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Abstract

Latent Gaussian Models (LGM) provide a
rich modeling framework with general infer-
ence procedures. The variational approxima-
tion offers an effective solution for such mod-
els and has attracted a significant amount
of interest. Recent work proposed a fixed-
point (FP) update procedure to optimize the
covariance matrix in the variational solution
and demonstrated its efficacy in specific mod-
els. The paper makes three contributions.
First, it shows that the same approach can
be used more generally in extensions of LGM.
Second, it provides an analysis identifying
conditions for the convergence of the FP
method. Third, it provides an extensive ex-
perimental evaluation in Gaussian processes,
sparse Gaussian processes, and generalized
linear models, with several non-conjugate ob-
servation likelihoods, showing wide applica-
bility of the FP method and a significant ad-
vantage over gradient-based optimization.

1 INTRODUCTION

Latent Gaussian Models (LGM) provide a rich model-
ing framework with general inference procedures and
have attracted a significant amount of interest. As ar-
gued in previous work (Challis & Barber, 2013; Khan
et al., 2013), LGM capture many existing models as
special cases including Gaussian Processes (GP), gen-
eralized linear models, probabilistic PCA, and more.
With a small extension, LGM also capture the sparse
GP model which enables efficient inference reducing
the cubic complexity of standard GP.
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The extended LGM model is specified by (1) below
where w ∈ Rd, f ∈ Rn, and the site potentials φi(fi)
implicitly capture the non-Gaussian data likelihood.
The distribution p(f |w) varies according to the model.

w ∼ N (µ,Σ), f |w ∼ p(f |w), p(data|f) =
∏

i

φi(fi),

(1)
For example, in logistic regression w is the weight vec-
tor, p(f |w) = δ(f−HTw) (where H = (h1, h2, . . . , hn)
and hi is the ith example), and φi(fi) = σ(yifi) where
the label yi is in {−1, 1}. Other linear models can be
specified by replacing the site potentials φi(fi) yielding
the generalized linear model (GLM). For Gaussian pro-
cesses with mean function m(·) and covariance K(·, ·),
we have d = n, and w is the latent function at sam-
ple points x yielding w ∼ N (m(x),K(x, xT )). Here we
have f = w, which for uniformity we write as p(f |w) =
δ(f − HTw) with H = I, and φi(fi) = p(yi|fi) is
the likelihood of observations. In the sparse model, w
represents the latent function at the pseudo inputs u
and f is the latent function at x (Titsias, 2009). In
this case p(f |w) is a linear conditional Gaussian and
φi(fi) = p(yi|fi) (Sheth et al., 2015).

Since all these models include non-conjugate priors,
computation of the posterior and marginal likelihood
are challenging and various approaches and approxi-
mations have been developed. Among these, the vari-
ational approach has been extensively investigated re-
cently, as it provides a well justified criterion – max-
imizing a lower bound on the marginal likelihood,
known as the variational lower bound (VLB). In addi-
tion, the variational approximation is computationally
stable and yields good results in practice (Opper & Ar-
chambeau, 2009; Titsias, 2009; Lázaro-gredilla & Tit-
sias, 2011; Khan et al., 2012; Challis & Barber, 2013;
Khan et al., 2013; Hensman et al., 2013; Khan, 2014;
Titsias & Lázaro-gredilla, 2014; Gal et al., 2014; Hens-
man et al., 2015; Sheth et al., 2015; Hoang et al., 2015).
In this approach, a variational distribution

q(w, f) = q(w)p(f |w), where q(w) ∼ N (m, V ) (2)
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is used to approximate the posterior and (m, V ) are
chosen to minimize the KL divergence to the true pos-
terior. Thus the variational distribution is not in gen-
eral form. It assumes a Gaussian distribution over w
and uses an explicit form equating q(f |w) = p(f |w).

