
AdaDelay: Delay Adaptive Distributed Stochastic Optimization

A Technical details of the convergence analysis

We collect below some basic tools and deÞnitions from convex analysis.

DeÞnition A.1 (Bregman divergence). Let h : X ! X " [0, # ] be di↵erentiable strictly convex function. The
Bregman divergence generated byh is

Dh (x, y) := h(x) $ h(y) $ %&h(y), x $ y' , x, y ( X . (A.1)

Ð Fenchel conjugate:
f ! (y) = sup

x " X
%x, y' $ f (x) (A.2)

Ð Prox operator:

proxf (x) = argmin
y" X

f (y) +
1
2

) x $ y) 2
2, * x ( X (A.3)

Ð Moreau decomposition:
x = prox f (x) + prox f ! (x), * x ( X (A.4)

Ð Fenchel-Young inequality:
%x, y' + f (x) + f ! (y) (A.5)

Ð Projection lemma:
%y $ ⇧X (y), x $ ⇧X (y)' + 0, * x ( X . (A.6)

Ð Descent lemma:
f (y) + f (x) + %&f (x), y $ x' + L

2 ) y $ x) 2. (A.7)

Ð Four-point identity: Bregman divergences satisfy the followingfour point identity :

%&h(a) $ & h(b), c $ d' = Dh (d, a) $ Dh (d, b) $ Dh (c, a) + Dh (c, b). (A.8)

A special case of (A.8) is the Òthree-pointÓ identity

%&h(a) $ & h(b), b$ c' = Dh (c, a) $ Dh (c, b) $ Dh (b, a). (A.9)

A.1 Bounding the change f (xt +1 ) $ f (x! )

We start the analysis by bounding the gapf (xt +1 ) $ f (x! ). The lemma below is just a combination of several
results of [1]. We present the details below in one place for easy reference. The impact of our delay sensitive
step sizes shows up in subsequent lemmas, where we bound the individual terms that arise from LemmaA.2.

Lemma A.2. At any time-point t, let the gradient error due to delays be

et := & f (xt ) $ g(t $ ! t ). (A.10)

Then, we have the following (deterministic) bound:

f (xt +1 ) $ f (x! )

=
1

2" (t, ! t )

⇥
) x! $ xt ) 2 $ ) x! $ xt +1 ) 2⇤ + %et , xt +1 $ x! ' + L # 1/ ↵( t, ⌧t )

2 ) xt $ xt +1 ) 2,

+
1

2" (t, ! t )

⇥
) x! $ xt ) 2 $ ) x! $ xt +1 ) 2⇤ + %&f (xt ) $ & f (x(t $ ! t )) , xt +1 $ x! '

+ %&f (x(t $ ! t )) $ g(t $ ! t ), xt $ x! ' + 1
2⌘( t, ⌧t ) )& f (x(t $ ! t )) $ g(t $ ! t )) 2. (A.11)
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Proof. Using convexity of f we have

f (xt ) ! f (x! ) " #$ f (xt ), xt +1 ! x! %+ #$f (xt ), xt ! xt +1 %. (A.12)

Now apply Lipschitz continuity of $ f to the second term to obtain

f (xt ) ! f (x! ) " #$ f (xt ), xt +1 ! x! %+ f (xt ) ! f (xt +1 ) + L
2 &xt ! xt +1 &2,

=' f (xt +1 ) ! f (x! ) " #$ f (xt ), xt +1 ! x! %+ L
2 &xt ! xt +1 &2.

(A.13)

Using the deÞnition (A.10) of the gradient error et , we can rewrite (A.13) as

f (xt +1 ) ! f (x! ) " # g(t ! ⌧t ), xt +1 ! x! %| {z }
T 1

+ #et , xt +1 ! x! %| {z }
T 2

+ L
2 &xt ! xt +1 &2.

To complete the proof, we bound the termsT1 and T2 separately below.

Bounding T1: Sincext +1 is a minimizer in (2.1), from the projection inequality ( A.6) we have

#xt ! ↵(t, ⌧t )g(t ! ⌧t ) ! xt +1 , x ! xt +1 % " 0, ( x ) X .

