

Supplementary Material

Proof of lemma 4.2.

Let $\mathbf{y} = (y_1 \dots y_n)$, and $F_{\mathbf{Y}}(\mathbf{y}) = (F_{y_1}(y_1) \dots, F_{y_n}(y_n))$ (for readability, we omit m that indexes the instantiation). By definition of the expectation and conditional density we have:

$$\mathbb{E}_{f(X|\mathbf{y}, y^*)}(X) = \int x \frac{f(x, \mathbf{y}, y^*)}{f(\mathbf{y}, y^*)} dx. \quad (12)$$

Next, recall that the joint density $f(x, \mathbf{y}, y^*)$ can be written as:

$$f(x, \mathbf{y}, y^*) = c(F_1(x_1), F_{\mathbf{Y}}(\mathbf{y}), F_{Y^*}(y^*)) \prod_i f_i(x_i),$$

where $f_i(x_i)$ are the univariate densities and $c(\cdot)$ is the copula density. Therefore:

$$\begin{aligned} f_{\mathbf{Y}, Y^*}(\mathbf{y}, y^*) &= \\ &(\prod_i f_i(y_i)) f_{Y^*}(y^*) \int c(F_X(x), \mathbf{F}_{\mathbf{Y}}(\mathbf{y}), F_{Y^*}(y^*)) f_X(x) dx, \end{aligned}$$

Plugging this into Equation (12), we then have:

$$\mathbb{E}_{f(X|\mathbf{y}, y^*)}(X) = \int x \frac{c(F_X(x), \mathbf{F}_{\mathbf{Y}}(\mathbf{y}), F_{Y^*}(y^*))}{c(\mathbf{F}_{\mathbf{Y}}(\mathbf{y}), F_{Y^*}(y^*))} f_X(x) dx,$$

and, using a change of variable $U = F_X(x)$, we get:

$$\mathbb{E}_{f(\mathbf{X}|\mathbf{y}, y^*)}(\mathbf{X}) = \int F_X^{-1}(u) c(u|\mathbf{F}_{\mathbf{Y}}(\mathbf{y}), F_{Y^*}(y^*)) du,$$

where $c(u|\mathbf{F}_{\mathbf{Y}}(\mathbf{y}), F_{Y^*}(y^*)) = \frac{c(u, \mathbf{F}_{\mathbf{Y}}(\mathbf{y}), F_{Y^*}(y^*))}{c(\mathbf{F}_{\mathbf{Y}}(\mathbf{y}), F_{Y^*}(y^*))}$. \square

Proof of Lemma 4.4.

Using the notations introduced in Section 3, recall that in the case of a Gaussian copula $c(U_i|\mathbf{u}_{-i}) = \frac{\phi(Z_i|\mathbf{z}_{-i}; \boldsymbol{\beta}_{-i}, \sigma)}{\phi(z_i)}$, where $\phi(Z_i|\mathbf{z}_{-i}; \boldsymbol{\beta}_{-i}, \sigma)$ is the conditional density induced from the joint density $\phi_{\Sigma}(\mathbf{z})$ by conditioning Z_i on \mathbf{z}_{-i} , and ϕ is the standard univariate normal p.d.f. Therefore:

$$\begin{aligned} \mathbb{E}_{C_{\Sigma}}(U_i|\mathbf{u}_{-i}) &= \int_0^1 u_i c(u_i|\mathbf{u}_{-i}) du_i \\ &= \int_0^1 u_i \phi(z_i|\mathbf{z}_{-i}; \boldsymbol{\beta}_{-i}, \sigma) / \phi(z_i) du_i. \end{aligned}$$

Using a change of variables $z_i = \Phi^{-1}(u_i)$, we obtain

$$\begin{aligned} \mathbb{E}_{C_{\Sigma}}(U_i|\mathbf{u}_{-i}) &= \int_{-\infty}^{\infty} \Phi(z_i) \phi(z_i|\mathbf{z}_{-i}; \boldsymbol{\beta}_{-i}, \sigma) du_i \\ &= \mathbb{E}_{\phi(Z_i|\mathbf{z}_{-i}; \boldsymbol{\beta}_{-i}, \sigma)}[\Phi(z_i)]. \end{aligned}$$

\square

Proof of Lemma 5.1.

Recall that when a new variable W is added as parent of X_i , we only estimate the scale parameter associated with $Z_w = \Phi^{-1}(F_W(w))$, while all other parameters are held fixed (see Section 5). That is, $\beta_j^+ = \hat{\beta}_j$, $\forall j \neq i$, and similarly for the variance parameter $\sigma^+ = \hat{\sigma}$.

