
AdaDelay: Delay Adaptive Distributed Stochastic Optimization

A Technical details of the convergence analysis

We collect below some basic tools and definitions from convex analysis.

Definition A.1 (Bregman divergence). Let h : X ⇥ X ! [0,1] be di↵erentiable strictly convex function. The
Bregman divergence generated by h is

D
h

(x, y) := h(x)� h(y)� hrh(y), x� yi, x, y 2 X . (A.1)

– Fenchel conjugate:

f⇤(y) = sup
x2X

hx, yi � f(x) (A.2)

– Prox operator:

prox
f

(x) = argmin
y2X

f(y) +
1

2
kx� yk22, 8 x 2 X (A.3)

– Moreau decomposition:

x = prox
f

(x) + prox
f

⇤(x), 8 x 2 X (A.4)

– Fenchel-Young inequality:

hx, yi  f(x) + f⇤(y) (A.5)

– Projection lemma:

hy �⇧X (y), x�⇧X (y)i  0, 8 x 2 X . (A.6)

– Descent lemma:

f(y)  f(x) + hrf(x), y � xi+ L

2 ky � xk2. (A.7)

– Four-point identity: Bregman divergences satisfy the following four point identity :

hrh(a)�rh(b), c� di = D
h

(d, a)�D
h

(d, b)�D
h

(c, a) +D
h

(c, b). (A.8)

A special case of (A.8) is the “three-point” identity

hrh(a)�rh(b), b� ci = D
h

(c, a)�D
h

(c, b)�D
h

(b, a). (A.9)

A.1 Bounding the change f(x
t+1)� f(x⇤)

We start the analysis by bounding the gap f(x
t+1) � f(x⇤). The lemma below is just a combination of several

results of [1]. We present the details below in one place for easy reference. The impact of our delay sensitive
step sizes shows up in subsequent lemmas, where we bound the individual terms that arise from Lemma A.2.

Lemma A.2. At any time-point t, let the gradient error due to delays be

e
t

:= rf(x
t

)� g(t� ⌧
t

). (A.10)

Then, we have the following (deterministic) bound:

f(x
t+1)� f(x⇤)

=
1

2↵(t, ⌧
t

)

⇥kx⇤ � x
t

k2 � kx⇤ � x
t+1k2

⇤
+ he

t

, x
t+1 � x⇤i+ L�1/↵(t,⌧t)

2 kx
t

� x
t+1k2,

 1

2↵(t, ⌧
t

)

⇥kx⇤ � x
t

k2 � kx⇤ � x
t+1k2

⇤
+ hrf(x

t

)�rf(x(t� ⌧
t

)), x
t+1 � x⇤i

+ hrf(x(t� ⌧
t

))� g(t� ⌧
t

), x
t

� x⇤i+ 1
2⌘(t,⌧t)

krf(x(t� ⌧
t

))� g(t� ⌧
t

)k2. (A.11)



Suvrit Sra, Adams Wei Yu, Mu Li, Alexander J. Smola

Proof. Using convexity of f we have

f(x
t

)� f(x⇤)  hrf(x
t

), x
t+1 � x⇤i+ hrf(x

t

), x
t

� x
t+1i. (A.12)

Now apply Lipschitz continuity of rf to the second term to obtain

f(x
t

)� f(x⇤)  hrf(x
t

), x
t+1 � x⇤i+ f(x

t

)� f(x
t+1) +

L

2 kxt

� x
t+1k2,

=) f(x
t+1)� f(x⇤)  hrf(x

t

), x
t+1 � x⇤i+ L

2 kxt

� x
t+1k2.

(A.13)

Using the definition (A.10) of the gradient error e
t

, we can rewrite (A.13) as

f(x
t+1)� f(x⇤)  hg(t� ⌧

t

), x
t+1 � x⇤i| {z }

T1

+ he
t

, x
t+1 � x⇤i| {z }
T2

+L

2 kxt

� x
t+1k2.

To complete the proof, we bound the terms T1 and T2 separately below.

Bounding T1: Since x
t+1 is a minimizer in (2.1), from the projection inequality (A.6) we have

hx
t

� ↵(t, ⌧
t

)g(t� ⌧
t

)� x
t+1, x� x

t+1i  0, 8x 2 X .