This optimization, especially optimizing V , is non triv-
ial and several approaches have been proposed. In the
context of GP with non-conjugate likelihoods, Opper
& Archambeau (2009) observed that V has a special
structure and proposed a re-parametrization that re-
duces the number of parameters from O(n2) to O(n).
The work of Khan et al. (2012) showed that this pa-
rameterization is not concave and proposed a concave
improvement for that algorithm. For LGM, Challis
& Barber (2013) showed that for log-concave site po-
tentials the variational lower bound is concave in m
and the Cholesky factor of V and proposed gradient
based optimization. The work of (Khan et al., 2013;
Khan, 2014) uses dual decomposition to obtain faster
inference. The sparse GP model was recently explored
by several groups. Here the objective was optimized
with gradient search and the dual method of Khan
et al. (2013) and was further developed for big data
with stochastic gradients and parallelization (Hens-
man et al., 2013; Titsias & Lázaro-gredilla, 2014; Hens-
man et al., 2015; Gal et al., 2014; Sheth et al., 2015).

This paper is motivated by recent proposals to use a
fixed point (FP) update, of the form V ← T (V ), for
inference of the covariance function V in some spe-
cial cases of LGM. In particular, Honkela et al. (2010)
proposed FP as a heuristic to simplify the update for
a Gaussian covariance within their adaptation of the
conjugate gradient algorithm to use natural gradients,
and Sheth et al. (2015) proposed a similar update in
the context of sparse GP. The work of Sheth et al.
(2015) provided some empirical evidence that T (V )
acts as a contraction in many cases and that it often
leads to fast convergence of the sparse model. But
neither work provides an analysis of whether and un-
der what conditions such an update is guaranteed to
converge. Similarly we are not aware of any system-
atic investigation of the convergence of FP in practice
across different models and site potentials.

This paper makes three contributions. The first is in
observing that the FP algorithm is more widely appli-
cable and that it can be used in the extended LGM
model. The second contribution is an analysis provid-
ing sufficient conditions for convergence of the update
operator T (V ) and showing that the convergence con-
ditions hold for many instances of that model. The
conditions for convergence rely only on properties of
the site potential functions and can be tested in ad-
vance for any concrete model. The third contribution
is an experimental evaluation in GP, sparse GP, and

GLM for several likelihood functions showing that the
FP method is widely applicable and that it offers sig-
nificant advantages in convergence time over gradient
based methods across all these models.

2 FIXED POINT UPDATES

In this section we review the variational approach to
the extended LGM and the resulting FP update. Most
of the development in this section is either directly
stated or is implicit in previous work (Challis & Bar-
ber, 2013; Sheth et al., 2015). But the characterization
of the marginal variances in (4) and corresponding im-
plication of applicability in LGM did not previously
appear in this form.

Starting with the model in (1) we can apply the varia-
tional distribution (2) to yield the following standard
VLB:

log p(data)

= log

∫
N (w|µ,Σ)p(f |w)

∏

i

φi(fi)dfdw

≥
∫
q(w, f) log

(
N (w|µ,Σ)p(f |w)

q(w, f)

∏

i

φi(fi)

)
dfdw

=
∑

i

Eq(w,f)[log φi(fi)]− dKL(q(w)‖N (w|µ,Σ))

=
∑

i

Eq(fi)[log φi(fi)]− dKL(q(w)‖N (w|µ,Σ)) (3)

where dKL is the Kullback-Leibler divergence. Below,
we refer to the bound given in (3) as the VLB. Note
that p(f |w) does not affect the dKL term and it affects
the first term only through the marginal distribution
q(fi). In this paper we focus on cases where q(fi) is
Gaussian, which holds for the models mentioned in the
introduction. However, FP for the extended LGM can
be used with other forms of p(f |w) as long as expecta-
tions and derivatives w.r.t. q(fi), as identified below,
are available or can be estimated.

Optimizing the VLB w.r.t. m is stable and can be done
effectively with Newton’s method or BFGS and the
derivatives are given in previous work. In the following
we focus on the optimization w.r.t. V .