Choosex = x! ; then rewrite the above inequality and identity ( A.9) with h(x) = 1
2 &x&2 to get

↵(t, ⌧t )#g(t ! ⌧t ), xt +1 ! x! % " #xt ! xt +1 , xt +1 ! x! %

= 1
2 &x! ! xt &2 ! 1

2 &x! ! xt +1 &2 ! 1
2 &xt +1 ! xt &2;

Plugging in this bound for T1 and collecting the &xt +1 ! xt &2 terms we obtain

f (xt +1 ) ! f (x! )

" 1
2↵( t, ⌧t)

⇥
&x! ! xt &2 ! & x! ! xt +1 &2 ! & xt +1 ! xt &2⇤ + #et , xt +1 ! x! %+ L

2 &xt ! xt +1 &2

= 1
2↵( t, ⌧t)

⇥
&x! ! xt &2 ! & x! ! xt +1 &2⇤ + #et , xt +1 ! x! %+ L " 1/ ↵( t, ⌧t)

2 &xt ! xt +1 &2. (A.14)

Bounding T2: Adding and subtracting $ f (x(t ! ⌧t )) we obtain

#et , xt +1 ! x! %= #$f (xt ) ! g(t ! ⌧t ), xt +1 ! x! %

= #$f (xt ) ! $ f (x(t ! ⌧t )) , xt +1 ! x! %+ #$f (x(t ! ⌧t )) ! g(t ! ⌧t ), xt +1 ! x! %

= #$f (xt ) ! $ f (x(t ! ⌧t )) , xt +1 ! x! %+ #$f (x(t ! ⌧t )) ! g(t ! ⌧t ), xt ! x! %

+ #$f (x(t ! ⌧t )) ! g(t ! ⌧t ), xt +1 ! xt %

" #$ f (xt ) ! $ f (x(t ! ⌧t )) , xt +1 ! x! %+ #$f (x(t ! ⌧t )) ! g(t ! ⌧t ), xt ! x! %

+ 1
2⌘( t, ⌧t) &$f (x(t ! ⌧t )) ! g(t ! ⌧t )&2 + ⌘( t, ⌧t)

2 &xt +1 ! xt &2,

where the last inequality is an application of (A.5). Adding this inequality to ( A.14) and using 1/ ↵(t, ⌧t ) =
L + ⌘(t, ⌧t ), we obtain (A.11).

The next step is to take expectations over (A.11) and then further bound the resulting terms separately. Note
that $ f (x(t ! ⌧t )) ! g(t ! ⌧t ) is independent ofxt given g(1), . . . , g(t ! ⌧t ! 1) (since xt is a function of gradients
up to time t ! ⌧t ! 1). Thus, the third term in ( A.11) has zero expectation. It remains to consider expectations
over the following three quantities:

�(t) :=
1

2↵(t, ⌧t )

⇥
&x! ! xt &2 ! & x! ! xt +1 &2⇤ ; (A.15)

�(t) := #$f (xt ) ! $ f (x(t ! ⌧t )) , xt +1 ! x! %; (A.16)

⌃(t) := 1
2⌘( t, ⌧t) &$f (x(t ! ⌧t )) ! g(t ! ⌧t )&2. (A.17)

Lemma A.3 bounds (A.15) under Assumption 2.5(A), while Lemma A.4 provides a bound under the Assump-
tion 2.5(B). Similarly, Lemmas A.5 and A.6 bound (A.16), while Lemmas A.7 bounds (A.17). Combining these
bounds we obtain the theorem.
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A.2 Bounding �, �, and ⌃

Lemma A.3. Let �(t) be given by (A.15), and let Assumption 2.5 (A) hold. Then,

TX

t=1

E[�(t)] =
1

2

TX

t=1

E
⇥ 1

! (t, "
t

)

�
! x⇤ " x

t

! 2 " ! x⇤ " x
t+1! 2

�⇤
# 1

2 (L+ c)R2 +
$
2cR2"̄

$
T .

Proof. Unlike the delay independent step sizes treated in [1], bounding �(t) requires some more work because
! (t, "

t

) depends on "
t

, which in turn breaks the monotonically decreasing nature of ! (t, "
t

) (we wish to avoid
using a fixed worst case bound on the steps, to gain more precise insight into the impacts of being sensitive to
delays), necessitating a more intricate analysis.

