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Abstract

We provide new analyses of Lloyd’s algorithm
(1982), commonly known as the k-means
clustering algorithm. Kumar and Kannan
(2010) showed that running k-SVD followed
by a constant approximation k-means algo-
rithm, and then Lloyd’s algorithm, will cor-
rectly cluster nearly all of the dataset with re-
spect to the optimal clustering, provided the
dataset satisfies a deterministic clusterability
assumption. This method is viewed as the
“Swiss Army knife” for clustering problems,
subsuming popular generative models such as
Gaussian mixtures. However, it is tailored to
high dimensional data, i.e., when d >> k.

We analyze Lloyd’s algorithm for general d
without using the spectral projection, which
leads to a weaker assumption in the case
d < k. Surprisingly, we show that a sim-
ple and scalable heuristic that combines ran-
dom sampling with Single-Linkage serves as a
good seeding algorithm for Lloyd’s algorithm
under this assumption. We then study stop-
ping criteria for Lloyd’s algorithm under the
lens of clusterability, accompanied by con-
trolled simulations.

1 Introduction

Despite the growing number of new clustering al-
gorithms, many practitioners stick with a few
heuristics—Lloyd’s algorithm [25] being one of them
[18, 34]. However, the current level of theoretical un-
derstanding of this algorithm does not match the pop-
ularity it enjoys. Lloyd’s algorithm is often associ-
ated with k-means clustering since Lloyd’s update can
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be viewed as a local descent for the k-means objec-
tive [9]. The k-means objective is NP-hard to opti-
mize [26], though various algorithms have been shown
to approximate it [20, 3]. On the other hand, addi-
tional information generally referred to as the “clus-
terability” of the dataset has been shown to help with
both the design and analysis of clustering algorithms.
The argument that, for a practitioner, it only makes
sense to perform clustering if a hidden clustering-like
structure underlies a dataset, has been used to justify
clusterability assumptions [6, 1, 13, 7]. Following the
same logic, when one believes such structure exists, it
is more reasonable to cast the task of clustering as that
of finding the hidden structure rather than optimizing
an objective [6]. We study Lloyd’s algorithm beyond
the scope of k-means clustering, with the goal of un-
covering the hidden cluster structure, which we refer
to as the “ground-truth,” following convention [6].

In computer vision, Lloyd’s algorithm is widely used
for learning dictionaries [35, 22, 24], where each
learned centroid is treated as an dictionary item. In
such cases, centroids learned by Lloyd’s algorithm are
used to represent a dataset, and one usually learns
an “overcomplete” dictionary, where d � k [23, 8].
Recently, Lloyd’s algorithm was also shown to work
well empirically for unsupervised feature learning [11],
where a whitening step is speculated to be important
to its success in this context [11, 33]. We believe char-
acterizing conditions under which Lloyd’s algorithm
works well can shed light on these applications as well.

2 Preliminaries

Our clustering problem starts with a discrete dataset
X, an n by d matrix with each row a data point x ∈ X.
We assume X admits one (or more) ground-truth non-
degenerate k-clustering T∗ = {Ts, s ∈ [k]} 1. Let
ns := |Ts|,∀s ∈ [k], and let nmin := mins∈[k] ns and
nmax := maxs∈[k] ns. , which partitions X and in addi-
tion satisfies d∗rs(f)-center separability, defined below.

1We say a k-clustering is degenerate if any of its k clus-
ters are empty.
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Mappings Fix a point set Y , we let m(Y ) denote
the mean of Y . In general, each clustering assignment
A := {As, s ∈ [k]} induces a unique set of centroids
C = {m(As), s ∈ [k]}. For a ground-truth T∗, we
denote the induced centroids by µs := m(Ts),∀s ∈
[k]. Alternatively, fix a set of k centroids C, we let
C(·) denote a mapping C(x) := arg mincr∈C ‖x− cr‖.
This mapping induces a k-clustering X, i.e., a Voronoi
partition of X. We let V (cr) denote the Voronoi region
{x ∈ Rd, ‖x− cr‖ ≤ ‖x− cs‖,∀s 6= r}.

K-means cost For any subset of points Y , with re-
spect to an arbitrary set of k centroids C, we denote
its k-means cost by φ(C, Y ) :=

∑
y∈Y ‖y−C(y)‖2. For

a k-clustering A = {Ar} of X, we denote its k-means
cost with respect to an arbitrary set of k centroids C
by φ(C,A) :=

∑k
r=1 φ(C,Ar) (or simply φ(A) when

cr = m(Ar),∀cr ∈ C, r ∈ [k]). We let φr∗ := φ(µr, Tr),

and let φ∗ :=
∑k
r=1 φ

r
∗ denote the k-means cost of T∗

with respect to X.