To proceed, we need explicit expressions for q(fi).
In the cases where f = HTw, we have fi = hTi w
and as a result mqi = hTi m, and vqi = hTi V hi.
For sparse GP, we recall that w represents the la-
tent function at the pseudo inputs u and f is the
latent function at x. We therefore have that f |w ∼
N (mx+KxuK

−1
uu (w−mu),Kxx−KxuK

−1
uuKux) where

we follow standard notation representing the argu-
ments of m(·) and K(·, ·) using subscripts. Now, us-
ing q(w) = N (m, V ) and marginalizing we obtain
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mqi = mxi + KiuK
−1
uu (m − mu) and vqi = Kii +

KiuK
−1
uu (V −Kuu)K−1uuKui. The important point for

our analysis is that in all these cases vqi is a sum of a
scalar and a quadratic form in V and can be captured
abstractly using

vqi(V ) = ci + dTi V di (4)

where we emphasize the dependence on V . For the

derivative of the VLB note that
∂Eq(fi)

[log φi(fi)]

∂V =
∂Eq(fi)

[log φi(fi)]

∂vqi

∂vqi
∂V and that

∂vqi
∂V = did

T
i = Di is a

rank 1 positive semi-definite (PSD) matrix. Combin-
ing this with derivatives for dKL, we can get two al-
ternative expressions for the derivatives, showing that

∂VLB

∂V
=

1

2
V −1 − 1

2
Σ−1 − 1

2

∑

i

γi(vqi)Di (5)

where γi(mqi , vqi) = −2
∂Eq(fi)

[log φi(fi)]

∂vqi
=

EN (fi|mqi
,vqi )

[− ∂2

∂f2
i

log φi(fi)] = (6)

EN (fi|mqi
,vqi )

[−(
(f−mqi

)2

vqi
− 1) 1

vqi
log φi(fi)] (7)

and where (6) derived by Sheth et al. (2015) shows that
γi > 0 for log concave site potentials and (7) derived
by Challis & Barber (2013) can be used in cases where
log φi(fi) is not differentiable but the expectation is
differentiable.

The derivative (5) immediately suggests the FP up-
date

T (V ) = (Σ−1 +
∑

i

γi(vqi)Di)
−1 (8)

The expression for γi is a function of the marginal vari-
ational distribution q(mqi , vqi) and the generic site po-
tentials used, and can be calculated and viewed as a
function of the parameters mqi , vqi . Below we refer to
this function abstractly as γ(m, v) and study the con-
vergence of the proposed method based on properties
of this function.

3 ANALYSIS

We start by noting basic properties of the FP update.
For any fixed m, let V ∗ be the optimizer of the VLB
w.r.t m.

Proposition 1 (1) V ∗ = T (V ∗), (2) V̂ = T (V̂ ) im-

plies that ∂VLB
∂V |V̂ = 0, (3) ∂VLB

∂V |V̂ = 0 and V̂ is full

rank implies V̂ = V ∗.

Proof: From (5), (8) we obviously have:

∂VLB

∂V
=

1

2
(V −1 − T (V )−1) (9)

This shows that the optimal covariance V ∗, where the
derivative is zero, is a fixed-point of T (V ). In addi-
tion, the equation implies that if the FP method con-

verges and T (V ) = V then ∂VLB
∂V = 0 and we have

reached a stationary point. Finally, it can be shown

that ∂VLB
∂L L−1 = 2∂VLB

∂V where L is the Cholesky
factor of V = LLT . Now, since for log-concave site
potentials the VLB is concave in L (Challis & Barber,
2013) we see that if the FP method converges to V
and V is full rank then V = V ∗.

The proposition shows that the fixed point of T () iden-
tifies V ∗. We note that a unique optimum does not
imply that the VLB is concave in V . Next, we de-
fine sufficient conditions that guarantee that repeated
application of T () does converge:

Condition 1: for all m, v, γ(m, v) ≥ 0.
Condition 2a: for all fixed values of m, γ(m, v) is
monotonically non-decreasing in v.
Condition 2b: for all fixed values of m, γ(m, v) is
monotonically non-inccreasing in v.

Theorem 1 (1) If conditions 1 and 2a hold then the
FP update converges to V ∗ or to a limit cycle of size
two. (2) If conditions 1 and 2b hold then the FP update
converges to V ∗.

