 essentially
makes a balance of accuracy and sparsity, which meets the
observations in [50]. Finally, it demonstrates that LRR and
NLRR favor dense solutions, which is not surprising since
there is no sparsity penalty for them.

On the bottom panel of Figure 2, we plot the accuracy and
sparsity curve when A is equipped with A0 from the heuris-
tic algorithm [25]. This strategy can dramatically improve
the clustering accuracy, which meets the theory of [25]. In-
terestingly, when we set A equal to A0, we find that both
NLRR21 and NLRR1 can result in more sparse solutions.
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Figure 2: Subspace clustering accuracy (left) and spar-
sity (right) against the number of subspaces. A0 is cho-
sen according to [25]. The results show that NLRR21 al-
ways achieves the best accuracy among all the other al-
gorithms. Meanwhile, NLRR21 also promotes sparsity as
the number of subspaces increases. NLRR and LRR do
not produce sparse solutions and the performance of LRR
highly depends on the choice of A. NLRR1 does not appear
to have a proper trade-off between accuracy and sparsity.

5.4 Large Scale Data and Computational Efficiency

We further evaluate our methods on a real-world dataset
MNIST. It contains totally 70,000 hand written digits, each
of which is resized to 28×28 pixels. For each kind of digit,
we randomly pick 200 samples and obtain a data matrix
Z ∈ R784×2000, named as MNIST-2K. We also experiment
on a larger size, where each class has 1000 samples so that
the observation Z ∈ R784×1e4, named as MNIST-10K.

Table 2: Subspace clustering on MNIST dataset. Top:
MNIST-2K. Bottom: MNIST-10K. NLRR or its variants
is always the most accurate and efficient algorithm. The
sparsity of NLRR21 and NLRR1 is nearly 0.54 for MNIST-
2K and 0.83 for MNIST-10K.

SSC LRR NLRR NLRR21 NLRR1

Acc. (%) 46.45 54.60 55.40 59.15 52.95
Time (s) 116 111 28 50 51

Acc. (%) 44.90 55.15 58.63 59.50 59.67
Time (m) 84 24 15 27 25

We set d = 50. For the MNIST dataset, we find that the
accuracy decreases by setting A = A0 (see Appendix D).
Thus, we only report results with A = Z, which are shown
in Table 2. The most sparse solution emerges from SSC,
but with the lowest accuracy, which is also observed in the
preceding section. On the small set MNIST-2K, LRR ap-
pears to perform comparably with our algorithms. How-
ever, when manipulating a larger database MNIST-10K, it
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is much inferior to ours. We also note that on MNIST-10K,
the solutions of NLRR21 and NLRR1 are not as sparse as
those on MNIST-2K. This is possibly because the true sub-
spaces of the data are not disjoint. For instance, the number
“1” and “7” commonly share similar parts. As a conse-
quence, the true coefficients V could not be sparse. When
acquiring more samples, the connectivity emerges and thus
our model fails to output the sparse solution.

Regarding the computational efficiency, we find that NLRR
is always the fastest algorithm among the methods. This
agrees with our qualitative analysis on the time complexity
in Section 3.2. We also note that for the large database
MNIST-10K, the sparsity induced variants NLRR21 and
NLRR1 performs as efficient as LRR, but much slower than
NLRR. This is not surprising as they have to solve a Lasso
problem in each iteration that is not cheap for large scale
problems. We believe that this issue could be mitigated if
more efficient Lasso solver is available. A detailed com-
parison between LRR and NLRR is shown in Table 3.

Table 3: Time complexity (seconds) against sample size.

#Sample 500 2K 4K 6K 8K 10K

LRR 37 111 251 377 598 1440
NLRR 4 28 112 253 464 914

5.5 Comparison to Other Methods

In Section 2.1, we demonstrate the connection of NLRR
to other methods such as NRPCA, DL and SSC. We also
argue that it is more effective to pursue structures on the
factors than on primal variables. We justify these claims in
Table 4. Note that the result of SSC has been recorded in
Table 2 and that of NLRR is same with Table 2. Clearly,
from the unified framework, we know that the improve-
ment of NLRR comes from the interesting constraints of D
and V and the superiority to LRSSC [44] and LRR2 [25]
confirms the efficacy of integrating MF into LRR.

Table 4: Connection to other methodologies. Top:
MNIST-2K. Bottom: MNIST-10K. We unify LRR with
other methodologies by its non-convex formulation. The
improvement of NLRR to NRPCA, DL and SSC (see Ta-
ble 2) implies the efficacy of the way D and V are con-
strained. The superiority to LRSSC and LRR2 conforms
the benefit of combining MF and LRR, i.e., pursuing struc-
tures on factors rather than on primal variables.

NRPCA DL LRSSC LRR2 NLRR

Acc. (%) 50.90 40.40 51.00 55.00 55.40
Acc. (%) 54.06 47.76 53.40 53.67 58.63

5.6 The Influence of Expected Rank

To utilize the non-convex reformulation of the nuclear
norm (2.2), we need to estimate an upper bound d on the

rank of the clean data. Here, we follow the setting of Sec-
tion 5.1 but fix ρ = 0.3. Note that the true rank of the data
is 20. We run the algorithm NLRR by varying the expected
rank d from 1 to 40. As is expected, as long as we choose
a sufficiently large quantity of d, our algorithm will exactly
recover the subspace bases and correctly segment the data.
Note that for the noise free case, our problem can be con-
verted to the one considered in [6], and the results presented
here imply a potential to extend their theories to the noisy
case. In addition, we observe that while NLRR fails to re-
cover the whole subspace bases for d = 16, it perfectly
clusters the data. This intriguing phenomenon is possibly
due to the robustness of spectral clustering, see [38].
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Figure 3: The influence of the choice of d. Note that the
true rank here is equal to 20. As long as we pick d greater
or equal to the true rank, NLRR can exactly recover the
subspace and identify the clustering structure.

6 Conclusion
In this paper, by using a non-convex reformulation of the
nuclear norm and introducing a crucial variable working as
the basis dictionary, we have shown how to unify four im-
portant problems: LRR, RPCA, DL and SSC. Their con-
nections, as well as the merit of multiple subspaces con-
sidered in LRR, motivate us to propose new variants of
LRR. We have demonstrated that these variants can boost
the clustering accuracy of LRR, while producing sparse so-
lutions. Interestingly, a by-product of our algorithm can
be used for subspace recovery, and has been illustrated to
be more robust than LRR. For large scale problems, we
have devised a scalable implementation for our new for-
mulations which is at least one order of magnitude more
efficient than LRR in terms of computation and memory
cost. The efficiency is further justified on a large real-world
dataset. Theoretically, we have proven the stability of the
solutions and the convergence of the presented algorithm.
The promising results also have implications back to MF:
when the data is formed by a union of subspaces, i.e., a
clustering structure, it is preferable to penalize V with the
elastic regularizer.
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