Characterization of (X,T∗) Three properties of
the dataset-solution pair (X,T∗) are useful to our anal-
ysis. We use pmin := minr∈[k]

nr
n to characterize the

fraction of the smallest cluster in T∗ to the entire
dataset. We use α := minr 6=s

nr
ns

to characterize the
level of cluster balance in T∗ (0 < α ≤ 1 always holds;
α = 1 when the ground-truth is perfectly balanced).

We use wr :=
φr∗
nr

maxx∈Tr ‖x−µr‖2 to characterize the ratio

between average and maximal “spread” of cluster Tr,
and we let wmin := minr∈[k] wr.

Algorithm-related notation We analyze Lloyd’s
algorithm (Algorithm 1) using different seeding proce-
dures. In analyzing the t-th iteration of Lloyd’s

Algorithm 1 Lloyd’s algorithm

1: (Seeding) Select an initial set of k centroids C0

2: (Lloyd’s updates)
3: while Lloyd’s algorithm has not converged or the

stopping criterion is not met do
4: St ← {V (νr) ∩X, νr ∈ Ct−1, r ∈ [k]}
5: Ct ← {m(Sr), Sr ∈ St, r ∈ [k]}
6: end while

update, we let {νr, r ∈ [k]} denote the set of cen-
troids Ct−1 and ∆t

s := ‖µs − νs‖, and we let γt :=

maxs,r 6=s
∆t
s

‖µr−µs‖ . We let S := {Sr, r ∈ [k]} denote

the clustering St. Fix Ts, let ρsin :=
∑
r 6=s |Tr∩Ss|

ns
,

ρsout :=
∑
r 6=s |Ts∩Sr|

ns
, i.e., ρsin + ρsout captures the frac-

tion of misclassification in Ss with respect to Ts (we
use the word “misclassification” for clustering error
following [21]).

Our goal and clusterability assumption We aim
to show that under a sufficient clusterability assump-
tion Algorithm 1 finds a k-clustering of X, S =
{Sr, r ∈ [k]}, such that the clustering distance between
S and T∗, defined as the sum of symmetric set differ-
ences, d(T∗, S) :=

∑
r∈[k] minπ:[k]→[k] |Sπ(r) 4 Tr|, is

small (π is a permutation of [k]). The clusterability
assumption our analysis relies on is a special realiza-
tion of the following assumptions.

Definition 1 ((drs-center separability). A dataset-
solution pair (X,T∗) satisfies drs-center separability if
∀r ∈ [k], s 6= r, ‖µr−µs‖ ≥ drs, where drs is a distance
measure, a function, of pairwise clusters Tr, Ts, r 6= s.

In particular, we require (X,T∗) to satisfy d∗rs(f)-
center separability with d∗rs(f) := f

√
φ∗( 1√

nr
+ 1√

ns
).

2.1 Related work

Most existing analyses study upper and lower bounds
on the time complexity of Lloyd’s algorithm [17, 2, 16,
31]. For performance guarantees, Ostrovsky et al. [28]
modified the Lloyd’s update and showed that when
combined with a k-means++ seeding [3], a Lloyd-like
algorithm finds a (1+ε)-approximation to the k-means
objective on well-clusterable instances. On the other
hand, Kumar and Kannan [21] generalized the assump-
tions of mixture models [19, 32, 14] and proposed a
deterministic analog, which they show is weaker than
that in [28]. Under this assumption they showed the
k-SVD + constant k-means approximation +
Lloyd’s update scheme efficiently and correctly clus-
ters all but a k2ε-fraction of points with respect to the
ground-truth.

The clusterability assumption introduced in [21] car-
ries a geometric intuition. It demands that any two
clusters r and s in the ground-truth must be suffi-
ciently separated from each other, where the degree of
separation is measured by the difference between the
(projected) intra and inter cluster distances, in units
of dKr + dKs , with

dKr :=
ck√
nr
‖X − C‖

In the equation above, ‖ · ‖ denotes the spectral norm,
and we abuse the notation of the set of k-centroids, C,
by using it to represent a n by d matrix, whose i-th
row Ci = C(Xi). Formally, their assumption requires
the following:

Definition 2 ((dKr , ε)-proximity condition [21]). A
dataset-solution pair (X,T∗) satisfies (dKr , ε)-proximity
condition if at least a (1 − ε)-fraction of points in X
satisfy, ∀s,∀x ∈ Ts, ‖x̂ − µr‖ − ‖x̂ − µs‖ ≥ dKr + dKs
for any r 6= s, where x̂ is the projection of x onto the
line joining µr and µs.
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Note how the proximity condition becomes stronger as
c, k becomes larger. Subsequent work [5] introduced a
related center separation condition2, and reduced the
linear dependence of dKr on k by a factor of

√
k. For-

mally, they require ∀r ∈ [k], s 6= r

‖µr − µs‖ ≥ dAr + dAs (1)

with

dAr :=
c
√
k√
nr
‖X − C‖

The assumption can be viewed as a deterministic ana-
log of the earlier work on learning mixtures of Gaus-
sians (or other distributions), where the mean sepa-
ration between two Gaussians is measured by their
maximal standard deviations [19, 32, 14]; the spec-
tral norm can be viewed as an empirical counterpart
of maximal standard deviation. The reduction on the
dependence of k in dAr exploited the property of the
spectral subspace and the spectral norm, and relied
on an additional “ball k-means” pruning step before
the iterative application of Lloyd’s updates.

