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7 Appendix A: a comparison to
previous assumptions

In this section, we compare our clusterability assump-
tion with those made previously in two lines of work:
the work of [21, 5], and the work of [4]. While the
assumptions in [21, 5] were shown to be weaker than
many existing probabilistic assumptions, the assump-
tion in [4] was shown to be weaker than some deter-
ministic clusterability assumptions in the literature.
We show that for d < k, the assumptions in [21, 5]
are stronger than ours, and the assumption in [4] is
stronger than ours in general.

Proximity condition in [21] implies center sep-
arability in [5]

Proposition 2. Theorem 2.2 of [21] only holds for ✏ <
nmin
n

, and under this constraint, any dataset-solution
pair (X,T⇤) that satisfies (dK

r

, ✏)-proximity condition
must satisfy dA

r

-center separability for the same dA
r

=
dK
r

.

To prove the proposition, we first show that in the
proximity condition of [21], ✏ must be upper bounded
by nmin

n

, i.e., the number of bad points cannot exceeds
n
min

, the size of the smallest cluster. Then we show
under this condition, the (d

r

, ✏)-proximity condition
implies d

r

-center separation for the same d
r

.

The need of an upper bound on ✏ is not discussed in
neither of the work [21]. Here we show for Lloyd’s
algorithm to converge to a non-degenerate solution,
i.e., finding k non-empty clusters, which is a necessary
condition for Theorem 2.2 in [21] to hold, we need
✏ < nmin

n

regardless of how large d
r

becomes.

Lemma 9. For any fixed d
rs

:= d
r

+ d
s

> 0 and
0 < � < d

rs

6

, let (X,T⇤) satisfy (d
r

, ✏)-clusterability
with ✏n � n

min

. Then there exists seeding {⌫} and
(X,T⇤) with max

s2[k]

kµ
s

� ⌫
s

k = �, such that if we
apply Lloyd’s algorithm on (X, {⌫}) until convergence,
it returns a degenerate solution.

Proof. Let (X,T⇤) be a dataset satisfying (d
r

, ✏)-

µ
1

⌫
1

x̂
µ
2

⌫
2�

�

3

Figure 3: Two clusters in a bad instance with ✏n �
n
min

: the solid black points are ground-truth cen-
troids; the red points are in T

2

, which are closer to
⌫
1

than to ⌫
2

.

clusterability with ✏n � n
min

. Assume it contains
three clusters, T

1

, T
2

, T
3

s.t. n
2

= n
min

= 2 and both
points in T

2

are within the ✏n bad points, i.e., they
don’t satisfy the condition in Definition 1. We can
assume the relation between T

2

, T
3

are symmetric to
that of T

1

, T
2

(which ensures µ
2

is the mean of T
2

).
We only focus on T

1

, T
2

(Figure 3) since the case for
T
2

, T
3

is similar. Let both seeds ⌫
1

, ⌫
2

fall on the line
joining µ

1

, µ
2

, and 0 = kµ
2

� ⌫
2

k  kµ
1

� ⌫
1

k = �
and let kµ

1

� µ
2

k = d > 6�. Furthermore, 8x 2 T
2

,
kx̂ � µ

2

k = d

2

� �

3

. So kx̂ � ⌫
2

k � d

2

� �

3

but
kx̂ � ⌫

1

k  d

2

+ �

3

� � < kx̂ � ⌫
2

k. Thus, x in T
2

is assigned to S
1

. Now applying the centroid up-

date, the mean of S
1

is
�4

d

2+
�

3
5

, whose distance to x̂ is
�

3

� �4

d

2+
�

3
5

= 2d

5

+ 4�

15

. This is smaller than kx̂� ⌫
2

k,
since d > 6�. Then the clustering assignment does not
change, and the same holds for S

3

, so the algorithm
stops and the cluster corresponding to µ

2

vanishes.

Lemma 9 shows if ✏n � n
min

, then in general no matter
how good the seeding guarantee is, Lloyd’s algorithm
may produce empty clusters. Next, we show (dK

r

, ✏)-
proximity condition with ✏n < n

min

implies dA
r

-center
separability.

