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Abstract

Belief networks are commonly used gener-
ative models of data, but require expen-
sive posterior estimation to train and test
the model. Learning typically proceeds by
posterior sampling, variational approxima-
tions, or recognition networks, combined
with stochastic optimization. We propose
using an online Monte Carlo expectation-
maximization (MCEM) algorithm to learn
the maximum a posteriori (MAP) estimator
of the generative model or optimize the vari-
ational lower bound of a recognition network.
The E-step in this algorithm requires pos-
terior samples, which are already generated
in current learning schema. For the M-step,
we augment with Pólya-Gamma (PG) ran-
dom variables to give an analytic updating
scheme. We show relationships to standard
learning approaches by deriving stochastic
gradient ascent in the MCEM framework.
We apply the proposed methods to both
binary and count data. Experimental re-
sults show that MCEM improves the con-
vergence speed and often improves hold-out
performance over existing learning methods.
Our approach is readily generalized to other
recognition networks.

1 Introduction

The sigmoid belief network (SBN) (Neal, 1992) has
drawn increasing attention in recent years as an essen-
tial component of deep belief networks (DBN) (Hin-
ton et al., 2006) and for its use in recognition net-
works (Mnih and Gregor, 2014). In contrast to undi-
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rected graphical models, such as the restricted Boltz-
mann machine (RBM), the SBN is a directed graphi-
cal model, and efficiently generates data in a top-down
manner. Unfortunately, the conditional distribution
on the latent variables in the SBN lacks a closed form
(Pearl, 1988; Hinton, 2010). This results in a compu-
tationally expensive inference procedures, so training
an SBN is a difficult task (Gan et al., 2015b).

In Neal (1992), a gradient-ascent algorithm was pro-
posed to learn the SBN parameters. The gradient
was estimated via Monte Carlo integration. Alterna-
tively, Saul et al. (1996) proposed a mean-field vari-
ational scheme for the hidden variables to approxi-
mately learn the model. These methods are not scal-
able to large datasets (Neal, 1992) nor easy to derive
and implement (Saul et al., 1996). Recently, Mnih
and Gregor (2014) proposed a neural variational in-
ference and learning (NVIL) algorithm, which devel-
oped a parametric recognition model that transforms
observed data into a variational posterior approxima-
tion. NVIL admits fast sampling of the hidden vari-
ables, and proposes several techniques for variance re-
duction on noisy gradient estimates. Learning pro-
ceeds through stochastic gradient descent (SGD). Gan
et al. (2015b) proposed a new Bayesian framework for
SBN inference, with shrinkage priors on the weight
parameters. Inference proceeds by Gibbs sampling or
variational Bayesian (VB) techniques, but these meth-
ods suffer from the same computational difficulties as
traditional learning methods.

In this paper we develop an MCEM algorithm (Wei
and Tanner, 1990) to learn the parameters of the
SBN. MCEM approximates the E-step of the classi-
cal expectation-maximization (EM) algorithm (Demp-
ster et al., 1977) by Monte Carlo samples of the miss-
ing data, and has been shown to achieve good em-
pirical performance (Chan and Ledolter, 1995; Levine
and Casella, 2001). We introduce auxiliary Pólya-
Gamma variables (Polson et al., 2013) as additional
missing data to efficiently optimize the subsequent
M-step. Given the auxiliary variables, the expected
log complete-data log-likelihood, i.e., the Q function
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(Dempster et al., 1977), has a block-quadratic struc-
ture, and is efficiently updated. This quadratic struc-
ture was previously observed in logistic regression
models (Polson and Scott, 2011; Scott and Sun, 2013).

Compared with previous learning methods, our
MCEM algorithm has the following advantages: (i)
Unlike mean-field VB approaches (Gan et al., 2015b),
our approach optimizes the true objective function.
This allows the model to more accurately capture
dependencies between hidden variables and give bet-
ter hold-out performance. (ii) Unlike gradient-based
approaches (Neal, 1992; Mnih and Gregor, 2014),
MCEM does not require step size tuning and has an-
alytical updates for the M-step. Empirically, MCEM
converges to a local optima faster than SGD. (iii) The
analytic updates can readily admit many priors on the
weights through variable augmentation.