2.2 Our contributions

In Section 3, we analyze the original Lloyd’s algorithm
in general dimension without using the spectral projec-
tion, which leads to a weaker assumption than [21, 5]
when d < k. In Section 4, we devise a clustering algo-
rithm for Lloyd’s algorithm that satisfies the seeding
requirement for Lloyd’s algorithm in Section 3. In fact,
it achieves constant k-means approximation on its own
under our clusterability assumption. Notably, its per-
formance guarantee does not depend on the data size,
making it highly scalable for large datasets.

We next elaborate on how we achieved the improve-
ment over [21, 5] in Section 3. Both [21] and [5] focused
on the case d >> k, and used the spectral norm as a
measure of cluster separation. It is possible to directly
extend the analysis of [21] for general d, without us-
ing the spectral projection. In this case, the seeding
guarantee in Lemma 5.1 of [21] becomes (assuming the
data size is larger than both d and k):

|µr − νr| ≤ 20
√

2 max {d, k}‖X − C‖√
nr

For d < k, the original statement, which depends on
k, is recovered up to a constant factor

√
2. Then using

the proximity condition with possibly larger constant
c, one can obtain the convergence of Lloyd’s algorithm
for general d, without the spectral projection. How-
ever, in this case,

‖X − C‖F ≤
√

2k‖X − C‖ < 2k‖X − C‖
2In fact, we show (in the Appendix) that the proximity

condition implies the center separation assumption.

As a result, dKr and dAr both become rather large com-
pared to ‖X−C‖F , which notably is the square root of
the k-means cost of C on X. This leads us to address
the question of whether analogous results using Frobe-
nius norm as a separation measure can be achieved.

We found the answer to be positive. To adapt the re-
sult of [21] to ours using ‖X−C‖F , we modified three
parts of their analysis in Section 3: 1). Our Lemma
1 extends the seeding lemma in [21] to be compatible
with ‖X − C‖F . 2). Lemma 3 shows a small dis-
tance to the ground-truth centroids implies that the
misclassification error is small. Both follow smoothly
by distilling the analysis in Theorem 3.1 of [5]. 3).
The more interesting part is to show the other direc-
tion: a small misclassification error implies a small
distance to the ground-truth centroids. Both [21] and
[5] rely on the relation stated in Fact 1.3 of [5], which
has a tight

√
k dependence (see discussion in [5]). To

mitigate this dependence on k, [5] exploited the prop-
erty of the k-SVD subspace and spectral norm, and
added the “ball k-means” step to achieve a reduction
on the dependence of k in step 2). Instead, we directly
eliminate the dependence on k without modifying the
original Lloyd’s algorithm, via the decomposability of
k-means objective, i.e., the global k-means objective is
the sum of the k-means cost of each of the individual
clusters (our Lemma 5). As a result, our assumption,
formally stated as Definition 1, is of the form (1) with
dAr substituted by d∗r , with

d∗r =
c√
nr
‖X − C‖F

This is weaker than dKr , d
A
r for the same constant c

in the case d < k. The assumptions in [21, 5] and
our work all lead to similar iteration-wise convergence
result as in our Theorem 1, implying the geometric
convergence of Lloyd’s algorithm upon a good initial-
ization.

3 Analysis of global convergence

We present our analysis of Lloyd’s algorithm in a way
that corresponds to the seeding, clustering assignment,
and centroid update steps of Algorithm 1. This proof
framework builds on and simplifies that of [21, 5]. The
proofs of Lemmas 1,2, 3, Theorem 1 and Theorem 2
are similar to those in [21, 5]; we move them to the
Appendix.

The seeding phase For the seeding phase, we show
using any g-approximate k-means algorithms, the dis-
tance between the seeds and the mean of any k-
clustering {Ar, r ∈ [k]} can be bounded.

Lemma 1. Given a dataset X, and let C0 =
{ν1, . . . , νk} be the set of centroids produced by a g-
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approximate k-means algorithm, then for any cluster-
ing of X, denoted by A := {Ar, r ∈ [k]}, we have ∀Ar,
∃νr s.t. ‖νr −m(Ar)‖ ≤

√
2g + 2

√
φ(A)
|Ar| .

Lloyd’s update—the reassignment phase For
the clustering assignment step, we show a small dis-
tance between the current clustering centroids and
those in the ground-truth implies a small number of
misclassifications upon reassignment. Specifically, fix
any ground-truth cluster Ts, if γt is sufficiently small,
we show

• Any points added to Sr must not be close to an-
other centroid µs in the ground-truth (Lemma 2).

