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7 Appendix A: a comparison to
previous assumptions

In this section, we compare our clusterability assump-
tion with those made previously in two lines of work:
the work of [21, 5], and the work of [4]. While the
assumptions in [21, 5] were shown to be weaker than
many existing probabilistic assumptions, the assump-
tion in [4] was shown to be weaker than some deter-
ministic clusterability assumptions in the literature.
We show that for d < k, the assumptions in [21, 5]
are stronger than ours, and the assumption in [4] is
stronger than ours in general.

Proximity condition in [21] implies center sep-
arability in [5]

Proposition 2. Theorem 2.2 of [21] only holds for e <
mmin - and under this constraint, any dataset-solution
pair (X, T,) that satisfies (dX, €)-prozimity condition
must satisfy d2-center separability for the same d2 =
dK.

To prove the proposition, we first show that in the
proximity condition of [21], e must be upper bounded
by #min j.e., the number of bad points cannot exceeds
Tmin, the size of the smallest cluster. Then we show
under this condition, the (d,,¢)-proximity condition
implies d,.-center separation for the same d,..

The need of an upper bound on € is not discussed in
neither of the work [21]. Here we show for Lloyd’s
algorithm to converge to a non-degenerate solution,
i.e., finding k non-empty clusters, which is a necessary
condition for Theorem 2.2 in [21] to hold, we need
€ < tmin regardless of how large d,- becomes.

Lemma 9. For any fized d,s == d, + ds > 0 and
0 << d’éS, let (X,T,) satisfy (d,€)-clusterability
with en > nymin. Then there exists seeding {v} and
(X, T,) with maxgep ||[us — vs|| = 0, such that if we
apply Lloyd’s algorithm on (X, {v}) until convergence,
it returns a degenerate solution.

Proof. Let (X,Ty) be a dataset satisfying (d,,e)-
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Figure 3: Two clusters in a bad instance with en >
Nmin: the solid black points are ground-truth cen-
troids; the red points are in 75, which are closer to
vy than to vs.

clusterability with en > np;,. Assume it contains
three clusters, T1,T5, T3 s.t. Ny = Npin = 2 and both
points in T, are within the en bad points, i.e., they
don’t satisfy the condition in Definition 1. We can
assume the relation between T5, T3 are symmetric to
that of T7,T> (which ensures po is the mean of T).
We only focus on 71,75 (Figure 3) since the case for
Ty, T3 is similar. Let both seeds vq, v fall on the line
joining g1, p2, and 0 = [luz — vo| < [lp1 — 1]l = 4
and let |[p1 — w2l = d > 66. Furthermore, Vz € Tb,
[# — poll = £ -2 So |2 -1 > 2 -2 but
[# =] < 4+2—6 < |&— el Thus, z in Tb
is assigned to S;. Now applying the centroid up-

. —4448 . ..
date, the mean of S is ZTH’ whose distance to Z is
—444+¢ . X
s - %ﬂ =24 %. This is smaller than ||& — ||,

since d > 6. Then the clustering assignment does not
change, and the same holds for S3, so the algorithm
stops and the cluster corresponding to po vanishes. [

Lemma 9 shows if en > nyi,, then in general no matter
how good the seeding guarantee is, Lloyd’s algorithm
may produce empty clusters. Next, we show (dX e)-
proximity condition with en < mny;, implies d;“—center
separability.

Lemma 10. If (X, T,) satisfies (d,, €)-proximity con-
dition with en < nmin, then it satisfies d,.-center sepa-
rability.
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Proof. Since en < Npin, for any cluster T,,r € [k],
dx € T, s.t. x satisfies the proximity condition, i.e.,
2 — pell < 12 — psll = drs, for any s # r, where
dps := dy +ds. Since [|py — psl| = |2 = psl| = |2 — pr ||,
we know all pairs of centroids are separated by at least
dps. O

Let d; (f) = [Véi( = + =), with f = Q(1). By
Lemma 9 and 10, (df,(f), €)-clusterability implies our
clusterability assumption. Using this relation, we can
indirectly compare our clusterability with KK and AS
clusterability.

Unlike KK or AS clusterabiity, which depends on || X —
C||, the maximal mean-departure of the entire dataset
along one direction, (df,(f),€)-clusterability depends
on v/¢,. Fix T, and the corresponding C\, since || X —
Cl < IX = Cullr = Va. < /rank(X — CL)||X —
C.| < V2k||X — C.||, when d < k, our assumption
is (a factor of ©(Vk)) weaker than KK and may be
stronger than AS clusterability.