Furthermore, we propose Rec-MCEM to combine
NVIL and MCEM. Rec-MCEM utilizes the efficient
samples from NVIL and replaces the gradient ascent
step on the generative model with an EM algorithm to
estimate model parameters. Although EM has higher
per-iteration computational cost than gradient ascent,
each iteration is more effective. We empirically show
faster convergence and improved local maxima.

2 Sigmoid Belief Network

The SBN has been successfully employed as a building
block in deep belief networks and in applications with
binary (Neal, 1992), counts (Gan et al., 2015a; Mnih
and Gregor, 2014), and real-valued (Frey, 1997) data.
In this paper, we focus on binary and count data.

Notationally, we refer to vectors in bold lower-case let-
ters (i.e., x), and matrices as upper-case letters (i.e.,
W ). Wi· represents the ith row of the matrix W .

For an SBN, the probabilistic relationship between ad-
jacent layers has a bi-partite structure1. For an SBN
with M nodes in the visible layer and Jl nodes in the
lth hidden layer, where l = 1, . . . , L, and L is the num-
ber of hidden layers, the generative model is

p(h(L)|b) =

JL∏

i=1

[
exp(bi)

]h(L)
i /

[
1 + exp(bi)

]

p(h(l)|h(l+1)) =

Jl∏

i=1

[
exp(ψ

(l+1)
i )

]h(l)
i /
[
1 + exp(ψ

(l+1)
i )

]

p(v|h(1)) =

M∏

i=1

[
exp(ψ

(1)
i )
]vi
/
[
1 + exp(ψ

(1)
i )
]ui

(1)

1This does not hold for the autoregressive network in
Gregor et al. (2014); Gan et al. (2015b), which is beyond
the scope of this paper.

where ψ
(l)
i = W

(l)
i· h

(l) + c
(l)
i , h

(l)
i ∈ {0, 1} denotes the

ith binary unit in the lth hidden layer, vi ∈ Z+ ∪ {0}
is the ith input in the visible layer, W (l) ∈ RJ(l−1)×Jl ,
∀ l = 1, . . . , L, represents the weight matrix between
the (l − 1)th layer and the lth layer. We set M = J0
for notational simplicity. b ∈ RJL is the bias in the
top layer, and c(l) ∈ RJl , ∀l = 0, . . . , L−1 corresponds
to the biases in the remaining layers.

The likelihood, p(v|h(1)), in (1) can be adapted to dif-
ferent types of data (Scott and Sun, 2013): for binary
data, a Bernoulli likelihood is employed, thus ui = 1;
for count data, a negative binomial (NB) likelihood
is employed, thus ui = vi + r, where r is the disper-
sion parameter of the NB distribution. The NB dis-
tribution is equivalent to a gamma-Poisson distribu-
tion (Zhou et al., 2012), a generalization of the Pois-
son distribution that models over-dispersed data by
separately controlling both the mean and variance of
counts.

Let θ = {W (l), b, c(l)}, ∀ l = 1, . . . , L be the parame-
ters we aim to learn given the observed data {vn}Nn=1,
our goal is to derive an MAP estimator2,

θ̂MAP = arg max
θ

∑N
n=1 ln p

(
θ|vn

)

= arg max
θ

∑N
n=1 ln

∑
h p
(
θ,h|vn

)
.

Marginalizing out h from p
(
θ,h|vn

)
has exponential

complexity in the tree-width, max` J`. Instead, we
propose the MCEM algorithm for MAP estimation.

3 Monte Carlo Expectation
Maximization

The EM algorithm is a well-known method for MAP
estimation. We start by providing the standard up-
date rule (Dempster et al., 1977). For clarity, we omit
the bias terms, and we begin by examining only a sin-
gle hidden layer. We drop the layer superscript for
simplicity. We initially ignore prior terms.