Choose x = x⇤; then rewrite the above inequality and identity (A.9) with h(x) = 1
2kxk2 to get

↵(t, ⌧
t

)hg(t� ⌧
t

), x
t+1 � x⇤i  hx

t

� x
t+1, xt+1 � x⇤i

= 1
2kx⇤ � x

t

k2 � 1
2kx⇤ � x

t+1k2 � 1
2kxt+1 � x

t

k2;
Plugging in this bound for T1 and collecting the kx

t+1 � x
t

k2 terms we obtain

f(x
t+1)� f(x⇤)

 1
2↵(t,⌧t)

⇥kx⇤ � x
t

k2 � kx⇤ � x
t+1k2 � kx

t+1 � x
t

k2⇤+ he
t

, x
t+1 � x⇤i+ L

2 kxt

� x
t+1k2

= 1
2↵(t,⌧t)

⇥kx⇤ � x
t

k2 � kx⇤ � x
t+1k2

⇤
+ he

t

, x
t+1 � x⇤i+ L�1/↵(t,⌧t)

2 kx
t

� x
t+1k2. (A.14)

Bounding T2: Adding and subtracting rf(x(t� ⌧
t

)) we obtain

he
t

, x
t+1 � x⇤i = hrf(x

t

)� g(t� ⌧
t

), x
t+1 � x⇤i

= hrf(x
t

)�rf(x(t� ⌧
t

)), x
t+1 � x⇤i+ hrf(x(t� ⌧

t

))� g(t� ⌧
t

), x
t+1 � x⇤i

= hrf(x
t

)�rf(x(t� ⌧
t

)), x
t+1 � x⇤i+ hrf(x(t� ⌧

t

))� g(t� ⌧
t

), x
t

� x⇤i
+ hrf(x(t� ⌧

t

))� g(t� ⌧
t

), x
t+1 � x

t

i
 hrf(x

t

)�rf(x(t� ⌧
t

)), x
t+1 � x⇤i+ hrf(x(t� ⌧

t

))� g(t� ⌧
t

), x
t

� x⇤i
+ 1

2⌘(t,⌧t)
krf(x(t� ⌧

t

))� g(t� ⌧
t

)k2 + ⌘(t,⌧t)
2 kx

t+1 � x
t

k2,

where the last inequality is an application of (A.5). Adding this inequality to (A.14) and using 1/↵(t, ⌧
t

) =
L+ ⌘(t, ⌧

t

), we obtain (A.11).

The next step is to take expectations over (A.11) and then further bound the resulting terms separately. Note
that rf(x(t� ⌧

t

))� g(t� ⌧
t

) is independent of x
t

given g(1), . . . , g(t� ⌧
t

� 1) (since x
t

is a function of gradients
up to time t� ⌧

t

� 1). Thus, the third term in (A.11) has zero expectation. It remains to consider expectations
over the following three quantities:

�(t) :=
1

2↵(t, ⌧
t

)

⇥kx⇤ � x
t

k2 � kx⇤ � x
t+1k2

⇤
; (A.15)

�(t) := hrf(x
t

)�rf(x(t� ⌧
t

)), x
t+1 � x⇤i; (A.16)

⌃(t) := 1
2⌘(t,⌧t)

krf(x(t� ⌧
t

))� g(t� ⌧
t

)k2. (A.17)

Lemma A.3 bounds (A.15) under Assumption 2.5(A), while Lemma A.4 provides a bound under the Assump-
tion 2.5(B). Similarly, Lemmas A.5 and A.6 bound (A.16), while Lemmas A.7 bounds (A.17). Combining these
bounds we obtain the theorem.
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A.2 Bounding �, �, and ⌃

Lemma A.3. Let �(t) be given by (A.15), and let Assumption 2.5 (A) hold. Then,

TX

t=1

E[�(t)] =
1

2

TX

t=1

E
⇥ 1

↵(t, ⌧
t

)

�kx⇤ � x
t

k2 � kx⇤ � x
t+1k2

�⇤  1
2 (L+ c)R2 +

p
2cR2⌧̄

p
T .

Proof. Unlike the delay independent step sizes treated in [1], bounding �(t) requires some more work because
↵(t, ⌧

t

) depends on ⌧
t

, which in turn breaks the monotonically decreasing nature of ↵(t, ⌧
t

) (we wish to avoid
using a fixed worst case bound on the steps, to gain more precise insight into the impacts of being sensitive to
delays), necessitating a more intricate analysis.

