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1 Properties of the Pólya-Gamma
Distribution

We first provide the definition of the Pólya-Gamma
(PG) distribution and summarize several of its key
properties (Polson et al., 2013).

Definition 1. A random variable X has a Pólya-
Gamma distribution with parameters b > 0 and c ∈ R,
denoted as X ∼ PG(b, c), if
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1

2π2

∞∑
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gk
(k − 1/2)2 + c2/(4π2)

where gk ∼ Gamma(b, 1) are independent gamma ran-
dom variables.

The PG distribution has a closed form mean, i.e.,
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Binomial likelihoods parameterized by log-odds can be
represented as (Polson et al., 2013),[
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where κ = v − u

2 and ω ∼ PG (u, 0). The conditional
distribution is (Polson et al., 2013)

p(ω|ψ) =
exp(−ωψ2/2) p(ω)∫∞

0
exp(−ωψ2/2) p(ω) dω

(A3)

satisfies the PG distribution and is parameterized as
ω|ψ ∼ PG (b, ψ).

2 Derivation of Inner EM Algorithm

For clarity, we focus on one-layer model and omit prior
and bias terms. We also set the number of samples
K = 1 for notational simplicity.

Starting from (3) of the main text, we first need to
compute the expected complete-data log likelihood
Q̂ in the inner expectation-maximization (EM) algo-
rithm as
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where
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(A7) holds because ωn,i|hn,i,v,W (t) ∼ PG(un,i, ψ
(t)
n,i).

The derivation for (A8) comes from Figueiredo (2003).

Reordering terms in (A5) gives Q̂(W |W (t)) the follow-
ing form:
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where
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This now finishes derivations of all intermediate vari-
ables in the E step.

Since (A9) is a quadratic function of Wi·, we can take
the gradient with respect to W and set it to be zero,
to obtain the following M step update: ∀ i = 1, . . . , J0[

W
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3 Online MCEM Algorithm

Suppose that the mini-batch size is Nmini and the step-
size for the mth mini-batch is set to γm = (m+ 2)−α,
as suggested in Liang and Klein (2009). Then, ∀i =
1, . . . , J0, we update the sufficient statistics as

κ̃i,m = (1− γm)κ̃i,m−1 + γm

Nmini∑
n=1

κ̄n,i,m

X̃i,m = (1− γm)X̃i,m−1

+ γm

Nmini∑
n=1

ω̄n,i,m h̄n,m (h̄n,m)T (A11)

η̃i,m = (1− γm)η̃i,m−1 + γm

Nmini∑
n=1

κ̄n,i,m h̄n,m

Subsequently, we summarize the online MCEM algo-
rithm for the MAP estimate in Algorithm 1. The ML
version can be derived accordingly.

Algorithm 1 Online MCEM algorithm for MAP es-
timate.

Input: Mini-batch size Nmini, dataset size N , learn-
ing rate α, initial parameters θ(0), m = 0.
repeat

for k = 1 to N/Nmini do
Read the kth mini-batch data vk.
Set the stepsize γm = (m+ 2)−α.
Compute the Q function as shown in (A9) with
vk.
Update the expected sufficient statistics shown
in (A11).
Update θ by the M step shown in (A10).
m← m+ 1.

end for
until Convergence
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Figure A1: The value of Q̃ as a function of running
time for different optimization schemes.

4 Evaluation Details for Perplexities

Following Zhou et al. (2012); Gan et al. (2015), we
split the test documents by a random 80/20% parti-
tion: 80% of the words are used to infer the document-
specific local variables and the remaining 20% of the
words are held out to compute the predictive perplex-
ity. We denote the hold-out documents as a matrix
Y ∈ ZP×N≥0 where P is the vocabulary size and N is
the document size. Consequently, the distribution of
the count vector yn can be modelled as the following
Replicated Softmax Model (RSM):

yn ∼ Multi(Dn ; βn)

βp,n =
exp(Wp·hn + cp)∑P

p′=1 exp(Wp′·hn + cp′)

where yn is the nth document in Y and Dn =∑P
p=1 Yp,n is the number of words in document n,

{W, b, c} are the learned parameters from the train-
ing document. The test perplexity is then computed
as Gan et al. (2015):

exp
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− 1
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N∑
n=1

Yp,n log βp,n
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where y·· =
∑P
p=1

∑N
n=1 Yp,n.

5 Additional Results

We recreated Figure 1 of the main text with running
time in log-scale. Since Q̃ is a concave function, all
methods eventually converge to the same final max-
ima, as shown in Figure A1. A bias tern is added
to the running time to ensure an appropriate starting
point in the log-scale.
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