Proof: For matrices A,B we denote A � 0 when A
is PSD and say that B � A if B −A � 0. Now, using
Condition 1 and (8) we see that for any V , we have
T (V )−1 � Σ−1 implying that

∀V, T (V ) � Σ (10)

and in particular T (V ∗) � Σ.

Next observe from (4) that for any A � B, we have
vqi(A) ≥ vqi(B), and from Condition 2a this implies
γi(vqi(A)) ≥ γi(vqi(B)). Therefore, from (8), we have

∀A,B s.t. A � B, T (A) � T (B) (11)

Applying (11) to V ∗ � Σ, and using (10) to add Σ as
an upper bound we get

T (Σ) � V ∗ � Σ (12)

Now, repeatedly applying (11) to the sequence and
using (10) to add Σ as an upper bound gives

T (Σ)�T 3(Σ)� . . .�V ∗� . . .�T 4(Σ)�T 2(Σ)�Σ
(13)

Denote γ`i = γ(vqi(T
`(Σ))) and γ∗i = γi(vqi(V

∗)).
Then Condition 2a and (13) imply

γ1i ≤ γ3i ≤ . . . ≤ γ∗i ≤ . . . ≤ γ4i ≤ γ2i ≤ γ0i (14)
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v
i

m
i

sign[ −∂λ
i
 / ∂v

i
 ] for Logistic likelihood
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Figure 1: Plots of sign( ∂∂vγ(m, v)) for the logistic likelihood, with scatter plots of (mqi , vqi) pairs in one iteration.

As a result we see that the sequences {γ2`i } and
{γ2`+1
i } must converge because they are monotonic

and bounded sequences of real numbers. This in turn
implies that the sequences {T 2`(Σ)} and {T 2`+1(Σ)},
which are defined via (8) and (14), converge. Now,
if {γ2`i } and {γ2`+1

i } converge to the same point then
it must be γ∗i and therefore {T `(Σ)} converges to V ∗.
Otherwise, there is a gap in γ values and {T `(Σ)} con-
verges to a limit cycle of size two, alternating between
the lower and upper bound. In summary, we have
shown that under conditions 1 and 2a the FP update
converges to V ∗ or to a limit cycle of size two, i.e.,
A � V ∗ � B and A = T (B), B = T (A).

We next turn to Condition 2b. In this case (10) holds
but (11) is reversed to

∀A,B s.t. A � B, T (A) � T (B)

yielding upon repeated application

Σ � T (Σ) � T 2(Σ) � T 3(Σ) . . .

In this case, γ`i must converge implying that the se-
quence T `(Σ) converges to V = T (V ) = V ∗.

3.1 Applicability of the Convergence Criteria

The theorem gives sufficient conditions for conver-
gence. We next explore when these conditions hold
and cases where, although the conditions do not hold
globally, weaker conditions might be sufficient in prac-
tice. We have already pointed out that Condition 1
holds for all log concave likelihoods which cover many
important cases. Condition 2 holds less widely but
shows an interesting structure. For some likelihoods,
we have a closed form of γ(m, v) and its derivative
w.r.t. v and can therefore test the condition. In par-
ticular we have:

Remark 1 Condition 2a holds for (1) the Poisson

likelihood (with log link function) p(y|f) = e−e
f

eyf/y!

where γ = em+v/2, (2) for the likelihood used in the
stochastic volatility model (Rue et al., 2009; Khan
et al., 2012) p(y|f) = N (y|0, ef ), where γ = e−2me2v,
and (3) for the exponential likelihood (with log link

function) p(y|f) = efe−ye
f

where γ = yem+v/2.

When closed forms are not available we can evalu-
ate monotonicity of γ(m, v) for fixed m empirically.
Figure 1a plots sign( ∂∂vγ(m, v)) for the logistic likeli-
hood, where the color indicates regions of monotonic-
ity, suggesting smooth behavior over large regions of
the (m, v) space.1 The supplementary material in-
cludes monotonicity plots for several other likelihood
functions showing similar patterns. Parts (b) and (c)
show a zoomed in version of the same monotonicity
plot overlaid with a scatter plot of the (mqi , vqi) pairs
at the beginning of the second FP update, for a GLM
(b) and GP model (c) on one dataset, taken from the
experiments in the next section. We see that Condition
2 holds for this instance of GP (Condition 2b holds in
this iteration) but not for the instance of GLM where
some of the γ values are increasing and some are de-
creasing. However, our experiments demonstrate that
convergence does hold robustly in practice across many
datasets and experimental conditions, even when such
violations occur, and even in cases where Condition 1
is violated (for the Student’s t likelihood).