E-step : Q(W |W (t)) =

N∑

n=1

Ep(hn|vn,W (t))[log p(vn,hn|W )] (2a)

M-step : W (t+1) = arg max
W
Q(W |W (t)). (2b)

Evaluating the expectation in (2a) is exponentially ex-
pensive, O(NJ02J1), so this is infeasible for all but the
smallest models. An alternative approach to this prob-
lem is to use the MCEM framework, where the E-step

2The maximum-likelihood (ML) estimator can be ob-
tained as a special case, by letting the prior be constant
over the domain of the parameters, θ.
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is approximated by collecting K posterior samples per

data point from h
(k)
n ∼ p(hn|vn,W (t)). The M-step is

then equivalent to

W (t+1) = arg max
W

N∑

n=1

Qn(W |W (t)) (3a)

with

Qn(W |W (t)) =
1

K

K∑

k=1

[vTnWh(k)
n −

∑

m

log
(
1 + exp([Wh(k)

n ]m)
)
], (3b)

where [x]m denotes the mth element of x.

Note that (3b) does not have an analytic solution, but
is a concave function. We can use standard gradient
ascent to maximize Q̃(W |W (t)) =

∑N
n=1Qn(W |W (t)),

with gradients

∇WQn(W |W (t)) =
1

K

K∑

k=1

(
vn − σ(Wh(k)

n )
)

(h(k)
n )T ,

(4)
where σ(x) = 1/(1 + exp(−x)) is the sigmoid func-
tion. We show in Section 3.1 that we can easily relate
this view of MCEM to the gradient ascent approach
of Neal (1992). In Section 3.2 we demonstrate that
augmenting Q with Pólya-Gamma (PG) random vari-
ables leads to an analytic updating scheme that vastly
improves the convergence speed of the M-step. We
empirically demonstrate that the PG is a better op-
timization scheme compared to gradient ascent, and
roughly equivalent to the spectral ascent approach of
Carlson et al. (2015a).

3.1 Connection between MCEM and SGD

SGD has been frequently employed to learn an SBN
(Neal, 1992; Mnih and Gregor, 2014; Saul et al.,
1996)3. This gradient ascent procedure requires

∇ log p(vn|W ) = Ep(hn|vn,W )

[
(vn − σ(Whn))hTn

]
.

(5)
Neal (1992) proposed to estimate this via Monte Carlo
integration. Given K posterior samples per data point

from h
(k)
n ∼ p(hn|vn,W (t)), (5) is approximated as

∇ log p(vn|W ) ' 1

K

K∑

k=1

(
vn − σ(Wh(k)

n )
)

(h(k)
n )T .

(6)
Note that (4) and (6) are equivalent for the same sam-

ples, h
(k)
n . Thus, we can view the gradient ascent

3Saul et al. (1996) and Mnih and Gregor (2014) use
a variational distribution on the posterior, but sample to
estimate the gradient over W .

learning scheme for SBNs is the MCEM algorithm with
a single gradient update on the M-step.

Drawing posterior samples from h
(k)
n ∼ p(hn|vn,W (t))

is computationally expensive, O(NKJ0J
2
1 ) via Gibbs

sampling. The gradient formulation and update is
O(NKJ0J1), or ' J1 times faster. This motivates
examining using multiple gradient steps, or other op-
timization procedures that more effectively optimize
the Q function.

3.2 Augmenting Pólya-Gamma Random
Variables

We develop an auxiliary-variable scheme to optimize
the M-step. The idea is that by augmenting the Q̃
function, we can use an inner loop of a distinct EM
algorithm to optimize Q̃.

We begin by introducing the following identity (Polson
et al., 2013)

[
exp(ψ)

]v
[
1 + exp(ψ)

]u = 2−u exp(κψ)

∫ ∞

0

exp(−ωψ
2

2
)p(ω) dω, (7)

where κ = v − u
2 and ω ∼ PG (u, 0). In our model,

ψ represents an entry of Wh(k)
n . The identity in (7)

has been successfully employed to construct data aug-
mentation schemes for Gibbs samplers (Polson et al.,
2013), variational Bayes (Gan et al., 2015b), and EM
algorithms (Scott and Sun, 2013).

The key property of (7) is that ψ has a Gaussian distri-
bution conditioned on ω. Gaussian distributions nat-
urally lend themselves to learning linear models. In
our SBN model, we define auxiliary random variable
matrix, ω ∈ RN×J0 .