Weak-deletion stability Weak-deletion stability
[4] captures the intuition that if a dataset has a good
clustering solution with respect to the current k, then
merging any two clusters in this solution should incur
a large k-means cost.

Definition 4 (Weak-deletion stability [4]). Let
{pi,i € [k]} denote the centers in the optimal k-means
solution, with k-means cost OPT. Let OPT( =7 de-
note the cost of the clustering obtained by removing
Wi and assigning all its points to p;. Fiz 6 > 0,
the dataset satisfies (1 + §)-weak deletion-stability if
OPT(=3) > (14 6)OPT,Vi # j.

In [4], weak-deletion stability is shown to be implied
by both the clusterability assumption in [28] and a
special case of the assumption in [6]. Here we show it
in turn implies the optimal k-means solution satisfies
center separability.

Proposition 3. If a dataset is (1 + 0)-weak-deletion
stable, then let T, be the optimal k-means solution, we
have for all v # s € [K], |lpr — psl® > st

= max{n,,ns}"
Furthermore, if § > f(1+ 1), then (X,T.) satisfies
d: . (f)-center separability.

Proof. Let r # s be any pair of indices from [k]. Let
T.s := T UTs, prs := m(Tys), and let A denote
the increase in k-means cost by merging T, T;.. Then
A= ¢(Trs)_¢(Ts) _¢(Tr) = ¢(ﬂrsv Ts)+¢(,ufrsa Tr)_
Ppss Ts) =D, Tr) = s || prs — s 1P 00 | s — o |* <
(s = msll® + llprs — g1 *) (ns + ). The first equal-
ity uses the decomposability of k-means cost over dis-
joint sets T, and Ty, and the second is by Lemma 4.

Now note that p,, = %, SO s is on the seg-

ment joining (a convex combination of) w, and pus,

e |lprs — psll + lptrs — prll = [lps — prl|. Hence,
A < 2|ps — prl|?(ns +n,). Since (X, Ay) is (1 + 6)-
weak-deletion stable, we have A > §¢,. Therefore,

2| s — pr||? max{ng, n,.} > 0. and the first statement
follows. The second statement follows by substituting
the definition of « into the bound. O

8 Appendix B: proofs

Proof of Lemma 1. Suppose 3A, s.t. Vs € [k], ||vs —
m(A)|| > m\/@. Consider ¢(Co; Ar) =
Yz, Iz = Co(@)|? = Xoca, 1(Colz) — m(Ar)) —
(x — m(Ar))HQ > erAr |\C’0(:v)727n(A,.)H2 _
m(4,)]?
than W\/@ away from m(A,), ¢(Co; Ar) >
A CEREE = e, Nl —m(AD|? > (a4 1)o(4) -

d(A) = gd(A) > gdopt, where ¢op; denotes the op-
timal cost, contradicting the fact that Cjy is a g-
approximation solution. O

|z —
. Since all centroids in C are at distance more

Proof of Lemma 2. ||x — il > 12— vall — llts — ]| >
Hvs — vyl = || s — vs]|, since z is assigned to S, by the
Voronoi partition induced by {v}. Since ||v, — vs]| =
Ve — b+ o — prs + s = Vs || > [[pr — sl = [[vs — sl —
[V —par || > (1—=27¢) |12 — pas]]. This implies ||z —pu, || >
(3= tr—prsl|— lpts—ll > (5 =23t —pis . For,
lo—ell < v+ 0] < e =]+ -] <
|t —ve ||+ ||z — s ||+ || 2s —vs|| - Note the first statement
also implies (ﬁ—Q)HMl—VlH < |lz—psl|, Vi € [k]. Our

result follows after rearrangement. O
Proof. Combining the assumption on ||p, — sl
with the first statement of Lemma 2, we get
Pouenis(3 — 2m) 22 L= < ngs TN S |(5 = 270) 2]l —
MS”2 Zr;ﬁs ZA . €T.NS, ( 2%) e — ,u3||2 <
Zr;és ZA . €TsNS, lAi — :“s”2 < Qs So pour <