Lemma 10. If (X,T⇤) satisfies (d
r

, ✏)-proximity con-
dition with ✏n < n

min

, then it satisfies d
r

-center sepa-
rability.
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Proof. Since ✏n < n
min

, for any cluster T
r

, r 2 [k],
9x 2 T

r

s.t. x satisfies the proximity condition, i.e.,
kx̂ � µ

r

k  kx̂ � µ
s

k � d
rs

, for any s 6= r, where
d
rs

:= d
r

+d
s

. Since kµ
r

�µ
s

k � kx̂�µ
s

k�kx̂�µ
r

k,
we know all pairs of centroids are separated by at least
d
rs

.

Let d⇤
rs

(f) := f
p
�⇤(

1p
n

r

+ 1p
n

s

), with f = ⌦(1). By

Lemma 9 and 10, (d⇤
rs

(f), ✏)-clusterability implies our
clusterability assumption. Using this relation, we can
indirectly compare our clusterability with KK and AS
clusterability.

Unlike KK or AS clusterabiity, which depends on kX�
C⇤k, the maximal mean-departure of the entire dataset
along one direction, (d⇤

rs

(f), ✏)-clusterability depends
on

p
�⇤. Fix T⇤ and the corresponding C⇤, since kX�

C⇤k  kX � C⇤kF =
p
�⇤ 

p
rank(X � C⇤)kX �

C⇤k 
p
2kkX � C⇤k, when d  k, our assumption

is (a factor of ⇥(
p
k)) weaker than KK and may be

stronger than AS clusterability.

Weak-deletion stability Weak-deletion stability
[4] captures the intuition that if a dataset has a good
clustering solution with respect to the current k, then
merging any two clusters in this solution should incur
a large k-means cost.

Definition 4 (Weak-deletion stability [4]). Let
{µ

i

, i 2 [k]} denote the centers in the optimal k-means
solution, with k-means cost OPT . Let OPT (i!j) de-
note the cost of the clustering obtained by removing
µ
i

and assigning all its points to µ
j

. Fix � > 0,
the dataset satisfies (1 + �)-weak deletion-stability if
OPT (i!j) > (1 + �)OPT, 8i 6= j.

In [4], weak-deletion stability is shown to be implied
by both the clusterability assumption in [28] and a
special case of the assumption in [6]. Here we show it
in turn implies the optimal k-means solution satisfies
center separability.

Proposition 3. If a dataset is (1 + �)-weak-deletion
stable, then let T⇤ be the optimal k-means solution, we
have for all r 6= s 2 [k], kµ

r

� µ
s

k2 � ��⇤
max{n

r

,n

s

} .

Furthermore, if � > f(1 + 1

↵

), then (X,T⇤) satisfies
d⇤
rs

(f)-center separability.

Proof. Let r 6= s be any pair of indices from [k]. Let
T
rs

:= T
r

[ T
s

, µ
rs

:= m(T
rs

), and let � denote
the increase in k-means cost by merging T

s

, T
r

. Then
� := �(T

rs

)��(T
s

)��(T
r

) = �(µ
rs

, T
s

)+�(µ
rs

, T
r

)�
�(µ

s

, T
s

)��(µ
r

, T
r

) = n
s

kµ
rs

�µ
s

k2+n
r

kµ
rs

�µ
r

k2 
(kµ

rs

� µ
s

k2 + kµ
rs

� µ
r

k2)(n
s

+ n
r

). The first equal-
ity uses the decomposability of k-means cost over dis-
joint sets T

r

and T
s

, and the second is by Lemma 4.

Now note that µ
rs

= µ

s

n

s

+µ

r

n

r

n

s

+n

r

, so µ
rs

is on the seg-
ment joining (a convex combination of) µ

r

and µ
s

,
i.e., kµ

rs

� µ
s

k + kµ
rs

� µ
r

k = kµ
s

� µ
r

k. Hence,
�  2kµ

s

� µ
r

k2(n
s

+ n
r

). Since (X,A⇤) is (1 + �)-
weak-deletion stable, we have � � ��⇤. Therefore,
2kµ

s

�µ
r

k2 max{n
s

, n
r

} � ��⇤ and the first statement
follows. The second statement follows by substituting
the definition of ↵ into the bound.