To explore the conditions further we refer back to
equation (8) which defines the FP update. Tracing
the proof we see that the requirements for convergence
are that the sum over the rank one matrices yields
a PSD matrix and that the overall sum is increasing
with respect to the ordering �. The proof achieves
this through global conditions over γ(m, v). But the
same argument goes through under the aggregate con-
dition over

∑
γiDi. The aggregate condition can be

1Calculated on a (200x200) grid in (m, v) space where
each point is computed using finite differences (δ=10−6)
and where γ is calculated using quadrature (Npts=1000).
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abstracted as a less stringent sufficient condition for
convergence, but it is difficult to formalize it in a com-
pact and crisp manner, and we have therefore opted
for the global conditions above.

One can easily adjust the FP algorithm to detect vio-
lations of these conditions and use a modified update.
For condition 1, our implementation replaces γi with
0 whenever it is negative thus maintaining the PSD
condition. For violations of condition 2, one could re-
sort to standard gradient update whenever this occurs,
for example in the case illustrated for GLM. However,
our experimental comparison suggests that FP is sig-
nificantly faster than standard gradients and therefore
this will likely yield an inferior performance.

3.2 Discussion: FP and Gradient Search

We next show that the FP method is closely related
to gradient search with a fixed step size, giving two
such interpretations. For the first, recall the relation
between the gradient and T () expressed in (9) and
rewrite T () and (9) in terms of the precision matrix
Q = V −1 so that Q is updated to T (Q). We have

∂VLB

∂Q−1
=

1

2
(Q− T (Q)) (15)

T (Q) = Q− 2
∂VLB

∂Q−1
(16)

As (16) shows, T (Q) takes a descent step w.r.t. the
gradient of the inverse instead of an ascent step w.r.t.
standard gradient. Thus the FP method can be seen as
an unusual gradient method with a specific step size.

The second observation (first pointed out by an anony-
mous reviewer) is that the FP update is a natural
gradient update with step size 1. Natural gradients
(Amari & Nagaoka, 2000) adapt to the geometry of
the optimized function and have been demonstrated to
converge faster than standard gradients in some cases.
The natural gradient is a result of pre-multiplying the
standard gradient by the inverse of the Fisher infor-
mation matrix I. Recall that exponential family dis-
tributions can be alternatively described using their
natural parameter θ or mean parameter η. As shown
by (Sato, 2001; Hensman et al., 2012; Hoffman et al.,
2013) the natural gradient with respect to θ can be
derived using standard gradients with respect to η. In
particular, using ∂N to denote the natural gradient, we
have ∂Nf

∂θ = I−1 ∂f∂θ = ∂f
∂η . The corresponding natural

gradient update with step size 1 is θnew ← θold + ∂f
∂η .

In our case, θ = (r, S) = (V −1m, 12V
−1) and η =

(h,H) = (m,−(V + mmT )) and the update for S
yields 1

2V
−1 = 1

2 (Σ−1 +
∑
i γi(vqi)Di) which is iden-

tical to the FP update. The supplementary material

reviews these facts, and shows in addition that the
analysis applies whenever q(w) and p(w) are in the
same exponential family and a “FP-like” update can
be derived as a natural gradient with step size 1. This
also holds for the natural gradient of r which yields a
corresponding FP update for m.