Often, we would like to obtain the MAP solution, or
a penalized likelihood solution. We choose to use a
Laplace prior on W to match Gan et al. (2015b). This

is defined as p(Wi,j | λ) =
√
λ
2 exp(−

√
λWi,j). The

Laplace prior is decomposed into a Gaussian scale-
mixture (Figueiredo, 2003; Polson and Scott, 2011):

Wi,j |τi,j ∼ N
(
Wi,j | 0, τi,j

)
,

τi,j |λ ∼ λ

2
exp

(
− λτi,j

2

)
,

Both the PG and Laplace augmentation schemes have
a closed-form representation on the conditional pos-
terior expectation of the augmented variables, i.e.,
E[ωn,i|−] and E[τ−1i,Jl |−], where E[x|−] represents the
conditional expectation of random variable x given all
the other variables. Consequently, the E-step in this
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inner EM algorithm is analytic. The corresponding Q
function is quadratic with respect to parameters, θ.

We provide the detailed derivation and forms for the
intermediate variables in the Supplemental Materials,
and summarize this inner EM algorithm as follows.

E-step: Compute

ω̂
(t+1)
n,i =E[ωn,i|−] =

un,i

2ψ
(t)
n,i

tanh

(
ψ
(t)
n,i

2

)
,

τ̂
(t+1)
i,J0

=E[τ−1i,J0 |−] = λ /
∣∣∣W (t)

i,J0

∣∣∣ .

M-step: Update W as

[
W

(t+1)
i·

]T
=
[
X

(t+1)
i + Φ

(t+1)
i

]−1
η
(t)
i ,

where X
(t+1)
i =

∑N
n=1 ω̂

(t+1)
n,i hn h

T
n , η

(t)
i =

∑N
n=1 κ

(t)
n,i hn, and Φ

(t+1)
i is a diagonal matrix with

elements
(
τ̂
(t+1)
i,1 , . . . , τ̂

(t+1)
i,J0

)
.

This M-step admits a closed-form solution. In con-
trast, gradient ascent approaches must tune the step
size. In terms of computational complexity, the update
here isO(NKJ0J1+J0J

3
1 ) while a gradient update is is

O(NKJ0J1). When J0J
3
1 < NKJ0J1, this M-update

will add only a small amount of overhead compared to
gradient estimation.

3.3 Empirical Convergence Comparison

Both gradient ascent and PG are guaranteed to con-
verge to the global optimum because −Q̃ is convex.
As well, on this objective function, both algorithms
have an O(1/R) convergence rate, with R being the
number of iterations (Boyd and Vandenberghe, 2004)4.
Although the PG procedure adds an additional com-
putational cost, it empirically improves optimization.

To provide evidence that the PG procedure is an ef-
fective optimization procedure that captures second-
order information, we present empirical results on tim-
ing in Figure 1 for a simple SBN with J0 = 784, J1 =
50, and N = 300 on the MNIST dataset (Salakhut-
dinov and Murray, 2008). We show approaches us-
ing gradient ascent, spectral ascent (Carlson et al.,
2015a), and our PG-update scheme, given the same
fixed hidden variable, h. The step-sizes for gradi-
ent ascent and spectral ascent are both set to 4/(NJ),
which gives theoretically optimal worst-case conver-
gence, as shown in Carlson et al. (2016). For further
comparison, we add the curve of gradient ascent with

4The PG is a Euclidean majorization function on −Q
(Polson et al., 2013). The PG procedure is a majorization-
minimization with a Euclidean norm, a standard case dis-
cussed in Section 9.4 of Boyd and Vandenberghe (2004).