8 Appendix B: proofs

Proof of Lemma 1. Suppose 9A
r

s.t. 8s 2 [k], k⌫
s

�
m(A

r

)k >
p
2g + 2

q
�(A)

|A
r

| . Consider �(C
0

;A
r

) =
P

x2A

r

kx � C
0

(x)k2 =
P

x2A

r

k(C
0

(x) � m(A
r

)) �
(x � m(A

r

))k2 �
P

x2A

r

kC0(x)�m(A

r

)k2

2

� kx �
m(A

r

)k2. Since all centroids in C
0

are at distance more

than
p
2g + 2

q
�(A)

|A
r

| away from m(A
r

), �(C
0

;A
r

) >

|A
r

| (2g+2)�(A)

2|A
r

| �
P

x2A

r

kx�m(A
r

)k2 � (g+1)�(A)�
�(A) = g�(A) � g�

opt

, where �
opt

denotes the op-
timal cost, contradicting the fact that C

0

is a g-
approximation solution.

Proof of Lemma 2. kx�µ
s

k � kx� ⌫
s

k�kµ
s

� ⌫
s

k �
1

2

k⌫
s

�⌫
r

k�kµ
s

�⌫
s

k, since x is assigned to S
r

by the
Voronoi partition induced by {⌫}. Since k⌫

r

� ⌫
s

k =
k⌫

r

�µ
r

+µ
r

�µ
s

+µ
s

�⌫
s

k � kµ
r

�µ
s

k�k⌫
s

�µ
s

k�
k⌫

r

�µ
r

k � (1�2�
t

)kµ
r

�µ
s

k. This implies kx�µ
s

k �
( 1
2

��
t

)kµ
r

�µ
s

k�kµ
s

�⌫
s

k � ( 1
2

�2�
t

)kµ
r

�µ
s

k. For 2,
kx�µ

r

k  kµ
r

�⌫
r

k+kx�⌫
r

k  kµ
r

�⌫
r

k+kx�⌫
s

k 
kµ

r

�⌫
r

k+kx�µ
s

k+kµ
s

�⌫
s

k. Note the first statement
also implies ( 1

2�

t

�2)kµ
l

�⌫
l

k  kx�µ
s

k, 8l 2 [k]. Our
result follows after rearrangement.

Proof. Combining the assumption on kµ
r

� µ
s

k
with the first statement of Lemma 2, we get
⇢s
out

n
s

( 1
2

� 2�
t

)2y2 �⇤
n

s


P

r 6=s

|T
s

\S
r

|( 1
2

� 2�
t

)2kµ
l

�
µ
s

k2 =
P

r 6=s

P
A

i

2T

s

\S

r

( 1
2

� 2�
t

)2kµ
l

� µ
s

k2 P
r 6=s

P
A

i

2T

s

\S

r

kA
i

� µ
s

k2  �⇤. So ⇢s
out


4

(1�4�

t

)

2
y

2 . Similarly, ⇢s
in

n
s

( 1
2

� 2�
t

)2y2 �⇤
n

s

=
P

r 6=s

⇢s
in

(r)n
s

( 1
2

� 2�
t

)2y2 �

s

⇤
n

s


P

r 6=s

|S
s

\ T
r

|kµ
s

�
µ
l

k2  �⇤, implying ⇢s
in

 4

(1�4�

t

)

2
y

2 .

Proof of Theorem 1. Fix any r, 8s 6= r, �t

r

<
�
t

p
�⇤(

1p
n

r

+ 1p
n

s

) = �
t

1

f

f
p
�⇤(

1p
n

r

+ 1p
n

s

) 
�
t

1

f

kµ
r

� µ
s

k. Hence �
t

 �

t

f

 max{�

8

, 64

f

2 } < 1

8

,we

can apply Lemma 3 and get ⇢r
in

< 4

(1�4�

t

)

2
f

2 , and

⇢r
out

< 4

(1�4�

t

)

2
f

2 . Consider any T
s

⇢ V (µ
s

), s 6= r.