Let r
t

= ! x
t

" x⇤! 2. Observe that although r
t

%%"
t

, it is not independent of " (t " 1). Thus, with

z
t

=
1

! (t, "
t

)
"

1

! (t " 1, "
t�1)

= c(
$
t+ "

t

"
p
t " 1 + "

t�1),

we have

TX

t=1

E[�(t)] =
1

2
E
h r1

! (1, " (1))
+

TX

t=2

z
t

r
t

i
#

1

2
(L+ c)R2 +

1

2
E
h TX

t=2

z
t

r
t

i
. (A.18)

Since ! (t, "
t

) is not monotonically decreasing with t, while upper-bounding E[�(t)] we cannot simply discard
the final term in (A.18).

When " (t " 1) & U({0, 2"̄ }), r
t

uniformly takes on at most 2"̄ + 1 values

r
t,s

:= ! x
t,s

" x⇤! 2, s ' [2"̄ ],

where x
t,s

= ⇧X [x
t�1 " ! (t " 1, " (t " 1) = s)g(t " 1, " (t " 1))]. Given a delay " (t " 1) = s, r

t

is just r
t,s

. Using
z
t

= ! (t)�1 " ! (t " 1)�1 = c
$
t+ "

t

" c
$
t " 1 + "

t�1, we have

z
t,s

= c
�$

t+ "
t

"
$
t " 1 + s

�
, s ' [2"̄ ].

Using nested expectations E[z
t

r
t

] = E
⌧t [E[ztrt|"t]] we then see that

E[z
t

r
t

] =
1

2"̄ + 1

2⌧̄X

l=0

 
2⌧̄X

s=0

(2"̄ + 1)�1r
t,s

c
⇣$

t+ l "
$
t " 1 + s

⌘!

#
1

2"̄ + 1

2⌧̄X

l=0

 
l�1X

s=0

(2"̄ + 1)�1r
t,s

c
⇣$

t+ l "
$
t " 1 + s

⌘!
,

where we dropped the terms with s ( l as they are non-positive.

Consider now the inner summation above. We have

c

2"̄ + 1

l�1X

s=0

r
t,s

⇣$
t+ l "

$
t " 1 + s

⌘

#
cR2

2"̄ + 1

l�1X

s=0

⇣$
t+ l "

$
t " 1 + s

⌘

=
cR2

2"̄ + 1

l�1X

s=0

l " s+ 1
$
t+ l +

$
t " 1 + s

#
cR2

2"̄ + 1

1
$
2t " 1

l�1X

s=0

(l " s+ 1)

=
cR2

2"̄ + 1

1
$
2t " 1

3l + l2

2
.
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Thus, we now consider

E[z
t

r
t

]  1

2⌧̄ + 1

2⌧̄X

l=0

cR2

2⌧̄ + 1

1p
2t� 1

3l + l2

2

=
cR2

(2⌧̄ + 1)2
p
2t� 1

(2⌧̄ + 1)(4⌧̄ + 2.5)⌧̄

<
2cR2⌧̄p
2t� 1

.

Summing over t = 2 to T , we finally obtain the upper bound

TX

t=2

E[z
t

r
t

]  cR2⌧̄

TX

t=2

1p
2t� 1

 2cR2⌧̄
p
2T .

Lemma A.4. Let Assumption (2.5) (B) hold. Then

TX

t=1

E[! (t)]  1

2
R2(L+ c) +

1

2
cR2

TX

t=2

⌧̄
t

+ 1p
2t� 1

.

Proof. Proceeding as for Lemma A.3, according to (A.18), the task reduces to bounding E[z
t

r
t

]. Consider thus,

E[z
t

r
t

]  E[z+
t

r
t

]  R2E[z+
t

],

where we use z+
t

to denote max(z
t

, 0). Let us now control the last expectation. Let P
t

(l) = P(⌧(t) = l), then

E[z+
t

] =
X

⌧t ,⌧t ! 1

P (⌧
t

, ⌧
t! 1)max(0, z

t

)

= c

t! 1X

l=0

t! 2X

s=0

P
t

(l)P
t! 1(s)[

p
t+ l �p

t� 1 + s]+

= c

t! 1X

l=0

lX

s=0

P
t

(l)P
t! 1(s)

l + 1� sp
t+ l +

p
t� 1 + s

 c

t! 1X

l=0

lX

s=0

P
t

(l)P
t! 1(s)

l + 1p
2t+ l � 1

 c

t! 1X

l=0

P
t

(l)
l + 1p

2t+ l � 1

 c

t! 1X

l=0

P
t

(l)
l + 1p
2t� 1

= c
⌧̄
t

+ 1p
2t� 1

.