• ρsin and ρsout are upper bounded by γt (Lemma 3).

Lemma 2. If γt <
1
4 , then ∀r ∈ [k],∀x ∈ V (νr),

1. ‖x− µs‖ ≥ ( 1
2 − 2γt)‖µr − µs‖,∀s 6= r

2. ‖x− µr‖ ≤ 1
1−4γt

‖x− µs‖

The first statement of Lemma 2 in turn implies there
cannot be too many misclassified points of Ss if the
ground-truth is well clusterable, since otherwise they
would induce a k-means cost larger than φ∗.

Lemma 3. If γt <
1
4 , and if for some s ∈ [k], ∀r 6= s,

‖µs − µr‖ ≥ y
√
φ∗√
ns

, then ρsout ≤ 4
(1−4γt)2y2

and ρsin ≤
4

(1−4γt)2y2
.

Lloyd’s update—the mean-adjustment phase
Now we show a small number of misclassifications in
turn implies a smaller (or at least the same) centroidal
distance after the mean-adjustment phase. That is,
we upper bound ‖µs−m(Ss)‖ using ρout and ρin. We
achieve this through two observations: 1). The num-
ber of misclassified points is small. 2). The misclas-
sified points do not incur too much additional cost to
the k-means objective.

We first present a well known property of the k-means
objective, using which we can measure the distance
between any point c and the mean of a cluster Y using√
φ(c,Y )√
|Y |

as a unit.

Lemma 4 (Lemma 2.1 of [20]). For any point set
Y and any point c in Rd, φ(c, Y ) = φ(m(Y ), Y ) +
|Y |‖m(Y )− c‖2.

For Y ⊂ Ts, this further implies

‖m(Y )− µs‖ ≤
√
φs∗√
|Y |

and that

‖m(Y )− µs‖ ≤
√
|Ts \ Y |

√
φs∗

|Y |

These two inequalities are used in proving our main
lemma.

Lemma 5 (main lemma). Fix a target clustering Ts
and let Ss be a set of points created by removing ρsoutns
points from Ts (we denote these points by Ts→r) and
adding ρsin(r)ns points (Tr→s) from each cluster r 6= s.
If

• The added points satisfy ‖m(Tr→s) − µr‖ ≥
R‖m(Tr→s)− µs‖

• ρsin + ρsout <
1
2 ,where ρsin =

∑
r 6=s ρ

s
in(r)

Then ‖m(Ss)− µs‖ ≤ (
√

ρsout
ns

+ 1
R

√
ρsin
ns

)2
√
φ∗

Proof. ‖m(Ss) − µs‖ =

‖m(Ss∩Ts)|Ss∩Ts|+
∑
r 6=sm(Ss∩Tr)|Ss∩Tr|
|Ss| − µs‖ =

‖m(Ss∩Ts)ns(1−ρsout)+
∑
r 6=sm(Ss∩Tr)ρsin(r)ns

|Ss| − µs‖ ≤
ns(1−ρsout)‖m(Ss∩Ts)−µs‖

|Ss| +
∑
r 6=s

ρsin(r)ns
|Ss| ‖m(Ss ∩

Tr) − µs‖ ≤ 2ns(1−ρsout)‖m(Ss∩Ts)−µs‖
ns

+
∑
r 6=s

2ρsin(r)ns
ns

‖m(Ss∩Tr)−µs‖ ≤ 2(1−ρsout)‖m(Ss∩
Ts) − µs‖ +

∑
r 6=s

2ρsin(r)
R ‖m(Ss ∩ Tr) − µr‖

The second inequality uses the assumption
ρsin + ρsout < 1

2 and the last inequality uses the
first assumption. We have ‖m(Ss ∩ Ts) − µs‖ ≤√
ρsoutns

√
φs∗

ns(1−ρsout) and ‖m(Ss ∩ Tr) − µr‖ ≤
√
φr∗√

nsρsin(r)
.

So
∑
r 6=s

2ρsin(r)ns
Rns

‖m(Ss ∩ Tr) − µr‖ ≤
2

R
√
ns

∑
r 6=s

√
ρsin(r)

√
φr∗. Applying Cauchy

Schwarz inequality, we get
∑
r∈[k]

√
ρsin(r)

√
φr∗ ≤√∑

r∈[k] ρ
s
in(r)

√∑
r∈[k] φ

r∗ =
√
ρsinφ∗ Our statement

thus follows through.

Remark: Note this result alone does not depend on
our clusterability assumption. However, in order to
translate this bound into an upper bound on the ratio

∆t+1
s

‖µs−µr‖ , we would need the center separation to be of

the same order, i.e., lower bounded by Ω(
√
φ∗√
ns

).

Applying the reassignment and mean-adjustment
phases recursively, our first conclusion is when the
current solution is close to a well-clusterable solution
Lloyd’s algorithm converges rapidly.

