Generalized Ideal Parent (GIP): Discovering non-Gaussian Hidden Variables

Supplementary Material

Proof of lemmal[{.3
Let y = (y1...yn), and Fy(y) = (Fy, (1) - - - Fy, (yn))
(for readability, we omit m that indexes the instantiation).

By definition of the expectation and conditional density we
have:
/ flz,y,y) y (12)

Next, recall that the joint density f (x, Y,y ) can be written
as:

Ef(X\yvy )

f@y,y") = c(Fi(a1), Py (y), Fy= (") I fi(xa),

where f;(z;) are the univariate densities and c(-) is the
copula density. Therefore:

fxyv-(y,y") =
(I fi(y)) Sy~ (") [ e(Fx (2), Fy (y), Fy=(y*)) fx (x)dx

Plugging this into Equation , we then have:

c(Fx(z), Fy(y), Fy+(y"))
c(Fy(y), Fy+(y*))

and, using a change of variable U = Fx (z), we get:

/Fx

* c(u,F JFys (y™*
where c(ulFy (v), Fy«(y")) = el i), O

Ef(xly,y*) (X) =/w fx(z)dz,

c(ulFy (y), Fy=(y"))du,

Ef(X\yvy )

Proof of Lemmal[{4)

Using the notations introduced in Section |3} recall that in

¢(Zilz_i3B_i,0)
#(2;) ’

where ¢ (Z;|z—i; B—s,0) is the conditional density induced

from the joint density ¢x(z) by conditioning Z; on z_;,

and ¢ is the standrad univariate normal p.d.f. Therefore:

the case of a Gaussian copula ¢(U;ju—;) =

1
ECE(U»;|1171‘):/0 uic(ui|u,¢)dui
1
:/ wip (2i)z2—:; B—i, o) [P(2:)du;.
0

Using a change of variables z; = q)_l(ui), we obtain

oo

Ecy (Uifu_i) = / B(20)b (223 Bos, o) du

— 0o

= E¢(Zi\z,i;,@,i,a) [(I)(Zl)}

O

Proof of Lemmal[5.1]
Recall that when a new variable W is added as parent of
X, we only estimate the scale parameter associated with

Zw = & 1(Fw(w)), while all other parameters are held
fixed (see Section . That is, ,Bj-r = Bj, Vj # i, and
similarly for the variance parameter ¢ = 4.

Now, by the definition of QIP
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Similarly,
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= (z*[m] — Bf:zw[m])Q , Vm.

Therefore, the change in the likelihood score is given by
the difference

Ax, [Par, (W) = In(c")? — Iné”]
2 1 .
; + @ ; z [m]2

Since 0T = &, using standard algebraic manipulations this
reduces to

M
T2
2" [m]

— Bab zw[m])

1

Do) = = a7 (280 (- 2) + (32 ).

Taking the derivative w.r.t. 8, and setting it to zero we
obtain
(2" - 2.)
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[z~
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where (-) is the standard inner product. Plugging this into
Equation , we get
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Axippar, (W) = (13)
Finally, we note that the ML estimator for ¢ is given by:
2
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Denote the angle between z* and z.,, by Z(z",2zw). Plug-
ging Equation into Equation , and using the iden-
tity cos?(£(z", zw)) = —Z

Zay) .
7“#” MR obtain

~ 1 (2" 2zy)? M .
Ax;par, (W) = EW = 7C0$2(4(Z 1 Zw))-

Proof of Corollary[5.3
Recall that

Ax;par; (W)

= mixlX(D : Par; U{W},0") — Ix(D : Par;,6)
0

— max >, log f(om][Parim], wlm]; 6°)
0

-3, log f(xi[m]|Par;[m]; é)
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Denote by © the parameter space of 87 and o*. When
introducing a new parent variable, W, as a parent of X,

ideally, we should estimate 6 by 6., such that

0. c argmax [x (D : Par; U {W},9+).
(Bt,ot)eq

Denote the corresponding change in the likelihood function
by:

A%, ipar, (W) = ix(D : Par; U{W},8.) — Ix(D : Par;, 8).

However, this can be prohibitive since we need to estimate
BT, o, for each candidate parent W, as well as due to the
constrain (31, 0) € Q. Instead, as described in Section
we estimate Ax,|par, (W) by Ax,par; (W), that is, by max-
imizing only over the scale parameter associated with Z,,,
Bw, while keeping all other parameters fixed to their value
before W was added. Note that by doing so, we implicitly
remove the constrain over 3, and estimate it by solving
the following unconstrained optimization problem:

Buw € argmax Ix (D : Par; U {W},67),
Bw
Next, let 6. be an estimator of 6 such that
0. € argmax Ix (D : Par; U {W},6%),
(B,o)

that is, 8., is a solution to an optimization problem which
is a relaxation of the original problem. Denote the corre-
sponding change in the likelihood function by:

AY (par, (W) = Ix(D : Par; U{W},8,c) — Ix(D : Par;, ).

Finally, let 8y be the true underlying parameters. Note
that by assumption 8y € Q.

Denote the true change in the likelihood function by:
A%, par, (W) = Ix (D : Par; U {W},80) — Ix(D : Par;, 8).
By definition, for all M the following holds:

Axi\Pari (W) S A&Ci\Pari (W) (16)
Due to consistency of ML parameters, as M — oo, Ouc —
0y, therefore

1;((;\133” (W) — AOXi|Pari (W)7 a.s.
Similarly, since we have assumed that 6y € €,
limps— 00 @ = B0, a.s., and therefore

Ag(i\Pari (W) — AOX”Pari (W)7 a.s.

To summarize, we have that:

lim 6. = lim .. =0y, as.,
M — o0 M — o0
and,
lim A?Xl\Pan (W) = A}gnoo Aq)l(ct\Pam (W)

M — oo
:A%HP&U(W), M — oo, as. (17)
Combining now [I7] and [I6] by continuity of the limit we
get:

zX”Pam (W) < ?{i\Pari (W) = lim A;Q\Pari (W)

M — o0
:A%i‘pari(W), M — oo, as. (18)
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