So
TX

t=2

R2E[z+
t

]  cR2
TX

t=2

⌧̄
t

+ 1p
2t� 1

.

Lemma A.5.

TX

t=1

E[" (t)] =
TX

t=1

E [hrf(x
t

)�rf(x(t� ⌧
t

)), x
t+1 � x" i]

 ⌧̄GR+
LC1

2
+

LC2

2
log T

where

C1 =
G2⌧̄(⌧̄ + 1)(2⌧̄ + 1)2

3(L2 + c2)
and C2 =

G2(4⌧̄ + 3)(⌧̄ + 1)

3c2
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Proof. This proof is an adaptation of Lemma 4 and Corollary 1 of Agarwal and Duchi [1]. First, we exploit
convexity of f to help analyze the gradient di! erences using the four-point identity (A.8):

!" f (xt ) # " f (x(t # ! t )), xt +1 # x! $

= Df (x! , xt ) # Df (x! , x(t # ! t )) # Df (xt +1 , xt ) + Df (xt +1 , x(t # ! t )).
(A.19)

Since " f is L -Lipschitz, we further have

f (xt +1 ) % f (x(t # ! t )) + !" f (x(t # ! t )), xt +1 # x(t # ! t )$+ L
2 &x(t # ! t ) # xt +1 &2.

By definition of a Bregman divergence, we also have

Df (xt +1 , x(t # ! t )) = f (xt +1 ) # f (x(t # ! t )) # !" f (x(t # ! t )), xt +1 # x(t # ! t )$,

which, upon using using A.7, immediately yields the bound

Df (xt +1 , x(t # ! t )) % L
2 &x(t # ! t ) # xt +1 &2.

Dropping the negative term Df (xt +1 , xt ) from (A.19) and summing over t , we then obtain

T!

t =1

!" f (xt ) # " f (x(t # ! t )), xt +1 # x! $

%
T!

t =1

[Df (x! , xt ) # Df (x! , x(t # ! t ))] +
L
2

T!

t =1

&xt +1 # x(t # ! t )&2.

Notice that the first sum partially telescopes, leaving only the terms not received by the server within the first
T iterations. Thus, we obtain the bound

!

t :t + ! t>T

Df (x! , xt ) +
L
2

T!

t =1

&xt +1 # x(t # ! t )&2. (A.20)

We bound both each of the terms in (A.20) in turn below.

To bound the contribution of the first term in expectation, compute the expected cardinality

E[|{t : t + ! t > T }|] =
T!

t =1

Pr(! t > T # t), (A.21)

Assuming delays uniform on {0, 2!̄ } bounding this cardinality is easy, since

Pr(! t > T # t) =

"
0 T # t > 2!̄ ,
2ø! " T + t

2ø! +1 otherwise.

Assuming that 2!̄ + 1 < T , (A.21) becomes (unsurprisingly)

2ø!!

s=1

2!̄ # s
2!̄ + 1

=
(4!̄ # 2!̄ )(2!̄ + 1)

2(2!̄ + 1)
= !̄ .

From definition of a Bregman divergence we immediately see that

0 % Df (x! , xt ) % #!" f (xt ), x! # xt $ % &"f (xt )&&x! # xt & %GR.

Thus, the contribution of the first term in (A.20) is bounded in expectation by by !̄ GR.
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To bound the contribution of the second term, use convexity of! á! 2 to obtain

! xt +1 " x(t " ! t )!