It is known (Hoffman et al., 2013; Sato, 2001) that in
some cases (exponential family likelihoods with conju-
gate priors and conjugate complete conditionals) size 1
natural gradients are equivalent to coordinate ascent
optimization and they therefore converge. However,
to our knowledge no existing prior analysis implies the
convergence of the FP update as proved above. Specif-
ically, the conditions required by (Hoffman et al., 2013;
Sato, 2001) do not hold for the extended LGM. More-
over, exploratory experiments (provided in the supple-
mentary material) show that applying the same type
of “FP-like” update to m is not generally stable and
can converge to an inferior local maximum, illustrat-
ing that no such general conditions hold. Therefore,
our analysis can be seen to identify specific conditions
under which size 1 natural gradients lead to conver-
gence. It would be interesting to explore more general
conditions under which convergence holds.

4 EXPERIMENTS

To show wide applicability, we evaluate the FP method
across several probabilistic models and likelihood func-
tions. In particular, we evaluate FP on GLM, GP,
and sparse GP. We compare the performance of FP to
the gradient based optimization of Challis & Barber
(2013) which we denote below by GRAD. Since we are
mainly concerned with the optimization and its speed,
the criterion in our comparison is the value of the VLB
obtained by the methods as a function of time.

Our experiments include the Poisson likelihood which
satisfies Conditions 1 and 2a, the Laplace and logistic
likelihoods which satisfy Condition 1 but not 2, and
the Student’s t likelihood which violates both condi-
tions. In the latter case, we modify the implemen-
tation so that whenever Condition 1 is violated, i.e.,
γi < 0, it is set to zero. This heuristic ensures the
positive-definiteness of the variational covariance for
all fixed point iterations. Thus we test if convergence
holds even when the conditions are not satisfied.

For all experiments we used the vgai package (Challis
& Barber, 2011) that implements the GRAD method
(Challis & Barber, 2013). GRAD optimizes the mean
and Cholesky decomposition of the covariance jointly
with L-BFGS. To facilitate as close a comparison as
possible, the implementation of the fixed point meth-
ods uses vgai as well but replaces the optimization
function call with the corresponding updates. The op-
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Figure 2: Evaluation for GLM showing objective function values with respect to training time. Numbers in
parentheses in title refer to number of samples and dimensions of dataset. Legend for plots: GRAD (—), FPb
(—). FPi (- -),

timization parameters for all algorithms were set to
the same values where applicable (see supplementary
material). Our experiments include two variants of
the FP method. The first, as in the analysis, alter-
nates between optimizing m and V where m is op-
timized using Newton’s method and V is optimized
with FP updates. This was the method recommended
by Sheth et al. (2015). We have found, however, that
complete optimization of m during the early iterations
can be expensive, and have therefore implemented a
second variant, closer to the simultaneous optimiza-
tion of (m, V ) performed in GRAD. In particular, the
algorithm alternates between taking one gradient step
for m using Newton’s method, and one fixed-point up-
date T (V ). When m has converged we get fixed point
iterations on V and similarly if V has converged we

get second-order optimization on m. To distinguish
the methods we refer to them below as FPbatch (FPb)
and FPincremental (FPi).

In our experiments we have observed the cycling be-
havior suggested by the analysis in intermediate it-
erations of FPb (see supplementary material). Note,
however, that even if this occurs, once m is updated in
the next iteration the fixed point update for V is able
to exit this condition. Empirically, in all our experi-
ments FPb and FPi do approach the optimal VLB.

The supplementary material includes a list of all
datasets used in the experiments. Briefly, we selected
medium size datasets to start with and added large
ones to demonstrate performance in GLM. We used
Z-score normalization for all features in all datasets.
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Figure 3: Evaluation for GP. See Figure 2 for description and legend.

The experimental setting is as follows. For GLM,
Σ = 0.1I in all cases except flares where Σ = 0.001I.
For GP and sparse GP, we use a zero mean prior and
Σ is the corresponding kernel matrix, where we use
the Gaussian RBF kernel with length scale and scale
factor estimated from 200 randomly chosen samples
(using the GPML toolbox (Rasmussen & Nickisch,
2013)). The variance of the Laplace likelihood was
also estimated in this way. The logistic and Poisson
likelihoods do not have parameters. The parameters
of the Student’s t likelihood were fixed to ν = 3 and
σ2 = 1

3 . Since our focus is on the optimization pro-
cedure, hyperparameters remain fixed during the ex-
periments and equal across the algorithms. Datasets
for the GP experiment were sub-sampled to 500 sam-
ples. The inducing set for the sparse GP experiment
was 100 samples randomly chosen and fixed across al-
gorithms. The initial conditions for the optimization

were set to m = 0 and V = I, except in the case
of count data (where the log link function is sensitive
w.r.t. numerical stability) where V = 0.1I.