Theorem 1. Assume there is a dataset-solution pair
(X,T∗) satisfying d∗rs(f)-center separability, with f >

32. If at iteration t, ∀r ∈ [k],∆t
r < βt

√
φ∗√
nr

with

βt < max{γ f8 , 128
9f } with γ < 1, then ∀r ∈ [k],∆t+1

r <

βt+1

√
φ∗√
nr

, with βt+1 < max{γ2
f
8 ,

128
9f }.
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Theorem 1 suggests when the maxr ‖νr − µr‖ is suffi-
ciently small, Lloyd’s update converges linearly to the
ground-truth centroids until it reaches a plateau-like
phase. Combining it with Lemma 1, we reach our main
conclusion.

Theorem 2. Assume (X,T∗) satisfies d∗rs(f)-center
separability with f > 32. If we cluster X using Al-
gorithm 1, where we choose a g-approximate k-means

algorithm with g < f2

128 − 1 for the seeding, and exe-
cute Lloyd’s update until convergence, then all but 81

8f2

fraction of the points will be correctly classified with
respect to T∗.

Remark: By Theorem 2, if f = Ω(
√
k), then using

a O(k)-approximate k-means algorithm for seeding in
Lloyd’s algorithm suffices to correctly cluster all but
O( 1

k )-fraction of points.

4 A simple and fast heuristic seeding

Since the goal of analyzing Lloyd’s algorithm is to jus-
tify the practical success of popular heuristics, requir-
ing it to be initialized by an approximation algorithm
seems unreasonable in this regard; most approxima-
tion algorithms to our knowledge are computationally
expensive and complicated to implement. After all, in
Section 3 as well as in [21, 5], the seeding algorithm
has been treated as a blackbox.

In this section, we leverage the same clusterability as-
sumption we made in analyzing Lloyd’s algorithm to
devise a simple and fast seeding algorithm. Algorithm
2, similar to the buckshot algorithm [12] which is used
in practice for text clustering, achieves a constant k-
means approximation under our clusterability assump-
tion as a standalone algorithm, and serves as a seed-
ing algorithm for Lloyd’s algorithm that satisfies the
requirement in Theorem 2. Moreover, the time com-
plexity of this algorithm is independent of the data
size, making it highly scalable to massive datasets.

The algorithm is based on uniform random sampling of
the dataset, a common seeding strategy for Lloyd’s al-
gorithm. However, its obvious drawback is that small
clusters may not be seeded while large clusters may
contain more than one seed. To ensure that each clus-
ter is seeded, it is natural to consider over-seeding, i.e.,
sampling m > k points from X. Then the challenge
becomes selecting k seeds from the sampled points.
We show Single-Linkage [15], a commonly used heuris-
tic (usually for hierarchical clustering [6]), can be used
to merge points that belong to the same ground-truth
cluster. Our main result for this section is that for
a well-clusterable dataset, the heuristic seeding pro-
cedure presented in Algorithm 2 followed by Lloyd’s
algorithm correctly classifies most of the dataset with

Algorithm 2 Heuristic seeding

1: {νi, i ∈ [m]} ← sample m points from X uniformly
at random with replacement

2: {S1, . . . , Sk} ←run Single-Linkage on {νi, i ∈ [m]}
until there are only k connected components left

3: C0 = {ν∗r , r ∈ [k]} ← take the mean of the points
in each connected component Sr, r ∈ [k]

significant probability.

Theorem 3. Assume (X,T∗) satisfies d∗rs(f)-center
separability with f > max{ 1

α , 32}. If we cluster X
using Algorithm 1, where we use Algorithm 2 for the
seeding step, and execute Lloyd’s update until conver-
gence to refine the solution, then with probability at
least 1−m exp(−2( f4 − 1)2w2

min)− k exp(−mpmin) all
but 81

8f2 fraction of the points will be correctly classified
with respect to T∗.

Remark: The success probability here doesn’t ap-
proach 1 as m → ∞. Instead, m should be carefully
chosen to be neither too large nor too small. For ex-
ample, when wmin and pmin are bounded away from
zero, and f = Ω(

√
k), then choosing m to be Θ(k) will

ensure a significant success probability (in this case, if
k, n → ∞, the success probability does approach 1 as
m→∞). Theorem 3 follows directly from Theorem 1
and Theorem 4.

Theorem 4. Assume (X,T∗) satisfies d∗rs(f)-center
separability with f > 1

α . If we obtain seeds {ν∗r , r ∈
[k]} by applying Algorithm 2 to X. Then ∀µr,∃ν∗r
s.t. ‖µr − ν∗r ‖ ≤

√
f

2

√
φr∗
nr

with probability at least

1−m exp(−2( f4 − 1)2w2
min)− k exp(−mpmin).