Since m(T
s

\ S
r

) ⇢ V (⌫
r

), by Lemma 2 km(T
s

\
S
r

) � µ
s

k � (1 � 4�
t

)km(T
s

\ S
r

) � µ
r

k. It’s
easy to check ⇢r

in

+ ⇢r
out

< 1

2

. Applying Lemma 5

with R = 1 � 4�
t

yields �t+1

r

 8

(1�4�

t

)

2
f

p
�⇤p
n

r
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(1�4

�

t

f

)

2
f

p
�⇤p
n

r

= 8f

(f�4�

t

)

2

p
�⇤p
n

r

. Since 0  4�

t

f



max{4� f

8

1

f

, 4 64

f

1

f

}  1

2

for any �
t

and � in the range

we consider, we can always upper bound 8

(1�4

�

t

f

)

2
f

us-

ing 8

(1�4max{4� f

8
1
f

,4

64
f

1
f

})2f .

If f

16

 � f

8

, then 0  4�
t

 �f

2

< f

2

. So (f � 4�
t

)2 �
(f� �f

2

)2 = f2(1� �

2

)2 and the latter is lower bounded

by 322 1

4

. Thus, �t+1

r

 f

32

p
�⇤p
n

r

 �

2

f

8

p
�⇤p
n

r

.

If � f

8

< f

16

, then we can similarly get �t+1

r

 128

9f

.

Finally, if 128

9f

� � f

8

, we get (f�4�
t

)2 � f2(1� 64

f

2 )2 >
15

2

16

2 f2. So �t+1

r

 8f

152

162
f

2

p
�⇤p
n

r

 128

9f

.

Proof of Theorem 2. By Lemma 1, after seeding �1

r

<
f

8

q
�⇤
n

r

, 8r 2 [k]. Applying Theorem 1, running Lloyd’s

algorithm until convergence, we will obtain a solution

s.t. �T

r

 128

9f

q
�⇤
n

r

. Then applying Lemma 3 with

�
T

 128

9f

2 , we get ⇢r
in

+⇢r
out

 8

(1� 4⇤128
9f2 )

2
f

2  81

8f

2 , 8r 2
[k]. Hence, d(T⇤, ST

) :=
P

r2[k]

|S
r

4 T
r

| =
P

r

(⇢r
in

+

⇢r
out

)n
r

 81

8f

2

P
r

n
r

= 81

8f

2n.

Proof of Lemma 6. Consider the graph G
max

obtained
by adding all edges in E⇤

in

to G
0

. Clearly, G
max

has k
connected components, where each component corre-
sponds to a vertex cluster V ⇤

r

for some r 2 k. Adding
any more edges from E⇤

out

to G
max

will reduce the
number of components to k � 1. Furthermore, any
e 2 E⇤

out

can only be added to G
SL

after all edges in
E⇤

in

are added. This means the algorithm must stop
before any edges in E⇤

out

are added. This in turn im-
plies the final solution G

SL

, if not equal to G
max

, can
be obtained by removing edges in G

max

. Since remov-
ing edges can only maintain or disconnect existing con-
nected components and G

SL

has the same number of
connected components as that ofG

max

, G
SL

must have
exactly the same k connected components as those of
G

max

, thus each component V r

SL

of G
SL

corresponds
to exactly one cluster V ⇤

r

for some r.