Time (Seconds)
0 0.2 0.4 0.6 0.8 1

Q̃

-1400

-1200

-1000

-800

-600

-400

-200

0

Gradient Ascent

Gradient Ascent Tuned

Spectral Ascent

Pólya-Gamma

Figure 1: The value of Q̃ as a function of running time
for different optimization schemes.

a hand-tuned step-size. This tuned step-size improves
performance, but the optimal setting changes with dif-
ferent network shapes and data, and is not feasible in
practice. To emphasize the difference in the methods,
we mark the first iteration for each method. While
the PG update takes considerably longer, its first iter-
ation yields much higher improvement than the corre-
sponding first iteration of gradient ascent or spectral
ascent. Both spectral ascent and the PG offer simi-
lar performance per time step, and both offer signif-
icant improvements over gradient descent. However,
the PG method does not require step-size tuning. We
also show in the Supplemental Materials that when
given enough time, all methods achieve the same final
maxima, which is consistent with the fact that Q̃ is a
concave function.

The improved performance of PG over gradient ascent
is supported by second-order information from the PG
augmentation, while SGD is a first-order method. The
trade-off between computation and efficacy of itera-
tions is explored by Scott and Sun (2013). Comparing
PG with spectral ascent is difficult, because spectral
ascent is based on a non-Euclidean first order method
(Carlson et al., 2015a).

There is a trade-off between how many iterations we
use to optimize the Q function versus how often we
refresh the Gibbs sampler. We discuss this in Sec-
tion 5. We reiterate that a major advantage of the
MCEM framework is that the SBN now has a sub-
problem of a concave maximization problem. While
we advocate for the PG or spectral assent approach,
there are numerous convex minimization algorithms
that can be straightforwardly applied. Furthermore,
we note that approximations to the spectral ascent
steps exist (Carlson et al., 2015b), and it may be pos-
sible to speed the PG steps.
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3.4 Online MCEM

For large N , the presented batch MCEM algorithm
becomes computationally intractable. We propose
adapting Online EM (Liang and Klein, 2009) to derive
an Online MCEM algorithm to handle large datasets.

The online EM algorithm stores sufficient statistics,
and updates them via interpolation when new data
arrives. This scheme can be described as follows. Let
Nmini be the size of the minibatch. After sampling
the mth minibatch, as in Liang and Klein (2009),
each sufficient statistic is updated with φm = (1 −
γm)φm−1 + γmφ̂m, where φ̂m are the sufficient statis-
tics estimated on this minibatch. We set the step-size
for the mth mini-batch to γm = (m + 2)−α, as sug-
gested by Liang and Klein (2009) to guarantee con-
vergence. With these settings, we derive an online
MCEM algorithm for MAP estimates. Details are
provided in the Supplemental Materials.

4 The Rec-MCEM Algorithm

Gibbs sampling hidden units in an SBN is computa-
tionally expensive and does not scale to large datasets
or networks. A recent, popular approach to addressing
this problem is to use a recognition model, or a varia-
tional auto-encoder, for inference in a directed graph-
ical model (Kingma and Welling, 2013). The NVIL
algorithm (Mnih and Gregor, 2014) extends the varia-
tional auto-encoder to discrete variables, and uses the
SBN for the generative model. NVIL also introduces
variance reduction techniques to obtain more stable
gradients.

As in standard variational approaches (Saul et al.,
1996; Gan et al., 2015b), the true posterior distribu-
tion p(hn|vn,W ) is replaced by a variational distri-

bution q(hn|vn,W ) =
∏J1
j=1 Bern(hnj |ηnj). In tradi-

tional variational approaches, ηn is learned indepen-
dently for each data point, which is the same compu-
tational complexity as the Gibbs sampler. The key
idea of variational autoencoder is to use a parametric,
recognition model to estimate ηn. A simple example is
the mapping ηn = σ(Avn). This creates a variational
distribution that is quick to estimate and sample from,
but adds additional variables that need to be estimated
in the learning phase.

NVIL uses stochastic gradient ascent to learn the

model. This approach draws samples, h
(k)
n ∼

q(hn|vn,W ), to approximate the gradients on the gen-
erative model (SBN), and the recognition model pa-
rameters. The generative model gradient is the same
as (6), where samples come from the variational distri-
bution. This sampling procedure to estimate gradients

Algorithm 1 Online Rec-MCEM algorithm for MAP
estimation.