= ! xt +1 " xt + xt " x(t " 1) + á á á+ x(t " ! t + 1) " x(t " ! t )! 2

# (! t + 1) 2
! t!

s=0

1
! t +1 ! xt +1 �s " xt�s! 2

=( ! t + 1)
! t!

s=0

! ⇧X
"
x(t " s) " " (t " s, ! t�s)g(t " s, ! t�s)

#
" ⇧X (x(t " s)) ! 2

# (! t + 1) G2
! t!

s=0

" (t " s, ! t�s)2.

Conditioned on the delay ! t we have

E[! xt +1 " x(t " ! t )! 2|! t ] # (! t + 1) G2
! ! t

s=0
E[" (t " s, ! t�s)2].

Under the uniform or scaled assumptions on delays, we obtain similar bounds on the above quantity.

Consider now the expectation

E[" (t " s, ! (t " s))2] = E[
1

L 2 + c2(( t " s) + ! (t " s)) + 2 Lc
$

t " s + ! (t " s)
] #

1
L 2 + c2(t " s)

=$ if ! t = l,
! t!

s=0

E[" (t " s, ! t�s)2] #
l!

s=0

1
L 2 + c2(t " l )

=
l + 1

L 2 + c2(t " l )
.

Thus, for t > 2ø! , we have the following bound

E[! xt +1 " x(t " ! t )! 2] # G2
2ø!!

l =0

1
2ø! + 1

(l + 1) 2

L 2 + c2(t " l )

#
G2

(2ø! + 1)( L 2 + c2(t " 2ø! ))

2ø!!

l =0

(l + 1) 2

=
G2(4ø! + 3)(ø! + 1)
3(L 2 + c2(t " 2ø! ))

.

and for t # 2ø! , we have

E[! xt +1 " x(t " ! t )! 2] # G2
t�1!

l =0

Pt (l )
(l + 1) 2

L 2 + c2(t " l )

# G2
t�1!

l =0

(l + 1) 2

L 2 + c2

=
G2t(t + 1)(2 t + 1)

6(L 2 + c2)
.

Now adding up over t = 1 to T, we have

T!

t =1

E[! xt +1 " x(t " ! t )! 2] # C1 + C2 logT

Lemma A.6. Assuming scaled delays, we have the bound

T!

t =1

E[�(t)] =
T!

t =1

E [%&f (xt ) " & f (x(t " ! t )) , xt +1 " x⇤' ]

# GR

%

1 +
T �1!

t =1

B 2
t

(T " t)2

&

+ LG 2
T!

t =1

B 2
t + 1 + ø! t

L 2 + c2(1 " #t )t
.
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Proof. We build on Corollary 1 of [1], and proceed as in Lemma A.5 to bound the terms in (A.20) separately.
For the first term, we bound the expected cardinality using Chebyshev’s inequality and Assumption 2.5 (B):

E[|{t : t+ ⌧
t

> T}|] =
TX

t=1

Pr(⌧
t

> T � t)  1 +
T�1X

t=1

E[⌧2
t

]

(T � t)2
= 1 +

T�1X

t=1

B2
t

(T � t)2

To bound the second term, we again follow Lemma A.5 to obtain

E[kx
t+1 � x(t� ⌧

t

)k2|⌧
t

]  (⌧
t

+ 1)G2
X

⌧t

s=0
E[↵(t� s, ⌧

t�s

)2].

E[↵(t� s, ⌧(t� s))2] = E[ 1

L2 + c2((t� s) + ⌧(t� s)) + 2Lc
p
t� s+ ⌧(t� s)

]

 1

L2 + c2(t� s)
,

which yields the bound (since 0  s  ⌧
t

)

E[kx
t+1 � x(t� ⌧

t

)k2|⌧
t

]  G2(⌧
t

+ 1)2

L2 + c2(t� ⌧
t

)

Now adding up over t = 1 to T consider

G2
X

T

t=1

(⌧
t

+ 1)2

L2 + c2(t� ⌧
t

)
,

so that taking expectation (over ⌧
t

) we then obtain

TX

t=1

E[kx
t+1 � x(t� ⌧

t

)k2]  G2
TX

t=1

E


(⌧
t

+ 1)2

L2 + c2(t� ⌧
t

)

�
.