W Similarly, p5,ns(3 — 2v)%y 2¢* =

b5
27‘755 pfn(r)ns(ﬁ - 2715)2 2775 S Zr#s
m|? < ¢, implying pf,, < T 77

O

Proof of Theorem 1. Fix any r, Vs # r, Al
ﬁtv(b*(\/% + \/11*5) = Bt%f\/ (b*(% %)
ﬁt%H,uT ts||. Hence v < ﬁj} < max{g,fz} < %we
can apply Lemma 3 and get pf, < 7(174%)2f27 and
Prue < m Consider any Ty C V(us),s # 7.
Since m(Ts N S,) C V(v,), by Lemma 2 |m(Ts N
S?") - /LSH > (1 - 4’Yt)Hm(Ts N Sr) - UTH' It’s
easy to check pj, + pp,; < 5. Applying Lemma 5

IN A
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8 Vo . __8f Vo
(1—4Zt)2f Ve (f- 4,62) N

max{478f7 464 1} <1

Since 0 < 4& <

for any f3; and 7 in the range

8  us-
we consider, we can always upper bound a7 us
8

ing (1— 4max{4'y8 },4%%})2]”'
If £ <L, then 0 < 48, g% £ 8o (f —4B,)? >
(f=4)?=f*(1-3%)% and t tter is lower bounded

1 *
by 322%. Thus, AL 133ir Y
If ’y% < 16, then we can similarly get Aff! < 192108
Finally, if §7 > £, we get (f—46:)* > f*(1-$1)* >
ingz So At < 8f Vs 128 0

16 fz\/ﬁ_ E

Proof of Theorem 2. By Lemma 1, after seeding Al <

f
8

algorithm until convergence, we will obtain a solution

st. AT < 28 [e

1 < g3, we get Pm*’ﬂZm < W < g Vre
[k]. Hence, d(T*,ST) = Zre (k] ISy A T =2 (pin +
Pout)ir < 57 2y 1ir = 51 -

%, Vr € [k]. Applying Theorem 1, running Lloyd’s

Then applying Lemma 3 with

Proof of Lemma 6. Consider the graph Gy,ax obtained
by adding all edges in E}, to G. Clearly, Giax has k
connected components, where each component corre-
sponds to a vertex cluster V,* for some r € k. Adding
any more edges from E},, to Gmax will reduce the
number of components to k — 1. Furthermore, any
e € B}, can only be added to Ggy, after all edges in
E}, are added. This means the algorithm must stop
before any edges in E%,, are added. This in turn im-
plies the final solution Ggy, if not equal to Ga.x, can
be obtained by removing edges in G ax. Since remov-
ing edges can only maintain or disconnect existing con-
nected components and Ggr has the same number of
connected components as that of Giax, Gsr, must have
exactly the same k connected components as those of
Gmax, thus each component V¢, of Gsy corresponds
to exactly one cluster V;* for some 7. O

Proof. To prove Lemma 7, we first show without any
assumption, if we sample X i.i.d. uniformly at ran-
dom, then for each target cluster T, if v; € T,., then
|l — g || satisfies the bound in A with high probability.
Let q := HVi*HJrH2 we have 0 < g < maxycr, fo:U'THZ

2 T
and Elqlv; € T,] = M = % Then ap-
plying Hoeffding’s bound, we get condltlonlng on the
event {v; € T,.},

fo o 2[(f —1)&=2

Pr(q—Bq > (7-1)=) < exp(— 1~ Dy

n (maxzer, || = pr|[?)?

Substituting wpi, for every r and applying union
bound, we get Pr(A¢) < mexp(—2(4 — 1)%w?;).
Now the probability of a cluster 7). not being seeded
after m trials is (1 — p,.)™ < exp(—mp,). Apply-
ing union bound, we get Pr(B¢) < kexp(—mpmin)-
Applying union bound again, we get Pr(AN B) >
1 —mexp(—2(£ — 1)%w2;,) — kexp(—mpumin). O

1’1’1111

Proof of Lemma 8. Let (i) = =w(j) = r. Then

— el + vy = el < 23504/ Let
m(p) = t,m(q) = s. Then [y, — vyl > [ — psll —

llvp — el = [|vg — sl va¢*(\/%+\/%)—§\/%—
@w/% > %\/@(\/% + \/%) On the other hand, re-

,/n%gmin{

lvi = vl < [lvi

call @ := min,x, 7=,

so 27/ 55 < VIOl + 7).
get f\/> qﬁr(r \/%) Substituting this
bound on |lv; — V]|| and comparing it with the lower
bound on ||v, — gl completes the proof. O

