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1 Datasets

The datasets used in the experiments are described in
Table 1. We selected some medium size datasets from
the literature to start with and added large ones to
demonstrate performance in GLM. The samples and
number of features columns specified in the table refer
to the maximum sizes used in the experiments. Cate-
gorical features were converted using dummy coding.
All features in all datasets were normalized using Z-
scores. For regression, the target values were also Z-
score normalized.

When both training and test sets were available, only
data in the training sets were used except where
noted in the following. The epsilon dataset used
in these experiments was constructed from the first
15,000 samples and 1000 features of the original ep-
silon test set. The ucsdpeds dataset refers to the
ucsdpeds1l dataset in the nomenclature of Chan &
Vasconcelos (2012). We generated artificial count la-
bels for the epsilon-count dataset as follows. We used
the training data of epsilon and a GLM with Pois-
son likelihood and log link function. The parameter
was sampled from the prior described in the experi-
mental section. The dataset cahousing is referred to
as cadata on http://www.csie.ntu.edu.tw/~cjlin/

libsvmtools/datasets/. The yearpred dataset con-
sisted of the unique rows of the original test set. The
wlan-long dataset was derived from the UJIIndoorLoc
dataset from the UCI Machine Learning Repository by
selecting unique rows and using longitude as the target
variable. The wlan-inout dataset was derived similarly
but by selecting inside vs. outside as the binary target
variable.

2 Natural Gradients for LGM

This section shows that “FP-like” updates arise from
natural gradients whenever the KL term is taken over
distributions in the same exponential family. Similar
derivations exist in the literature, so the analysis is not

new. But here we emphasize the fixed point aspect
of the update. We then derive the concrete natural
gradient updates for LGM showing that the update for
V is identical to the FP update in the main paper (as
pointed out by an anonymous reviewer) and showing
the corresponding “FP-like” update for m. Please see
discussion in the main paper for context and further
details.

2.1 The General Form

The VLB for the LGM model is given by

VLB =
∑
i

Eqi(fi)(log φi(fi))−KL(q(w)‖p(w)) (1)

where in our main derivation qi(fi) = N (fi|mi, vi),
mi = ai + dTi m and vi = ci + dTi V di, q(w) =
N (w|m,V ), and p(w) = N (w|µ,Σ).

More generally, for distributions p(w) and q(w) of the
same exponential family type,

p(w) = exp
(
t(w)T θp − F (θp)

)
h(w) (2)

q(w) = exp
(
t(w)T θq − F (θq)

)
h(w) (3)

the Kullback-Liebler divergence between q(w) and
p(w) is given by

KL(q‖p) = ηTq (θq − θp)− (F (θq)− F (θp)) (4)

where ηq denotes the expectation (mean) parameters
of q, i.e., Eq(t(w)).

The natural gradient update of the canonical (natural)
parameters for q(w) is given by

θq ← θq + I(θq)
−1 ∂VLB

∂θq
(5)

= θq + I(θq)
−1 ∂ηq
∂θq

∂VLB

∂ηq
(6)

= θq +
∂VLB

∂ηq
(7)
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Table 1: Summary of data sets

Name Samples Features Model Type Source

a9a 32561 123 Binary Lichman (2013)
epsilon 15000 1000 Binary Sonnenburg et al. (2008)
madelon 2600 500 Binary Guyon et al. (2004)
musk 6598 166 Binary Lichman (2013)
usps (3s v. 5s) 1540 256 Binary Rasmussen & Nickisch (2013)
wlan-inout 19085 466 Binary Lichman (2013)
abalone 4177 8 Count Lichman (2013)
flares 1065 24 Count Lichman (2013)
ucsdpeds 4000 30 Count Chan & Vasconcelos (2012)
cahousing 20640 8 Regression Statlib (2015)
cpusmall 8192 12 Regression Statlib (2015)
spacega 3107 6 Regression Statlib (2015)
wlan-long 19085 466 Regression Lichman (2013)
yearpred 51609 90 Regression Lichman (2013)

since ∂η
∂θ = I(θ) for dual coordinate systems, θ and η

(Amari & Nagaoka, 2000).

The derivative of the KL divergence with respect to
the expectation parameters is given by

∂KL(q‖p)
∂ηq

= θq − θp +

(
∂θq
∂ηq

)T
ηq −

(
∂θq
∂ηq

)T
∂F (θq)

∂θq
(8)

= θq − θp (9)

since
∂F (θq)
∂θq

= ηq in the exponential family.