Let r
t

= kx
t

� x⇤k2. Observe that although r
t

?? ⌧
t

, it is not independent of ⌧(t� 1). Thus, with

z
t

=
1

↵(t, ⌧
t

)
� 1

↵(t� 1, ⌧
t�1)

= c(
p
t+ ⌧

t

�pt� 1 + ⌧
t�1),

we have

TX

t=1

E[�(t)] =
1

2
E
h r1
↵(1, ⌧(1))

+
TX

t=2

z
t

r
t

i
 1

2
(L+ c)R2 +

1

2
E
h TX

t=2

z
t

r
t

i
. (A.18)

Since ↵(t, ⌧
t

) is not monotonically decreasing with t, while upper-bounding E[�(t)] we cannot simply discard
the final term in (A.18).

When ⌧(t� 1) ⇠ U({0, 2⌧̄}), r
t

uniformly takes on at most 2⌧̄ + 1 values

r
t,s

:= kx
t,s

� x⇤k2, s 2 [2⌧̄ ],

where x
t,s

= ⇧X [x
t�1 � ↵(t� 1, ⌧(t� 1) = s)g(t� 1, ⌧(t� 1))]. Given a delay ⌧(t� 1) = s, r

t

is just r
t,s

. Using
z
t

= ↵(t)�1 � ↵(t� 1)�1 = c
p
t+ ⌧

t

� c
p
t� 1 + ⌧

t�1, we have

z
t,s

= c
�p

t+ ⌧
t

�p
t� 1 + s

�
, s 2 [2⌧̄ ].

Using nested expectations E[z
t

r
t

] = E
⌧t [E[ztrt|⌧t]] we then see that

E[z
t

r
t

] =
1

2⌧̄ + 1

2⌧̄X

l=0

 
2⌧̄X

s=0

(2⌧̄ + 1)�1r
t,s

c
⇣p

t+ l �p
t� 1 + s

⌘!

 1

2⌧̄ + 1

2⌧̄X

l=0

 
l�1X

s=0

(2⌧̄ + 1)�1r
t,s

c
⇣p

t+ l �p
t� 1 + s

⌘!
,

where we dropped the terms with s � l as they are non-positive.

Consider now the inner summation above. We have

c

2⌧̄ + 1

l�1X

s=0

r
t,s

⇣p
t+ l �p

t� 1 + s
⌘

 cR2

2⌧̄ + 1

l�1X

s=0

⇣p
t+ l �p

t� 1 + s
⌘

=
cR2

2⌧̄ + 1

l�1X

s=0

l � s+ 1p
t+ l +

p
t� 1 + s

 cR2

2⌧̄ + 1

1p
2t� 1

l�1X

s=0

(l � s+ 1)

=
cR2

2⌧̄ + 1

1p
2t� 1

3l + l2

2
.
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Thus, we now consider

E[z
t

r
t

]  1

2⌧̄ + 1

2⌧̄X

l=0

cR2

2⌧̄ + 1

1p
2t� 1

3l + l2

2

=
cR2

(2⌧̄ + 1)2
p
2t� 1

(2⌧̄ + 1)(4⌧̄ + 2.5)⌧̄

<
2cR2⌧̄p
2t� 1

.

Summing over t = 2 to T , we finally obtain the upper bound

TX

t=2

E[z
t

r
t

]  cR2⌧̄

TX

t=2

1p
2t� 1

 2cR2⌧̄
p
2T .

Lemma A.4. Let Assumption (2.5) (B) hold. Then

TX

t=1

E[�(t)]  1

2
R2(L+ c) +

1

2
cR2

TX

t=2

⌧̄
t

+ 1p
2t� 1

.

Proof. Proceeding as for Lemma A.3, according to (A.18), the task reduces to bounding E[z
t

r
t

]. Consider thus,

E[z
t

r
t

]  E[z+
t

r
t

]  R2E[z+
t

],

where we use z+
t

to denote max(z
t

, 0). Let us now control the last expectation. Let P
t

(l) = P(⌧(t) = l), then

E[z+
t

] =
X

⌧t,⌧t�1

P (⌧
t

, ⌧
t�1)max(0, z

t

)

= c

t�1X

l=0

t�2X

s=0

P
t

(l)P
t�1(s)[

p
t+ l �p

t� 1 + s]+

= c

t�1X

l=0

lX

s=0

P
t

(l)P
t�1(s)

l + 1� sp
t+ l +

p
t� 1 + s

 c

t�1X

l=0

lX

s=0

P
t

(l)P
t�1(s)

l + 1p
2t+ l � 1

 c

t�1X

l=0

P
t

(l)
l + 1p

2t+ l � 1

 c

t�1X

l=0

P
t

(l)
l + 1p
2t� 1

= c
⌧̄
t

+ 1p
2t� 1

.