Using our assumption that ⌧
t

< ✓
t

t for ✓
t

2 (0, 1), we have in particular that

G2
TX

t=1

E


(⌧
t

+ 1)2

L2 + c2(t� ⌧
t

)

�

G2
TX

t=1

1

L2 + c2(1� ✓
t

)t
E[(⌧

t

+ 1)2]

G2
TX

t=1

B2
t

+ 1 + ⌧̄
t

L2 + c2(1� ✓
t

)t

Lemma A.7. Let the step-o! sets be ⌘(t, ⌧
t

) = c
p
t+ ⌧

t

. For any delay distribution we have

TX

t=1

E[! (t)]  �2

c

p
T .

Proof. From Assumption 2.2 on the variance of stochastic gradients, it follows that

E[! (t)] = E
h

1
2⌘(t,⌧t)

krf(x(t� ⌧
t

))� g(t� ⌧
t

)k2
i
 �2

2
E
⇥
⌘(t, ⌧

t

)�1
⇤
.

Plugging in ⌘(t, ⌧
t

) = c
p
t+ ⌧

t

, clearly the bound

1

c
E[(t+ ⌧

t

)�1/2] =
1

c

t�1X

s=0

P (s)
1p
t+ s

 1

c
p
t
, (A.22)

holds for any delay distribution. Summing up over t, we then obtain

TX

t=1

E[! (t)]  �2

2c

TX

t=1

1p
t
 �2

c

p
T .
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B More general step-sizes

If we use the o! sets ! t = c(t + "t )! , where 0 < # < 1, we obtain slightly more general step sizes that fit within
our framework. The only benefit of considering stepsizes other than # = 1/ 2 is because they allow us to tradeo!
the contributions of the various terms in the bounds, and for a larger value of # for instance, we will obtain
smaller step sizes, which can be beneficial in high noise regimes, at least in the initial iterations. The theoretical
sweet-spot (in terms of dependence on T), is, however # = 1/ 2, the choice analyzed above. We summarize below
the impact of these steps sizes for non-uniform scaled delays; the uniform case is even simpler. For simplicity,
we do not bound the terms as tightly as for the special case # = 1/ 2.

Lemma B.1. Assume that "t satisÞes Assumption2.5 (B) and ! t = c(t + "t )! and 0 < # < 1. Then,

E[z+
t ] !

cR2#("̄ t + 1)

(t " 1)1! ! (B.1)

E[#xt +1 " x(t " " t )#2] !
G2("t + 1)2

L 2 + c2(t " " t )2! (B.2)

E[! (t, " t )
! 1] !

1

ct!
. (B.3)

Proof. Proceeding as in Lemma A.4 we bound

E[z+
t ] = c

t ! 1!

l =0

l!

s=0

Pt (l)Pt ! 1(s)
"
(t + l)! " (t " 1 + s)! #

! c
t ! 1!

l =0

l!

s=0

Pt (l)Pt ! 1(s)#
l + 1 " s

(t " 1 + s)1! !

! c#
t ! 1!

l =0

l!

s=0

Pt (l)Pt ! 1(s)
l + 1

(t " 1)1! !

! c#
t ! 1!

l =0

Pt (l)
l + 1

(t " 1)1! ! =
c#("̄ t + 1)

(t " 1)1! ! .

where the first inequality follows from concavity if t ! , the second one since l +1 ! s
( t ! 1+ s)1! ! is decreasing in s, while

the third is clear as Pt ! 1 is a probability.

Next, we bound (B.2). Proceeding as in Lemma A.6, we obtain the bounds

E[$(t " s, " t ! s)
2] !

1

L 2 + c2(t " s)2!

=$ E[#xt +1 " x(t " " t )#2|"t ] !
G2("t + 1)2

L 2 + c2(t " " t )2!

Finally, the bound on (B.3) is trivial; since ! ! 1
t = c! 1(t + "t )! ! , we have

1

c
E[(t + "t )

! ! ] =
1

c

t ! 1!

s=0

Pt (s)
1

(t + s)! !
1

ct!
.

Using these key bounds, we can defined full versions of Lemmas A.4, A.6, and A.7, where we finally we will need
a bound of the form

T!

t =1

1

t ! ! 1 +

$ T

0
t ! ! dt = 1 +

"
T1! ! " 1

#

1 " #
!

1

1 " #
T1! ! .