Now, denoting A(ηq) = ∂
∂ηq

[
∑
iEqi(fi)(log φi(fi))]

where we have emphasized the dependence on ηq, and
applying this notation to (7) we get the “FP-like” up-
date

θq ← θq − [θq − θp] +A(ηq) = θp +A(ηq) (10)

2.2 Natural Gradients for LGM

Recall that for the Gaussian distribution we have
θ = (r, S) = (V −1m, 12V

−1) and η = (h,H) =
(m,−(V +mmT )). To take the derivative of the sum
of expectations term in Eq. 1, we rewrite mi and vi
with respect to the expectation parameters ηq

mi = ai + dTi h (11)

vi = ci − dTi (H + hhT )di (12)

Note that vi now depends on both expectation param-
eters whereas in the original (source) parameterization
vi only depended on one parameter, V .

The derivatives of the sum of expectations term are

now given by

∂

∂h

[∑
i

EN (fi|mi,vi)(log φi(fi))

]
(13)

=

(
∂mi

∂h

∂

∂mi
+
∂vi
∂h

∂

∂vi

)[∑
i

EN (fi|mi,vi)(log φi(fi))

]
=

∑
i

(ρi + (hT di)γi)di

and

∂

∂H

[∑
i

EN (fi|mi,vi)(log φi(fi))

]
(14)

=
∂vi
∂H

∂

∂vi

[∑
i

EN (fi|mi,vi)(log φi(fi))

]

=
∑
i

1

2
γidid

T
i

with

ρi =
∂

∂mi
EN (fi|mi,vi)(log φi(fi)) (15)

γi = −2
∂

∂vi
EN (fi|mi,vi)(log φi(fi)) (16)

Finally, the updates described by Eq. 7 are

V −1m←Σ−1µ+
∑
i

(ρi + (mT di)γi)di (17)

1

2
V −1 ←1

2
Σ−1 +

∑
i

1

2
γidid

T
i (18)

Now (18) is identical to the FP update in the main
paper, whereas (17) is a size 1 natural gradient step
for m. As discussed in the main paper, while (18) is
analyzed and shown to work well empirically, our ex-
ploratory experiments with (17) showed that it does
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not always converge to the optimal point. Experimen-
tal evidence illustrating this point is shown in the next
section. Hence, in contrast with our analysis of FP for
V , size 1 natural gradient updates do not provide a
full explanation to the success of FP.

3 Additional Experimental Results

This section includes additional experimental results
that were omitted from the main paper due to space
constraints.

For all experiments in the main paper and sup-
plementary material, the stopping conditions are
‖∇f(xk)‖∞ ≤ 10−5, f(xk−1) − f(xk) ≤ 10−9, or
k > 500 where f is the objective function being op-
timized, k represents the iteration number, and x is
the current optimization variable.

Figure 1 shows monotonicity maps for additional likeli-
hood functions demonstrating the same pattern: large
continuous regions of the (m, v) space with the same
direction of change. This shows that small changes to
(m, v) are likely to be stable with respect to condi-
tion 2.

Figure 2 shows evidence of FP cycling in a GLM with
the logistic likelihood trained on wlan-inout. Here, m
was fixed to the optimal m? and V was initialized to
I. Plots for other randomly selected γs are similar.

Figure 3 shows results for an incremental optimization
with FP for both the covariance and the mean. We
see that this method sometimes converges to the op-
timum, sometimes converges to an inferior point, and
sometimes diverges (in the left-most plot, the VLB
for this method increases out of the y-axis range). In
contrast, FPb and FPi appear to be stable across the
range of experimental conditions, and the same holds
for GRAD although it is generally slower.

Figure 4 shows results for GLM on datasets which are
smaller than the ones in the main paper. In this case,
the performance of FP and GRAD is is not dramati-
cally different. However, for the larger dataset in the
main paper, FPi converges much faster.

To further explore performance on larger datasets,
we have run multiple experiments with the epsilon
dataset, where a subset of the features was randomly
selected. The results for several such settings are
shown in Figure 5. As can be seen, the difference be-
tween the algorithms becomes more pronounced when
the number of features increases in this manner.
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i
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Figure 1: Plots of sign( ∂∂vγ(v)) for several observation likelihoods.
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Figure 2: Plot of γi for i = 3591, 6311, and 10301 (out of 19085) vs. FP update number.
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Figure 3: Comparison of using FP for the mean against other methods for three datasets.
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Figure 4: Evaluation for GLM showing objective function values with respect to training time. Numbers in
parentheses in title refer to number of samples and dimensions of dataset. Legend for plots: GRAD (—), FPb
(—). FPi (- -),
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Figure 5: Evaluation for GLM showing objective function values with respect to training time for epsilon. The
training size is fixed, but the number of features is varied. Legend for plots: GRAD (—), FPb (—). FPi (- -),