Proof. To prove Lemma 7, we first show without any
assumption, if we sample X i.i.d. uniformly at ran-
dom, then for each target cluster T

r

, if ⌫
i

2 T
r

, then
k⌫

i

�µ
r

k satisfies the bound in A with high probability.
Let q := k⌫

i

�µ
r

k2, we have 0  q  max
x2T

r

kx�µ
r

k2

and E[q|⌫
i

2 T
r

] =
P

x2T

r

kx�µ

r

k2

n

r

= �

r

⇤
n

r

. Then ap-
plying Hoe↵ding’s bound, we get conditioning on the
event {⌫

i

2 T
r

},

Pr(q�Eq � (
f

4
�1)

�r

⇤
n
r

)  exp(�
2[( f

4

� 1)�
r

⇤
n

r

]2

(max
x2T

r

kx� µ
r

k2)2 )

Substituting w
min

for every r and applying union
bound, we get Pr(Ac)  m exp(�2( f

4

� 1)2w2

min

).
Now the probability of a cluster T

r

not being seeded
after m trials is (1 � p

r

)m  exp(�mp
r

). Apply-
ing union bound, we get Pr(Bc)  k exp(�mp

min

).
Applying union bound again, we get Pr(A \ B) �
1�m exp(�2( f

4

� 1)2w2

min

)� k exp(�mp
min

).

Proof of Lemma 8. Let ⇡(i) = ⇡(j) = r. Then

k⌫
i

� ⌫
j

k  k⌫
i

� µ
r

k + k⌫
j

� µ
r

k  2
p
f

2

q
�

r

⇤
n

r

. Let

⇡(p) = t,⇡(q) = s. Then k⌫
p

� ⌫
q

k � kµ
t

� µ
s

k �
k⌫

p

�µ
t

k�k⌫
q

�µ
s

k � f
p
�⇤(

1p
n

t

+ 1p
n

s

)�
p
f

2

q
�

t

⇤
n

t

�
p
f

2

q
�

s

⇤
n

s

> f

2

p
�⇤(

1p
n

t

+ 1p
n

s

). On the other hand, re-

call ↵ := min
r 6=s

n

r

n

s

, we get
q

1

n

r

 min{ 1p
↵n

t

, 1p
↵n

s

},

so 2
p
f
q

�

r

⇤
n

r


p
f�r

⇤(
1p
↵n

t

+ 1p
↵n

s

). Since f > 1

↵

, we

get
p
f
q

�

r

⇤
n

r

 f

2

p
�r

⇤(
1p
n

t

+ 1p
n

s

). Substituting this

bound on k⌫
i

� ⌫
j

k and comparing it with the lower
bound on k⌫

p

� µ
q

k completes the proof.

Proof of Theorem 4. Consider A \ B. Under this
event, we know that the ground-truth T⇤ induces a
non-degenerate k-clustering of {⌫

i

, i 2 [m]}, which
we denote by {V ⇤

r

, r 2 [k]} with V ⇤
r

:= T
r

\ {⌫
i

, i 2
[m]}, 8r 2 [k]. In addition, Lemma 8 implies the bi-
partite edge sets E⇤

in

and E⇤
out

induced by {V ⇤
r

, r 2
[k]} satisfies 8e

1

2 E⇤
in

, e
2

2 E⇤
out

, w(e
1

) < w(e
2

).
Thus, by Lemma 6 if we apply Single-Linkage on
G

0

= ([
r2[k]

V ⇤
r

, ;) until k components remain, each
returned connected component S

r

corresponds to ex-
actly one cluster V ⇤

r

. In addition, with the seeding
guarantee by event A, 8r 2 [k], km(V ⇤

r

) � µ
r

k 
1

|V ⇤
r

|
P

⌫

i

2V

⇤
r

k⌫
i

�µ
r

k 
p
f

2

q
�

r

⇤
n

r

. Noting Pr(A\B) �
1�m exp(�2( f

4

�1)2w2

min

)�k exp(�mp
min

) by Lemma
7 and m(V ⇤

r

) = ⌫⇤
r

completes the proof.

Proof of Theorem 5. Consider each cluster S
r

in the final solution. Its k-means cost, by
definition, is �({m(S

r

)}, S
r

)  �({µ
r

}, S
r

) =
�({µ

r

}, S
r

\ T
r

) + �({µ
r

},[
s 6=r

S
r

\ T
s

). By The-
orem 4 and our assumption on center separation,

� 
p
f

2f

< 1

4

, we can apply Lemma 2 to get

�({µ
r

},[
s 6=r

S
r

\ T
s

) =
P

s 6=r

P
x2S

r

\T

s

kx � µ
r

k2 P
s 6=r

P
x2S

r

\T

s

1

(1�4�)

2 kx � µ
s

k2, by Lemma 2.