Now, by the definition of QIP

$$\left(z_i[m] - \sum_{j:j \neq i} \hat{\beta}_j z_j[m] \right)^2 = z^*[m]^2, \quad \forall m.$$

Similarly,

$$\begin{aligned} &\left(z_i[m] - \sum_{j:j \neq i} \hat{\beta}_j z_j[m] - \beta_w^+ z_w[m] \right)^2 \\ &= (z^*[m] - \beta_w^+ z_w[m])^2, \quad \forall m. \end{aligned}$$

Therefore, the change in the likelihood score is given by the difference

$$\begin{aligned} \Delta_{X_i|\text{Par}_i(W)} &= -\frac{M}{2} [\ln(\sigma^+)^2 - \ln \hat{\sigma}^2] \\ &- \frac{1}{2(\sigma^+)^2} \sum_m (z^*[m] - \beta_w^+ z_w[m])^2 + \frac{1}{2\hat{\sigma}^2} \sum_m z^*[m]^2. \end{aligned}$$

Since $\sigma^+ = \hat{\sigma}$, using standard algebraic manipulations this reduces to

$$\Delta_{X_i|\text{Par}_i(W)} = -\frac{1}{2(\hat{\sigma})^2} (-2\beta_w^+ (\mathbf{z}_w \cdot \mathbf{z}^*) + (\beta_w^+)^2 \|\mathbf{z}_w\|^2).$$

Taking the derivative w.r.t. β_w^+ and setting it to zero we obtain

$$\hat{\beta}_w^+ = \frac{(\mathbf{z}^* \cdot \mathbf{z}_w)}{\|\mathbf{z}^*\|^2},$$

where (\cdot) is the standard inner product. Plugging this into Equation (7), we get

$$\tilde{\Delta}_{X_i|\text{Par}_i}(W) = \frac{1}{2\hat{\sigma}^2} \frac{(\mathbf{z}^* \cdot \mathbf{z}_w)^2}{\|\mathbf{z}_w\|^2}. \quad (13)$$

Finally, we note that the ML estimator for σ^2 is given by:

$$\hat{\sigma}^2 = \frac{1}{M} \sum_m \left(z_i[m] - \sum_{j:j \neq i} \hat{\beta}_j z_j[m] \right)^2 = \frac{1}{M} \|\mathbf{z}^*\|^2. \quad (14)$$

Denote the angle between \mathbf{z}^* and \mathbf{z}_w by $\angle(\mathbf{z}^*, \mathbf{z}_w)$. Plugging Equation (14) into Equation (13), and using the identity $\cos^2(\angle(\mathbf{z}^*, \mathbf{z}_w)) = \frac{(\mathbf{z}^* \cdot \mathbf{z}_w)^2}{\|\mathbf{z}^*\|^2 \|\mathbf{z}_w\|^2}$, we obtain

$$\tilde{\Delta}_{X_i|\text{Par}_i}(W) = \frac{1}{2\hat{\sigma}^2} \frac{(\mathbf{z}^* \cdot \mathbf{z}_w)^2}{\|\mathbf{z}_w\|^2} = \frac{M}{2} \cos^2(\angle(\mathbf{z}^*, \mathbf{z}_w)).$$

\square

Proof of Corollary 5.2.

Recall that

$$\begin{aligned} &\Delta_{X_i|\text{Par}_i}(W) \\ &\equiv \max_{\theta^+} l_X(\mathbf{D} : \text{Par}_i \cup \{W\}, \theta^+) - l_X(\mathbf{D} : \text{Par}_i, \hat{\theta}) \\ &= \max_{\theta^+} \sum_m \log f(x_i[m]|\text{Par}_i[m], w[m]; \theta^+) \\ &\quad - \sum_m \log f(x_i[m]|\text{Par}_i[m]; \hat{\theta}) \\ &= \max_{\theta^+} \sum_m \log c(F_i[m]|\{F_j[m]\}_{j \in \text{Par}_i}, F_w[m]; \theta^+) \\ &\quad - \sum_m \log c(F_i[m]|\{F_j[m]\}_{j \in \text{Par}_i}; \hat{\theta}) \\ &= \max_{\beta^+, \sigma^+} \sum_m \phi(z_i[m]|\mathbf{z}_{\text{Par}_i}[m], z_w[m]; \beta^+, \sigma^+) \\ &\quad - \sum_m \phi(z_i[m]|\mathbf{z}_{\text{Par}_i}[m]; \hat{\beta}, \hat{\sigma}), \end{aligned} \quad (15)$$