1 1
we get vang? \Jang }7

. 1
Since f > —, we

Proof of Theorem 4. Consider A N B. Under this
event, we know that the ground-truth 7, induces a
non-degenerate k-clustering of {v;,7 € [m]}, which
we denote by {V*,r € [k]} with V* := T, Nn{v;,i €
[m]},Vr € [k]. In addition, Lemma 8 implies the bi-
partite edge sets Ef and EZ,, induced by {V*,r €
[k]} satisfies Ve, € Em,eg € Ex,;, wler) < w(ea).
Thus, by Lemma 6 if we apply Single-Linkage on
Go = (UreV;¥,0) until k& components remain, each
returned connected component S, corresponds to ex-
actly one cluster V*. In addition, with the seeding
guarantee by event A, Vr € [k],|m(VF) — ur] <

|v71;| ZuieV: vi—pr| < f\/ . Noting Pr(ANB) >
1—mexp(—2(£—1)%w2,)~ kexp(—mpmin) by Lemma

Inll’l

7 and m(V;*) = v completes the proof. O

Proof of Theorem 5. Consider
in the final solution. Its k-means cost, by
definition, is ¢({m(S,)}, ;) < o({u},5) =
¢({Mr}75r n Tr) + ¢({MT}7US75TST N Ts) By The-
orem 4 and our assumption on center separation,

v < \2/—; < %, we can apply Lemma 2 to get

¢({/~Lr}aus;ﬁr5r NTs) = Zs;ér erSTnTS |z — ,U*r||2 <
Zs;éereSrstu_%y”l’ — usl/*, by Lemma 2.
Since f > 16, we get W < 4. Summing over
all € [k], o({Sr,r € [k]}) < 22 o({p}, S N
T) + Z a— 47225;&2 OT, - Ns||2 <
(quﬁ({ur}s NT) + 30 D asr 2owes,om 1T —
sl) = X Ciesnr e — wl® +
Yspr wesoor 17— )} = HE, Yies,

each  cluster S,
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C.(2)|I?’} = 4¢. (C. is the set of optimal cen-
troids). O

proof of Corollary 1. We first find a sufficient condi-

tion for Algorithm 1 to have a 1 + e-approximation.

Note, as in the proof of Theorem 1, the approxima-
1

tion guarantee is upper bounded by (m)Q7 where

v < ‘2/—}7 So to have a 1 + e-guarantee, it suffices to
have (1_4127\/7)2 < 1+e¢, which holds if f = Q(Z%). Now

we find a sufficient condition for the success proba-
bility to be at least 1 — §. It suffices to require that
mexp(f2(£ - 1)2w?, ) < g and kexp(—mpmin) <

min s
%. So we need p:}in log% < m < %exp(2(£ -
1)2w?,,). Note for this inequality to be possible,
we also need 2 exp(2(4 — 1)%w2, ) > L log 2, im-
posing an additional constraint on f Taking log

on both sides and rearrange, we get ({ -1)?% >

L 1og(£198 %) Thys, it is sufficient for a 1 + e-
Womin g Dot . us, 1t 1S Ssulrclen or a €

approximati(r)nrlln to hold with probability at least 1 — 9
ﬁf:Q(l%&m%)+;>

o , and we choose m to be
min

in the interval [-1—1log 2, exp(2(4 — 1)%w2,)]. O

9 Appendix C: details on the
generation of synthetic data

The clusterability of each dataset is controlled by three
parameters (e, o, u), where € € [0, 1] controls the frac-
tion of outliers, i.e., those far away from any center,
a € [0,1] controls the degree of centroid separation
(the centroids become more separated as « increases),
u € [0, 00) controls the degree of balance of the cluster
sizes in the ground-truth clustering (v is the symmet-
ric Dirichlet prior for the multinomial distribution; the
higher u is, the more balanced the cluster sizes will
likely be). Note the parametrization of clusterabil-
ity here does not correspond exactly to our cluster-
ability assumption, but incorporates more parameters.
In particular, fixing dimension d, number of clusters?,
k = 2d, and total number of points n, we first fix the
2d vertices of a d-dimensional cross-polytope as our
ground-truth centroids. Then we generate the num-
bers of points for each cluster, ny,...,ng, such that
S°¥ . ni = n, where n; is sampled from a multinomial
distribution with parameter 6, with u characterizing
the sparsity of 6. Then for each centroid, we generate
a set of kK — 1 linear constraints based on our center
separability condition (i.e., kK — 1 hyperplanes cutting
through the lines that join this centroid to the £ — 1
other centroids) and parameter a.

“In the experiments, we restrict our attention to the
case d < k.
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