Input: initialized parameters A(0) and θ(0), total
number of mini-batches nbatch.
repeat

for k = 1 to nbatch do
Read the kth mini-batch data,

[v(k−1)∗Nmini+1, . . . ,vk∗Nmini ].
Sample hidden units from the recognition

model, [h(k−1)∗Nmini+1, . . . ,hk∗Nmini
]

Update parameters of recognition model, A, by
gradient ascent with using variance reduction
techniques in (Mnih and Gregor, 2014).

Update parameters of generative model, θ, by
MCEM and update its sufficient statistics.

end for
until Convergence.

is identical to both Saul et al. (1996) and Mnih and
Gregor (2014).

Replacing the posterior distribution in the EM algo-
rithm with a variational distribution is well-established
(i.e., Variational EM (Beal and Ghahramani, 2003) ).
We can construct a Variational MCEM algorithm and
perform improved optimization on the M-step as in
Section 3. Because sampling is significantly cheaper
from the recognition model, O(NJ1(J0 + K)), us-
ing the PG optimization scheme may non-trivially
increase the per-iteration cost. However, as demon-
strated in Figure 1, PG steps improves convergence
of the M-step over gradient ascent, despite the slower
per-iteration time. This is supported empirically in
Section 5. Improving the optimization will improve
the convergence of the algorithm.

The MCEM approach does not address recognition
model learning, which is updated as in Mnih and Gre-
gor (2014) by using variance reduction techniques to
improve gradient estimation. We refer to our new
method as Recognition-MCEM (Rec-MCEM), to com-
bine the advantages of both NVIL and MCEM algo-
rithms: fast sampling as inherited in the recognition
model of NVIL algorithm and improved convergence
of MCEM algorithm.

The outline of the online Rec-MCEM algorithm is pro-
vided in Algorithm 1. In contrast to NVIL, Rec-
MCEM learns the parameters of the generative model
via the EM algorithm introduced in Section 3. This
has been shown in Section 3 to improve Q func-
tion convergence. We note that the extension of the
MCEM algorithm to the recognition model is very ef-
ficient to implement, because the sampling procedure
already exists in the current recognition model learn-
ing methods. This implies that MCEM is a flexible
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Table 1: Average test log-likelihood computed via AIS
(in nats), on two datasets. “Dim” represents the num-
ber of units in each hidden layer.

Method Dim MNIST OCR

SGD

200

-118.85 -49.67
Gibbs -111.79 -49.45
VB -106.37 -45.20
NVIL -104.76 -40.35
MCEM-ML -99.08 -37.58
MCEM-MAP −98.88 −37.34

VB

200-200

-103.78 -43.43
MCEM-ML -98.90 -35.17
MCEM-MAP -98.37 −34.89
NVIL −95.15 -35.38

framework to combine with other methods, and is eas-
ily applied to other recognition models.

5 Experiments

We test our proposed MCEM and Rec-MCEM algo-
rithms on binary and count data. Both ML and MAP
versions are implemented. In their online variants,
we set the learning rate to α = 0.501, which is con-
sistent with Liang and Klein (2009); Scott and Sun
(2013), to guarantee convergence. We set the num-
ber of samples in the Monte Carlo E-step to K = 10,
which is observed to work well in our experiments. To
choose λ(l) in MCEM-MAP, we test over the grid:
{10−1, 10−2, 10−3, 10−4} with a validation set, and se-
lect the best one. Elements of θ are initialized with
N (0, 0.01), for both MCEM and Rec-MCEM. All code
is written in MATLAB and tested on a Linux machine
with 3.1GHz CPU and 8GB RAM.

We used different numbers of inner EM updates. The
results suggest that increasing the number from 1 does
not bring obvious improvement for the likelihood in
terms of time. Note that a single PG update is equiva-
lent to many GD updates. Therefore, we fix the num-
ber of inner EM updates to be 1. In this case, our
MCEM reduces to a generalized EM (GEM) algo-
rithm (McLachlan and Krishnan, 2008), since its M-
step, corresponding to the inner EM updates, is guar-
anteed to monotonically improve, rather than maxi-
mize the Q function.