Denote by Ω the parameter space of β^+ and σ^+ . When introducing a new parent variable, W , as a parent of X_i , ideally, we should estimate θ by $\hat{\theta}_c$, such that

$$\hat{\theta}_c \in \operatorname{argmax}_{(\beta^+, \sigma^+) \in \Omega} l_X(\mathbf{D} : \operatorname{Par}_i \cup \{W\}, \theta^+).$$

Denote the corresponding change in the likelihood function by:

$$\Delta_{X_i|\operatorname{Par}_i}^c(W) \equiv l_X(\mathbf{D} : \operatorname{Par}_i \cup \{W\}, \hat{\theta}_c) - l_X(\mathbf{D} : \operatorname{Par}_i, \hat{\theta}).$$

However, this can be prohibitive since we need to estimate β^+, σ^+ , for each candidate parent W , as well as due to the constrain $(\beta^+, \sigma^+) \in \Omega$. Instead, as described in Section 5, we estimate $\Delta_{X_i|\operatorname{Par}_i}(W)$ by $\tilde{\Delta}_{X_i|\operatorname{Par}_i}(W)$, that is, by maximizing only over the scale parameter associated with Z_w , β_w , while keeping all other parameters fixed to their value before W was added. Note that by doing so, we implicitly remove the constrain over β_w and estimate it by solving the following unconstrained optimization problem:

$$\hat{\beta}_w \in \operatorname{argmax}_{\beta_w} l_X(\mathbf{D} : \operatorname{Par}_i \cup \{W\}, \theta^+),$$

Next, let $\hat{\theta}_{uc}$ be an estimator of θ such that

$$\hat{\theta}_{uc} \in \operatorname{argmax}_{(\beta, \sigma)} l_X(\mathbf{D} : \operatorname{Par}_i \cup \{W\}, \theta^+),$$

that is, $\hat{\theta}_{uc}$ is a solution to an optimization problem which is a relaxation of the original problem. Denote the corresponding change in the likelihood function by:

$$\Delta_{X_i|\operatorname{Par}_i}^{uc}(W) \equiv l_X(\mathbf{D} : \operatorname{Par}_i \cup \{W\}, \hat{\theta}_{uc}) - l_X(\mathbf{D} : \operatorname{Par}_i, \hat{\theta}).$$

Finally, let θ_0 be the true underlying parameters. Note that by assumption $\theta_0 \in \Omega$.

Denote the true change in the likelihood function by:

$$\Delta_{X_i|\operatorname{Par}_i}^0(W) \equiv l_X(\mathbf{D} : \operatorname{Par}_i \cup \{W\}, \theta_0) - l_X(\mathbf{D} : \operatorname{Par}_i, \hat{\theta}).$$

By definition, for all M the following holds:

$$\tilde{\Delta}_{X_i|\operatorname{Par}_i}(W) \leq \Delta_{X_i|\operatorname{Par}_i}^{uc}(W). \quad (16)$$

Due to consistency of ML parameters, as $M \rightarrow \infty$, $\hat{\theta}_{uc} \rightarrow \theta_0$, therefore

$$\Delta_{X_i|\operatorname{Par}_i}^{uc}(W) \rightarrow \Delta_{X_i|\operatorname{Par}_i}^0(W), \text{ a.s.}$$

Similarly, since we have assumed that $\theta_0 \in \Omega$, $\lim_{M \rightarrow \infty} \hat{\theta}_c = \theta_0$, a.s., and therefore

$$\Delta_{X_i|\operatorname{Par}_i}^c(W) \rightarrow \Delta_{X_i|\operatorname{Par}_i}^0(W), \text{ a.s.}$$

To summarize, we have that:

$$\lim_{M \rightarrow \infty} \hat{\theta}_c = \lim_{M \rightarrow \infty} \hat{\theta}_{uc} = \theta_0, \text{ a.s.},$$

and,

$$\begin{aligned} \lim_{M \rightarrow \infty} \Delta_{X_i|\operatorname{Par}_i}^c(W) &= \lim_{M \rightarrow \infty} \Delta_{X_i|\operatorname{Par}_i}^{uc}(W) \\ &= \Delta_{X_i|\operatorname{Par}_i}^0(W), \quad M \rightarrow \infty, \text{ a.s.} \end{aligned} \quad (17)$$

Combining now 17 and 16, by continuity of the limit we get:

$$\begin{aligned} \tilde{\Delta}_{X_i|\operatorname{Par}_i}(W) &\leq \Delta_{X_i|\operatorname{Par}_i}^{uc}(W) = \lim_{M \rightarrow \infty} \Delta_{X_i|\operatorname{Par}_i}^c(W) \\ &= \Delta_{X_i|\operatorname{Par}_i}^0(W), \quad M \rightarrow \infty, \text{ a.s.} \end{aligned} \quad (18)$$

□