Proof idea: we first show that Single-Linkage has
the property of correctly identifying k connected com-
ponents of a graph G, provided for all edges of G, all
intra-cluster edges are shorter than any inter-cluster
edges. Then we show that the edge set E induced
by sample {νi} satisfies the condition with significant
probability, where each connected component {νr(j)}
corresponds to samples from the ground-truth cluster
Tr. Finally, taking the mean of points in each con-
nected component gives the desired result (the proofs
of Theorem 4 and its lemmas can be found in the Ap-
pendix).

Consider a complete graph G = (V,E). Any k-
clustering {V1, . . . , Vk} of the vertex set induces a bi-
partition of the edge set E = Ein ∪ Eout s.t. e =
(vi, vj) ∈ Ein if vi, vj ∈ Vr for some r ∈ [k], and
e = (vi, vj) ∈ Eout if vi ∈ Vr, vj ∈ Vs, r 6= s. Let
w(e) := ‖vi−vj‖, the correctness of Single-Linkage on
instances described above is formally stated below.
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Lemma 6. Assume a complete graph G = (V,E) ad-
mits a k-clustering {V ∗1 , . . . , V ∗k } of V with the induced
edge bi-partition E∗in, E

∗
out such that ∀e1 ∈ E∗in,∀e2 ∈

E∗out, we have w(e1) < w(e2). Then running Single-
Linkage on G0 := (V, ∅) until k-components left, re-
sults in a graph GSL such that for each connected com-
ponent, r, of GSL the vertex set, V rSL, corresponds to
exactly one cluster V ∗r of V .

Then Lemma 7 and 8 together imply that with signif-
icant probability, the ground-truth clustering induces
a non-degenerate k-clustering of {νi, i ∈ [m]}, repre-
sented as {{νi}∩Tr, r ∈ [k]}, which satisfies the prop-
erty required by Lemma 6.

Lemma 7. Let Tπ(i) denote the grounth-truth cluster a
sample νi belongs to. Define two events: A := {∀νi, i ∈
[m], ‖νi − µπ(i)‖ ≤

√
f

2

√
φ
π(i)
∗
nπ(i)
}, and B := {∀Tr, r ∈

[k], Tr ∩ {νi, i ∈ [m]} 6= ∅}. Then Pr(A ∩ B) ≥ 1 −
m exp(−2( f4 − 1)2w2

min)− k exp(−mpmin).

Lemma 8. For any νi ∈ {νi, i ∈ [m]}, let Tπ(i) denote
the ground-truth cluster it belongs to. If ∀νi ∈ {νi, i ∈
[m]}, ‖νi−µπ(i)‖2 ≤ f

4
φπ(i)
∗
nπ(i)

and f > 1
α . Then for any

i, j ∈ [m] s.t. π(i) = π(j), and for any p, q ∈ [m] s.t.
π(p) 6= π(q), ‖νi − νj‖ < ‖νp − νq‖.

4.1 Approximation guarantee for the
k-means problem

Additionally, we show that Algorithm 2 achieves con-
stant k-means approximation under an assumption
weaker than Definition 1.

Definition 3 (d∗rs(f)-weak center separability). A
dataset-solution pair (X,T∗) satisfies d∗rs(f)-weak cen-
ter separability if ∀r ∈ [k], s 6= r, ‖µr − µs‖ ≥ d∗rs,
where d∗rs = f(

√
φ1 + φ2)( 1√

nr
+ 1√

ns
), where φ1

and φ2 are the k-means cost of the largest and sec-
ond largest (w.r.t. k-means cost) clusters in an op-
timal k-means solution, i.e., φ1 := maxr φ

r
∗, φ2 :=

maxs,s6=1 φ
s
∗.

Theorem 5. Assume T∗ is an optimal k-means so-
lution with respect to X, which satisfies d∗rs(f)-weak
center separability with f > max{ 1

α , 16}. If we clus-
ter X using Algorithm 2, then with probability at least
1−m exp(−2( f4 −1)2w2

min)−k exp(−mpmin), the final
solution is a 4-approximation to the k-means objective.

The proof, similar to Theorem 3.2 of [5], utilizes
Lemma 2 and Theorem 4, and is included in the Ap-
pendix. In Theorem 5 we have fixed f,m as constants
to get a constant approximation guarantee with prob-
ability depending on f,m. If we instead fix any ap-
proximation factor 1 + ε > 1, and failure probability
δ > 0, then by allowing f,m to depend on these two

parameters, we can achieve 1 + ε-approximation guar-
antee with probability at least 1 − δ, as shown in the
corollary below.

Corollary 1. Assume the conditions in Theorem 5

hold. For any δ > 0, ε > 0, if f = Ω(
√

log(
1
δ log k

δ

pmin
) +

1
ε2 ), and choosing

log 2k
δ

pmin
< m < δ

2 exp{2( f4 −1)2w2
min},

then Algorithm 2 has (1 + ε)-approximation guaran-
tee with respect to the optimal k-means objective with
probability at least 1− δ.