So
TX

t=2

R2E[z+
t

]  cR2
TX

t=2

⌧̄
t

+ 1p
2t� 1

.

Lemma A.5.

TX

t=1

E[�(t)] =
TX

t=1

E [hrf(x
t

)�rf(x(t� ⌧
t

)), x
t+1 � x⇤i]

 ⌧̄GR+
LC1

2
+

LC2

2
log T

where

C1 =
G2⌧̄(⌧̄ + 1)(2⌧̄ + 1)2

3(L2 + c2)
and C2 =

G2(4⌧̄ + 3)(⌧̄ + 1)

3c2
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Proof. This proof is an adaptation of Lemma 4 and Corollary 1 of Agarwal and Duchi [1]. First, we exploit
convexity of f to help analyze the gradient di↵erences using the four-point identity (A.8):

hrf(x
t

)�rf(x(t� ⌧
t

)), x
t+1 � x⇤i

= D
f

(x⇤, x
t

)�D
f

(x⇤, x(t� ⌧
t

))�D
f

(x
t+1, xt

) +D
f

(x
t+1, x(t� ⌧

t

)).
(A.19)

Since rf is L-Lipschitz, we further have

f(x
t+1)  f(x(t� ⌧

t

)) + hrf(x(t� ⌧
t

)), x
t+1 � x(t� ⌧

t

)i+ L

2 kx(t� ⌧
t

)� x
t+1k2.

By definition of a Bregman divergence, we also have

D
f

(x
t+1, x(t� ⌧

t

)) = f(x
t+1)� f(x(t� ⌧

t

))� hrf(x(t� ⌧
t

)), x
t+1 � x(t� ⌧

t

)i,

which, upon using using A.7, immediately yields the bound

D
f

(x
t+1, x(t� ⌧

t

))  L

2 kx(t� ⌧
t

)� x
t+1k2.

Dropping the negative term D
f

(x
t+1, xt

) from (A.19) and summing over t, we then obtain

TX

t=1

hrf(x
t

)�rf(x(t� ⌧
t

)), x
t+1 � x⇤i


TX

t=1

[D
f

(x⇤, x
t

)�D
f

(x⇤, x(t� ⌧
t

))] +
L

2

TX

t=1

kx
t+1 � x(t� ⌧

t

)k2.

Notice that the first sum partially telescopes, leaving only the terms not received by the server within the first
T iterations. Thus, we obtain the bound

X

t:t+⌧t>T

D
f

(x⇤, x
t

) +
L

2

TX

t=1

kx
t+1 � x(t� ⌧

t

)k2. (A.20)

We bound both each of the terms in (A.20) in turn below.

To bound the contribution of the first term in expectation, compute the expected cardinality

E[|{t : t+ ⌧
t

> T}|] =
TX

t=1

Pr(⌧
t

> T � t), (A.21)

Assuming delays uniform on {0, 2⌧̄} bounding this cardinality is easy, since

Pr(⌧
t

> T � t) =

(
0 T � t > 2⌧̄ ,
2⌧̄�T+t

2⌧̄+1 otherwise.

Assuming that 2⌧̄ + 1 < T , (A.21) becomes (unsurprisingly)

2⌧̄X

s=1

2⌧̄ � s

2⌧̄ + 1
=

(4⌧̄ � 2⌧̄)(2⌧̄ + 1)

2(2⌧̄ + 1)
= ⌧̄ .

From definition of a Bregman divergence we immediately see that

0  D
f

(x⇤, x
t

)  �hrf(x
t

), x⇤ � x
t

i  krf(x
t

)kkx⇤ � x
t

k  GR.

Thus, the contribution of the first term in (A.20) is bounded in expectation by by ⌧̄GR.
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To bound the contribution of the second term, use convexity of k·k2 to obtain

kx
t+1 � x(t� ⌧

t

)k
=kx

t+1 � x
t

+ x
t

� x(t� 1) + · · ·+ x(t� ⌧
t

+ 1)� x(t� ⌧
t

)k2

(⌧
t

+ 1)2
⌧tX

s=0

1
⌧t+1kxt+1�s

� x
t�s

k2

=(⌧
t

+ 1)
⌧tX

s=0

k⇧X
�
x(t� s)� ↵(t� s, ⌧

t�s

)g(t� s, ⌧
t�s

)
��⇧X (x(t� s))k2

(⌧
t

+ 1)G2
⌧tX

s=0

↵(t� s, ⌧
t�s

)2.