Note that we test several probabilistic models and
several likelihoods under the same algorithmic setup
for FP. This provides a robust evaluation of the FP
method showing that it works well across all these
cases without specific adjustment for each case.

Figure 2 shows results of experiments with GLM across
classification, count regression and robust regression.
The plots show a significant advantage of FPi in all
cases, with GRAD reducing VLB well initially but
slowing considerably thereafter in many cases. Pre-
liminary experiments with smaller datasets (see sup-
plementary material) showed the FP was competitive
with GRAD on the GLM model but did not show a sig-
nificant difference. This shows that the advantage of

767



A Fixed-Point Operator for Variational Inference in LGM

0 500 1000 1500
2

3

4

5

6

7

8

9

10

11
x 10

4

CPU Time (sec)

O
b

je
c
ti

v
e
 F

u
n

c
ti

o
n

 V
a
lu

e
Sparse GP−Laplace on cpusmall (100, 8192, 12)

0 50 100 150 200 250 300 350 400 450 500
−2

0

2

4

6

8

10
x 10

4

CPU Time (sec)

O
b

je
c
ti

v
e
 F

u
n

c
ti

o
n

 V
a
lu

e

Sparse GP−Laplace on spacega (100, 3106, 6)

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
2.35

2.4

2.45

2.5
x 10

5

CPU Time (sec)

O
bj

ec
tiv

e 
F

un
ct

io
n 

V
al

ue

Sparse GP−Laplace on cahousing (100, 20640, 8)

Figure 4: Evaluation for sparse GP with Laplace likelihood. See Figure 2 for legend.
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Figure 5: Evaluation for GP with (non-log-concave) Student’s t likelihood. See Figure 2 for legend.

the FP method is more pronounced for larger datasets.

Figure 3 shows results of experiments with GP on the
same likelihoods where both FP methods have a signif-
icant advantage over GRAD and where the differences
are more dramatic than in GLM.

The FP method for the sparse GP model has already
been evaluated with Poisson, logistic, and ordinal like-
lihoods (Sheth et al., 2015). Figure 4 complements this
and shows the results of experiments with sparse GP
for the Laplace likelihood. We observe the same gen-
eral behavior as in the full GP model with FPi being
the fastest and GRAD and FPb being slower.

Figure 5 shows results of experiments with GP with
the Student’s t likelihood. In this case both conditions
1 and 2 from our analysis do not hold. Nonetheless,
the methods behave quite similarly in this case as well.

5 CONCLUSIONS

The paper shows that the FP method is applicable in
the extended LGM model, provides an analysis that
establishes the convergences of the FP method and
provides an extensive experimental evaluation demon-
strating that the FP method is applicable across GP,
sparse GP, and GLM, that it converges for various like-
lihood functions, and that it significantly outperforms

gradient based optimization in all these models.

We conclude with two directions for future work. As
mentioned above, this paper focused on the case where
p(f |w) is linear Gaussian but the same approach is ap-
plicable as long as q(fi) and quantities relative to this
distribution are efficiently computable. Probabilistic
matrix factorization (Salakhutdinov & Mnih, 2008) is
a LGM where p(f |w) is more complex and where vari-
ational solutions have been investigated (Lim & Teh,
2007; Seeger & Bouchard, 2012). It would be inter-
esting to develop efficient FP updates for this model.
Along a different dimension, recent work on variational
inference has demonstrated the utility of stochastic
gradient optimization (SG), with or without natural
gradients, for scalability to very large datasets. SG
typically requires careful control of decreasing learn-
ing rates, whereas the FP method was shown to be re-
lated to gradient step with a fixed step size. It would
be interesting to develop algorithms that combine the
benefits of both methods, by incorporating FP updates
within SG.
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