Therefore, it suffices to have m = Ω(
log k

δ

pmin
) (this is at

least Ω(k log k
δ )). Since the algorithm is only run on a

sample of size m, as long as pmin = Ω(exp(−k)), the
runtime of Algorithm 2 has polynomial dependence on
k.

5 Local convergence and stopping
criteria

Assuming Lloyd’s algorithm is executed until conver-
gence, we analyzed its global convergence on well-
clusterable datasets. In this section, we turn to study
its local convergence and stopping criteria.

In practice, early stopping is commonly used to pre-
vent Lloyd’s algorithm from running too long. Four
criteria are frequently used [27]: maximal number
of iterations, between-iteration centroid movement,
between-iteration cluster re-assignment, and change of
between-iteration k-means cost. The first criterion is
usually set arbitrarily by the user according to the up-
per limit of time she is willing to spend, and used as a
backup for other criteria. Of the remaining three, the
centroid-movement based criterion has an advantage
in the large-scale setting, where the computation of
cluster reassignment or k-means cost (or its change) is
impractical since they rely on the property of the en-
tire dataset. To our knowledge, no theoretical analysis
exists for their performance.

Adapting Theorem 1 to local convergence, we give jus-
tification of a criterion that is a modification of the
centroid movement criterion. Consider an intermedi-
ate solution Ct0−1 := {cr, r ∈ [k]} of Algorithm 1.
By Lloyd’s update rule, they are the means of clus-
ters in St0−1 := {Srt0−1, r ∈ [k]}, which is not nec-
essarily a local or global optimum, i.e., St0 6= St0−1.
Let Ct := {νr, r ∈ [k]},∀t ≥ t0, let δtr := ‖νr − cr‖,
and δt = maxr δ

t
r (δt is the between-iteration centroid

movement), the following holds.

Corollary 2. Assume a dataset-solution pair
(X,St0−1) satisfies d∗rs(f)-center separability with
f > 32. If δt0 < 1

8 minr 6=s,s∈[k] ‖cr−cs‖, then ∀T ≥ t0,

∀r, δTr < 128
9f

√
φt0−1

nrt0−1
, where, φt0−1 := φ(Ct0−1, St0−1),
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Figure 1: Two clusters in a bad instance when center
separation is small

and nrt0−1 := |Srt0−1|.

Corollary 2 also suggests we can use δt

maxr 6=s ‖cr−cs‖ <
1
8

as a certificate of local convergence, given (X,St0−1)
is d∗rs-center separable.

This leads us to ask: do the utility of stopping crite-
ria really depend on clusterability of the dataset? Our
next result provides evidence that clusterability does
matter. We construct a bad instance, one that fails
our clusterability assumption, such that for arbitrarily
small δt0 , after one Lloyd’s iteration, the updated cen-
troids can have a large “jump” in the solution space.

Proposition 1. For any δ > 0, there exists (X,St0−1)

with δ � minr 6=s ‖cr−cs‖ = Θ(

√
φst0−1

nst0−1
+

√
φrt0−1

nrt0−1
) such

that δt0 = δ but δt0+1 = Ω(

√
φst0−1

nst0−1
+

√
φrt0−1

nrt0−1
)� δt0 .

Proof. Consider a solution St0−1 that contains two
clusters with mean c1, c2 s.t. δ � 2d = ‖c1 − c2‖ =
minr 6=s ‖cr− cs‖ (Figure 1). Further assume these two
clusters are sufficiently far away from the rest of the
clusters. Suppose S2

t0−1 has 4 points; three of them are
at distance d to c2 and one of them (point a) are at

distance 3d to c2. Assume

√
φ1
t0−1

n1
t0−1

<

√
φ2
t0−1

n2
t0−1

=
√

3d.

Obviously, ‖c1 − c2‖ = Θ(

√
φ1
t0−1

n1
t0−1

+

√
φ2
t0−1

n2
t0−1

). Sup-

pose after one Lloyd’s update, for ν1, ν2 ∈ Ct0 , ν1

moved δ towards c2 while ν2 = c2. Then in St0 all
three points originally assigned to c2 will be assigned
to c1 and in the updated ν2 ∈ Ct0 will move to a, thus
δt0+1
2 = 3d.

Proposition 1 gives an example where a criterion based
only on thresholding centroid movement may stop the
algorithm too early and miss the jump, which corre-
sponds to a significant shift in the clustering configu-
ration. Is this just an artificial case that rarely occurs
in practice? We turn to empirical study to find out.

5.1 Empirical performance of different
stopping criteria

We compare the performance of common stopping cri-
teria introduced previously, and test how they are af-
fected by clusterability.

Experimental setup We generate synthetic
datasets to control the degree of clusterability. Start-
ing from random seedings on synthetic datasets, we
recorded after how many iterations the following three
criteria stop the algorithm 3.