5.1 Modeling Binary Images

Our benchmark tests use the two publicly available
datasets: MNIST and OCR. We implement SGD
(Neal, 1992) and NVIL (Mnih and Gregor, 2014),
and tuned their parameters for the best performance.
The performance metric used is the log-likelihood of
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4
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Figure 2: Variational lower bound as a function of time
on the MNIST dataset, for a 200-hidden node SBN.

the test set, i.e., log p(vtest | θ). Two approaches
are employed to approximate this log-likelihood: AIS
(Salakhutdinov and Murray, 2008; Grosse, 2014) and
the variational lower bound. AIS typically provides
a more accurate estimate but at a higher computa-
tional cost than the lower bound. To fairly compare
the learning models on the log-likelihood, we use AIS
to estimate the lower bound on the variational meth-
ods as well as the variational lower bound.

MNIST The MNIST dataset contains 60, 000 train-
ing and 10, 000 test images of size 28× 28. We trans-
form them into binary images using the same ap-
proach as (Salakhutdinov and Murray, 2008). From
Table 1, we observe that MCEM-ML and MCEM-
MAP give the best log-likelihood for a single hidden
layer. We note that a newly proposed algorithm, SSD
(Carlson et al., 2016) achieves a slightly higher log-
likelihood of −98.5. For a two-layer model, NVIL
achieves the best performance among all the methods.
We then test the performance of the Rec-MCEM intro-
duced in Section 4 by computing the variational lower
bound. Figure 2 shows the learning curves for NVIL
and Rec-MCEM-MAP. We observe that Rec-MCEM-
MAP converges faster than NVIL. This is consistent
with the analysis in Section 3.3, showing that PG up-
dates move to the optimum point faster than the gra-
dient ascent approach. These curves match the re-
sults in Table 2, which Rec-MCEM-MAP has an im-
proved test lower bound over NVIL. We note that
the two-layer models for Rec-MCEM and NVIL are
trained with ADAM (Kingma and Ba, 2015), which
empirically showed improved test performances on the
MNIST dataset.

We generated synthesized images with the two-layer
model with the parameters learned by MCEM-MAP.
This uses the same approach as Gan et al. (2015b),
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(a) (b) (c)

Figure 3: (a) Samples from training images; (b) Learned dictionary. (c) Synthesized images by MCEM-MAP
with λ = 0.01 (top) and λ = 1 (bottom). Dictionary sparsity for λ = {0.01, 1} is 0.669 and 0.037, respectively.

where label information is employed for training. As
depicted in Figure 3, most of the synthesized images
look similar to the training images. The dictionary
generated by setting λ = 1 is more sparse and spa-
tially localized than that for λ = 0.01, as expected.
Sparsity is defined here as the proportion of elements
of W (1) whose absolute values are greater than 10−9.
The synthetic digits generated with the sparse dictio-
nary have good visual quality. Since SBN is a directed
model, images in Figure 3(c) are generated more effi-
ciently than the RBM. It avoids the need to sample
visible and hidden units alternatively.

OCR The OCR dataset contains 42, 152 training
and 10, 000 test images of size 16 × 8. Table 1
shows that similar to the MNIST case, both MCEM
and NVIL outperform other methods. We observe
that MCEM-MAP outperforms NVIL on a two-layer
model. For Rec-MCEM, both ML and MAP variants
have the largest lower bound for the one-layer case,
as shown in Table 2. We show the learning curves in
Figure 4. Similar to the MNIST case, Rec-MCEM-ML
converges to a better optimum at a faster speed, NVIL
still has higher lower bound than Rec-MCEM in the
two-layer case.

5.2 Topic Modeling

We employ a negative binomial distribution with dis-
persion parameter r as the likelihood to model count
data. The two datasets used to benchmark our model
are 20 Newsgroups and Reuters Corpus Volume I
(RCV1-v2); this is the same as Srivastava et al. (2013);
Gan et al. (2015a). To compute the predictive per-
plexities on the test set, we follow the 80/20% split
described in Gan et al. (2015a) (details in the Sup-
plemental Materials). The results for Over-RSM and
DPFA-SBN are taken from Srivastava et al. (2013) and

Table 2: Average test variational lower bound (in nats)
on two datasets. “Dim” is the number of units in each
hidden layer.

