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1 Proofs

Proof of Theorem 4.1. Let us start by considering the GP approximation to f(x), x ∈ [−L1, L1] ×
· · · × [−Ld, Ld]. By Theorem 4.4 of Solin and Särkkä (2014), when domain size infi Li → ∞ and
the number of basis functions m → ∞, the approximate covariance function κm(x,x′) converges
point-wise to κ(x,x′). As the prior means of the exact and approximate GPs are both zero, the
means thus converge as well. By similar argument as is used in the proof of Theorem 2.2 in Särkkä
and Piché (2014) it follows that the posterior mean and covariance functions will converge point-wise
as well.

Now, consider the random variables defined by

xt+1 = f(xt) + wt, (17)

x̂t+1 = fm(xt) + wt, (18)

where fm is an m-term series expansion approximation to the GP. It now follows that for any fixed
xt the mean and covariance of xt+1 and x̂t+1 coincide when Li,m → ∞. However, because these
random variables are Gaussian, the first two moments determine the whole distribution and hence
we can conclude that x̂t+1 → xt+1 in distribution.

For the measurement model we can similarly consider the random variables

yt = g(xt) + et, (19)

ŷt = gm(xt) + et, (20)

With similar argument as above, we can conclude that the approximation converges in distribution.

Proof of Theorem 4.2. Provided the reduced-rank approximation of the Gram matrix, the reduction
in the computational load directly follows from application of the matrix inversion lemma.

Proof of Theorem 4.3. Using fundamental properties of the Gibbs sampler (see, e.g., Tierney
(1994)), the claim holds if all steps of Algorithm 1 are leaving the right conditional probability
density invariant. Step 3 is justified by Lindsten et al. (2014) (even for a finite N), and step 4–5 by
Wills et al. (2012). Further, step 6 can be seen as a Metropolis-within-Gibbs procedure (Tierney,
1994).



2 Details on Matrix Normal and Inverse Wishart distributions

As presented in the article, the matrix normal inverse Wishart (MNIW) distribution is the conjugate
prior for state space models linear in its parameters A ∈ Rn×m and Q ∈ Rn×nx Wills et al. (2012).
The MNIW distribution can be written asMN (A,Q |M,V, `,Λ) =MN (A |M,Q,V)×IW(Q |
`,Λ), where each part is defined as follows:

• The pdf for the Inverse Wishart distribution with ` degrees of freedom and positive definite
scale matrix Λ ∈ Rn×n:
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with Γn(·) being the multivariate gamma function.

• The pdf for the Matrix Normal distribution with mean M ∈ Rn×m, right covariance Q ∈ Rn×n
and left precision V ∈ Rm×m:
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To sample from the MN distribution, one may sample a matrix X ∈ Rn×m of i.i.d. N (0, 1) random
variables, and obtain A as A = M + chol(Q) X chol(V), where chol denotes the Cholesky factor
(V = chol(V) chol(V)T).

3 Eigenfunctions for Multi-Dimensional Spaces

The eigenfunctions for a d-dimensional space with a rectangular domain [−L1, L1]× · · ·× [−Ld, Ld],
used in Example 5.2 and Example 5.3, are on the form
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Note how this for d = 1 reduces to the univariate case presented in Section 5.1. For further details
we refer to Section 4.2 in Solin and Särkkä (2014).

4 Provided Matlab Software

The following Matlab files are available via the first authors homepage:

File Use Comments

synthetic example 1.m First synthetic example (including Figure 1)
synthetic example 2.m Second synthetic example
damper.m MR damper example For other results, see The

MathWorks, Inc. (2015)

energy forecast.m Energy consumption forecasting example
iwishpdf.m Implements (21)
mvnpdf log.m Logarithm of normal distribution pdf
systematic resampling.m Systematic resampling (Step 5, Algorithm 2)

All files are published under the GPL license.