• TH: stops at t when δt < 1
8 minr 6=s ‖cr − cs‖ as

suggested by Corollary 2.

• RA(η): stops when the fraction of points re-
assigned to another cluster between two consec-
utive iterations falls below η, where η ∈ (0, 1).

• KM(δ): stops when the change of k-means cost
falls below δ times previous cost, with δ ∈ (0, 1).

To understand the utility of stopping criteria, we
measured the k-means cost, φt, its change, ∆φt :=
φt − φt−1, and the between-iteration centroid move-
ment, δt, at every iteration. An ideal stopping crite-
rion should stop the algorithm the moment k-means
cost enters a stable, plateau-like stage, which should
be free from significant centroid movement or change
of cost. Lloyd’s algorithm is repeated 10 times for
each experiment and we report the averages of mea-
sured quantities. Lacking guidance in the literature on
setting parameters for RA and KM , for each run of
the algorithm we randomly draw from (0, 0.3) to set η
and δ, separately.

Synthetic data The clusterability of each dataset
is controlled by three parameters (ε, α, u), where ε ∈
[0, 1] controls the fraction of outliers, i.e., those far
away from any center, α ∈ [0, 1] controls the degree of
centroid separation (the centroids become more sepa-
rated as α increases), u ∈ [0,∞) controls the degree of
balance of the cluster sizes in the ground-truth clus-
tering (the higher u is, the more balanced the cluster
sizes will likely be). Note the parametrization of clus-
terability here does not correspond exactly to our clus-
terability assumption, but incorporates more parame-
ters. More details on the generation of our synthetic
data is included in the Appendix.

Results and interpretation Figure 2 shows our
measured quantities for the first 20 iterations of

3The solution we start from in our experiments should
not be interpreted as seeding but as an intermediate solu-
tion which Lloyd’s algorithm may encounter in practice.
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Figure 2: In each subfigure, we plot δt, ∆φt, and φt (scaled differently for convenient display) versus t; the vertical
bars marks the stopped iteration according to different stopping criteria. The subfigures vary by clusterability
of the dataset, parameterized by α, ε, u; clusterability decreases from top to bottom and from left to right.

Lloyd’s algorithm in 9 datasets with varying cluster-
ability. To interpret the performance of stopping crite-
ria, let us first understand the plots for φt (blue), ∆φt
(dashed blue), and δt (red). As expected, φt monotoni-
cally decreases with t since Lloyd’s algorithm decreases
the k-means objective at every iteration. However, the
latter two are usually not monotone, and the general
trend is that as the dataset becomes more clusterable,
they become smoother. We observe that the red plots
resemble those of the dashed blue. This means signifi-
cant centroid movements, which correspond to sudden
shifts in the clustering configuration, usually lead to
solutions with large drops in the k-means cost. The
presence of large spikes in some of the plots suggests
that bad cases, where δt � δt+1 such as the one in
Proposition 1, do indeed arise in practice (the jumps
were even more pronounced in individual runs, before
averaging).

Qualitatively, a good criterion should stop the algo-
rithm at the iteration corresponding to the last signif-
icant spike in red or dashed blue, or at an iteration t0
where δt0 is sufficiently small and δt0 ≥ δT ,∀T ≥ t0 as
in Corollary 2. A stop too early will miss the poten-
tial drastic shift in the clustering solution while a stop
too late wastes computation. From our experiments,
we observed that, 1) No stopping criterion consistently
satisfies the desired property; clusterability (as param-
eterized by ε, α, u) of the dataset heavily influences the
performance of all criteria; other parameters, such as
data size and dimension, did not have a significant
influence on the performance of criteria, for a fixed
level of clusterability. 2) When the dataset is more
clusterable, all stopping criteria were able to stop the
algorithm at a good point and their choices of stop-

ping point are similar, e.g., the upper-left plot in Fig-
ure 2. 3) As the dataset becomes less clusterable, we
saw noticeable differences in the stopping criteria; TH
(black) seems to stop at a better point more often than
RA (green) or KM (magenta), e.g., it catches the last
spike in the middle plot in Figure 2.

6 Future work

Future exploration into clusterability assumptions is
needed, as current assumptions [5, 4, 21, 28], as well
as ours, are still rather strong. Meanwhile, although
stochastic Lloyd’s algorithm and variants [9, 30] are
widely used for large-scale clustering (e.g., it is imple-
mented in popular packages such as scikit-learn [29]),
there is little theoretical understanding of it. Building
on our understanding of the batch Lloyd’s algorithm,
it may be promising to combine techniques in stochas-
tic optimization to analyze its stochastic variants. Fi-
nally, our empirical findings provide evidence that ex-
isting stopping criteria may be insufficient when work-
ing with less clusterable data. Given the importance
of stopping criteria in stochastic Lloyd’s variants, it
will be interesting to investigate whether a carefully
designed early stopping strategy can work well with
all solutions.
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