Since f > 16, we get 1

(1�4�)

2  4. Summing over

all r 2 [k], �({S
r

, r 2 [k]}) 
P

r

�({µ
r

}, S
r

\
T
r

) +
P

r

1

(1�4�)

2

P
s 6=r

P
x2S

r

\T

s

kx � µ
s

k2 
4(
P

r

�({µ
r

}, S
r

\ T
r

) +
P

r

P
s 6=r

P
x2S

r

\T

s

kx �
µ
s

k2) = 4{
P

r

(
P

x2S

r

\T

r

kx � µ
r

k2 +P
s 6=r

P
x2S

r

\T

s

kx � µ
s

k2)} = 4{
P

r

P
x2S

r

kx �



On Lloyd’s algorithm: new theoretical insights for clustering in practice

C⇤(x)k2} = 4�⇤ (C⇤ is the set of optimal cen-
troids).

proof of Corollary 1. We first find a su�cient condi-
tion for Algorithm 1 to have a 1 + ✏-approximation.
Note, as in the proof of Theorem 1, the approxima-
tion guarantee is upper bounded by ( 1

1�4�

)2, where

� 
p
f

2f

. So to have a 1 + ✏-guarantee, it su�ces to

have ( 1

1�4

p
f

2f

)2  1+ ✏, which holds if f = ⌦( 1

✏

2 ). Now

we find a su�cient condition for the success proba-
bility to be at least 1 � �. It su�ces to require that
m exp(�2( f

4

� 1)2w2

min

)  �

2

and k exp(�mp
min

) 
�

2

. So we need 1

pmin
log 2k

�

 m  �

2

exp(2( f
4

�
1)2w2

min

). Note for this inequality to be possible,
we also need �

2

exp(2( f
4

� 1)2w2

min

) � 1

pmin
log 2k

�

, im-
posing an additional constraint on f . Taking log
on both sides and rearrange, we get ( f

4

� 1)2 �
1

2wmin
log(

2
�

log

2k
�

pmin
). Thus, it is su�cient for a 1 + ✏-

approximation to hold with probability at least 1 � �

if f = ⌦

✓q
log(

1
�

log

k

�

pmin
) + 1

✏

2

◆
, and we choose m to be

in the interval [ 1

pmin
log 2k

�

, �

2

exp(2( f
4

� 1)2w2

min

)].

9 Appendix C: details on the
generation of synthetic data

The clusterability of each dataset is controlled by three
parameters (✏,↵, u), where ✏ 2 [0, 1] controls the frac-
tion of outliers, i.e., those far away from any center,
↵ 2 [0, 1] controls the degree of centroid separation
(the centroids become more separated as ↵ increases),
u 2 [0,1) controls the degree of balance of the cluster
sizes in the ground-truth clustering (u is the symmet-
ric Dirichlet prior for the multinomial distribution; the
higher u is, the more balanced the cluster sizes will
likely be). Note the parametrization of clusterabil-
ity here does not correspond exactly to our cluster-
ability assumption, but incorporates more parameters.
In particular, fixing dimension d, number of clusters4,
k = 2d, and total number of points n, we first fix the
2d vertices of a d-dimensional cross-polytope as our
ground-truth centroids. Then we generate the num-
bers of points for each cluster, n

1

, . . . , n
k

, such thatP
k

i=1

n
i

= n, where n
i

is sampled from a multinomial
distribution with parameter ✓, with u characterizing
the sparsity of ✓. Then for each centroid, we generate
a set of k � 1 linear constraints based on our center
separability condition (i.e., k � 1 hyperplanes cutting
through the lines that join this centroid to the k � 1
other centroids) and parameter ↵.

4
In the experiments, we restrict our attention to the

case d < k.
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