Conditioned on the delay ⌧
t

we have

E[kx
t+1 � x(t� ⌧

t

)k2|⌧
t

]  (⌧
t

+ 1)G2
X

⌧t

s=0
E[↵(t� s, ⌧

t�s

)2].

Under the uniform or scaled assumptions on delays, we obtain similar bounds on the above quantity.

Consider now the expectation

E[↵(t� s, ⌧(t� s))2] = E[ 1

L2 + c2((t� s) + ⌧(t� s)) + 2Lc
p

t� s+ ⌧(t� s)
]  1

L2 + c2(t� s)

=) if ⌧
t

= l,

⌧tX

s=0

E[↵(t� s, ⌧
t�s

)2] 
lX

s=0

1

L2 + c2(t� l)
=

l + 1

L2 + c2(t� l)
.

Thus, for t > 2⌧̄ , we have the following bound

E[kx
t+1 � x(t� ⌧

t

)k2]  G2
2⌧̄X

l=0

1

2⌧̄ + 1

(l + 1)2

L2 + c2(t� l)

 G2

(2⌧̄ + 1)(L2 + c2(t� 2⌧̄))

2⌧̄X

l=0

(l + 1)2

=
G2(4⌧̄ + 3)(⌧̄ + 1)

3(L2 + c2(t� 2⌧̄))
.

and for t  2⌧̄ , we have

E[kx
t+1 � x(t� ⌧

t

)k2]  G2
t�1X

l=0

P
t

(l)
(l + 1)2

L2 + c2(t� l)

 G2
t�1X

l=0

(l + 1)2

L2 + c2

=
G2t(t+ 1)(2t+ 1)

6(L2 + c2)
.

Now adding up over t = 1 to T , we have

TX

t=1

E[kx
t+1 � x(t� ⌧

t

)k2]  C1 + C2 log T

Lemma A.6. Assuming scaled delays, we have the bound

TX

t=1

E[�(t)] =
TX

t=1

E [hrf(x
t

)�rf(x(t� ⌧
t

)), x
t+1 � x⇤i]

 GR

 
1 +

T�1X

t=1

B2
t

(T � t)2

!
+ LG2

TX

t=1

B2
t

+ 1 + ⌧̄
t

L2 + c2(1� ✓
t

)t
.
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Proof. We build on Corollary 1 of [1], and proceed as in Lemma A.5 to bound the terms in (A.20) separately.
For the first term, we bound the expected cardinality using Chebyshev’s inequality and Assumption 2.5 (B):

E[|{t : t+ ⌧
t

> T}|] =
TX

t=1

Pr(⌧
t

> T � t)  1 +
T�1X

t=1

E[⌧2
t

]

(T � t)2
= 1 +

T�1X

t=1

B2
t

(T � t)2

To bound the second term, we again follow Lemma A.5 to obtain

E[kx
t+1 � x(t� ⌧

t

)k2|⌧
t

]  (⌧
t

+ 1)G2
X

⌧t

s=0
E[↵(t� s, ⌧

t�s

)2].

E[↵(t� s, ⌧(t� s))2] = E[ 1

L2 + c2((t� s) + ⌧(t� s)) + 2Lc
p
t� s+ ⌧(t� s)

]

 1

L2 + c2(t� s)
,

which yields the bound (since 0  s  ⌧
t

)

E[kx
t+1 � x(t� ⌧

t

)k2|⌧
t

]  G2(⌧
t

+ 1)2

L2 + c2(t� ⌧
t

)

Now adding up over t = 1 to T consider

G2
X

T

t=1

(⌧
t

+ 1)2

L2 + c2(t� ⌧
t

)
,

so that taking expectation (over ⌧
t

) we then obtain

TX

t=1

E[kx
t+1 � x(t� ⌧

t

)k2]  G2
TX

t=1

E


(⌧
t

+ 1)2

L2 + c2(t� ⌧
t

)

�
.