Method Dim MNIST OCR

VB

200

-117.04 -47.70
NVIL -117.48 -43.65
Rec-MCEM-ML -116.70 -42.10
Rec-MCEM-MAP −116.58 −41.83

VB

200-200

-113.93 -45.98
Rec-MCEM-ML -106.54 -41.18
Rec-MCEM-MAP -106.42 -40.84
NVIL −105.50 −39.20
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Figure 4: Variational lower bound as a function of time
on the OCR dataset, for a 200 hidden nodes SBN.

Gan et al. (2015a), respectively. The results for NVIL
are from our implementation. The dispersion parame-
ter is tested at r = {0.1, 0.2, . . . , 1.0} over a validation
set and the best one is calculated on the test set. Since
RCV1-v2 is much larger than 20 Newsgroup, we use
the online MCEM algorithm, with a mini batch size
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Table 3: Five Nearest Neighbours from the word representation space learned by MCEM-MAP.

weapons god baseball images patients car clinton computer

weapon jesus pitching jpeg disease cars administration computers
guns christ season image treatment engine bush engineering
gun bible players formats cancer miles secretary science

armed christians teams gif medicine rear president dept
assault worship winning mov doctor honda senate operations

to 1, 000.

Table 4: Test perplexities for topic modeling. “Dim” is
the number of hidden units in a layer. “N/A” indicates
results were not available in corresponding references.

Dim 20 News Reuters

NVIL

128

1142 1260
Over-RSM 958 1060
Rec-MCEM-ML 927 1190
Rec-MCEM-MAP 916 1186
MCEM-ML 839 1031
MCEM-MAP 843 1023

DPFA-SBN 128-64-32 846 1143
DPFA-SBN 1024-512-256 N/A 964

Table 4 shows the test perplexities for different algo-
rithms. For both 20 Newsgroups and Reuters datasets,
MCEM-ML and MCEM-MAP outperforms other
methods with a single layer. Encouragingly, MCEM-
ML and MCEM-MAP achieve smaller perplexities
than DPFA-SBN, the state-of-the-art deep models for
topic modeling, given the same number of hidden
nodes in the bottom layer. With a large network with
dimension 1024-512-256, DPFA-SBN has the smallest
perplexity on the Reuters dataset. This implies that
adding more layers may improve the performance; we
leave this extension as future work. Moreover, we
notice that Rec-MCEM achieves smaller perplexities
than NVIL, which is consistent with what we observed
for a one-layer model in Section 5.1. The NVIL we im-
plemented does not perform identically to Mnih and
Gregor (2014), which may be explained by differences
in pre-processing schemes.

Figure 5 shows the learning curves for both NVIL and
Rec-MCEM-MAP. We notice that for the first few it-
erations, the perplexity of Rec-MCEM-MAP is much
higher than that of NVIL. After that, Rec-MCEM-
MAP converges at a faster speed and achieves smaller
perplexity than NVIL when the curves stabilize.

Following Larochelle and Lauly (2012), we compare
two words by calculating their Euclidean distance in
the representation space, i.e., ‖Wi· − Wj·‖2. Ta-
ble 3 shows the five nearest neighbors for eight specific
words from MCEM-MAP. All of the neighbours ap-
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Figure 5: Perplexity as a function of time on the 20
Newsgroups for a 128-hidden node SBN.

pear close in meaning, implying the algorithm learns
a reasonable representation.

6 Conclusion

We develop an MCEM algorithm for MAP estimation
in SBNs. The connection between MCEM and the
SGD formulation (Neal, 1992) is illustrated by pre-
senting SGD as a special case of the MCEM algo-
rithm. We optimize the maximization (M) step in the
MCEM algorithm via an inner EM algorithm with an-
alytic updates based on the PG and Laplace data aug-
mentations. We empirically show that the PG update
has faster convergence compared with the first-order
gradient ascent method. We also show that MCEM
can be combined with the recognition model for im-
proved scalability.

Our future work will be focused on the extension of
MCEM and Rec-MCEM to deep networks and large
datasets with parallel computing. Another direction is
to employ alternative sampling schemes, such as Pak-
man and Paninski (2013) in the Monte Carlo E-step to
improve the sampling method’s efficacy and efficiency.
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