Using our assumption that ⌧
t

< ✓
t

t for ✓
t

2 (0, 1), we have in particular that

G2
TX

t=1

E


(⌧
t

+ 1)2

L2 + c2(t� ⌧
t

)

�

G2
TX

t=1

1

L2 + c2(1� ✓
t

)t
E[(⌧

t

+ 1)2]

G2
TX

t=1

B2
t

+ 1 + ⌧̄
t

L2 + c2(1� ✓
t

)t

Lemma A.7. Let the step-o↵sets be ⌘(t, ⌧
t

) = c
p
t+ ⌧

t

. For any delay distribution we have

TX

t=1

E[⌃(t)]  �2

c

p
T .

Proof. From Assumption 2.2 on the variance of stochastic gradients, it follows that

E[⌃(t)] = E
h

1
2⌘(t,⌧t)

krf(x(t� ⌧
t

))� g(t� ⌧
t

)k2
i
 �2

2
E
⇥
⌘(t, ⌧

t

)�1
⇤
.

Plugging in ⌘(t, ⌧
t

) = c
p
t+ ⌧

t

, clearly the bound

1

c
E[(t+ ⌧

t

)�1/2] =
1

c

t�1X

s=0

P (s)
1p
t+ s

 1

c
p
t
, (A.22)

holds for any delay distribution. Summing up over t, we then obtain

TX

t=1

E[⌃(t)]  �2

2c

TX

t=1

1p
t
 �2

c

p
T .
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B More general step-sizes

If we use the o↵sets ⌘
t

= c(t+ ⌧
t

)� , where 0 < � < 1, we obtain slightly more general step sizes that fit within
our framework. The only benefit of considering stepsizes other than � = 1/2 is because they allow us to tradeo↵
the contributions of the various terms in the bounds, and for a larger value of � for instance, we will obtain
smaller step sizes, which can be beneficial in high noise regimes, at least in the initial iterations. The theoretical
sweet-spot (in terms of dependence on T ), is, however � = 1/2, the choice analyzed above. We summarize below
the impact of these steps sizes for non-uniform scaled delays; the uniform case is even simpler. For simplicity,
we do not bound the terms as tightly as for the special case � = 1/2.

Lemma B.1. Assume that ⌧
t

satisfies Assumption 2.5 (B) and ⌘
t

= c(t+ ⌧
t

)� and 0 < � < 1. Then,

E[z+
t

]  cR2�(⌧̄
t

+ 1)

(t� 1)1��

(B.1)

E[kx
t+1 � x(t� ⌧

t

)k2]  G2(⌧
t

+ 1)2

L2 + c2(t� ⌧
t

)2�
(B.2)

E[⌘(t, ⌧
t

)�1]  1

ct�
. (B.3)

Proof. Proceeding as in Lemma A.4 we bound

E[z+
t

] = c
t�1X

l=0

lX

s=0

P
t

(l)P
t�1(s)

�
(t+ l)� � (t� 1 + s)�

�

 c

t�1X

l=0

lX

s=0

P
t

(l)P
t�1(s)�

l + 1� s

(t� 1 + s)1��

 c�

t�1X

l=0

lX

s=0

P
t

(l)P
t�1(s)

l + 1

(t� 1)1��

 c�

t�1X

l=0

P
t

(l)
l + 1

(t� 1)1��

=
c�(⌧̄

t

+ 1)

(t� 1)1��

.

where the first inequality follows from concavity if t� , the second one since l+1�s

(t�1+s)1�� is decreasing in s, while
the third is clear as P

t�1 is a probability.

Next, we bound (B.2). Proceeding as in Lemma A.6, we obtain the bounds

E[↵(t� s, ⌧
t�s

)2]  1

L2 + c2(t� s)2�

=) E[kx
t+1 � x(t� ⌧

t

)k2|⌧
t

]  G2(⌧
t

+ 1)2

L2 + c2(t� ⌧
t

)2�

Finally, the bound on (B.3) is trivial; since ⌘�1
t

= c�1(t+ ⌧
t

)�� , we have

1

c
E[(t+ ⌧

t

)�� ] =
1

c

t�1X

s=0

P
t

(s)
1

(t+ s)�
 1

ct�
.

Using these key bounds, we can defined full versions of Lemmas A.4, A.6, and A.7, where we finally we will need
a bound of the form

TX

t=1

1

t�
 1 +

Z
T

0
t��dt = 1 +

�
T 1�� � 1

�

1� �
 1

1� �
T 1�� .


