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Proof of lemma 4.2.
Let y = (y1 . . . yn), and FY(y) = (Fy1(yy1) . . . , Fyn(yn))
(for readability, we omit m that indexes the instantiation).
By definition of the expectation and conditional density we
have:

Ef(X|y,y∗) (X) =

∫
x
f(x,y, y∗)

f(y, y∗)
dx. (12)

Next, recall that the joint density f(x,y, y∗) can be written
as:

f(x,y, y∗) = c(F1(x1), FY(y), Fy∗(y∗))
∏
i fi(xi),

where fi(xi) are the univariate densities and c(·) is the
copula density. Therefore:

fY,Y ∗(y, y∗) =(∏
i fi(yi)

)
fY ∗(y∗)

∫
c(FX(x),FY(y), FY ∗(y∗))fX(x)dx,

Plugging this into Equation (12), we then have:

Ef(X|y,y∗) (X) =

∫
x
c(FX(x),FY(y), FY ∗(y∗))

c(FY(y), FY ∗(y∗))
fX(x)dx,

and, using a change of variable U = FX(x), we get:

Ef(X|y,y∗) (X) =

∫
F−1
X (u)c(u|FY(y), FY ∗(y∗))du,

where c(u|FY(y), FY ∗(y∗)) =
c(u,FY(y),FY ∗ (y∗))

c(FY(y),FY ∗ (y∗))
.

Proof of Lemma 4.4.
Using the notations introduced in Section 3, recall that in

the case of a Gaussian copula c(Ui|u−i) =
φ(Zi|z−i;β−i,σ)

φ(zi)
,

where φ (Zi|z−i;β−i, σ) is the conditional density induced
from the joint density φΣ(z) by conditioning Zi on z−i,
and φ is the standrad univariate normal p.d.f. Therefore:

ECΣ(Ui|u−i) =

∫ 1

0

uic(ui|u−i)dui

=

∫ 1

0

uiφ (zi|z−i;β−i, σ) /φ(zi)dui.

Using a change of variables zi = Φ−1(ui), we obtain

ECΣ(Ui|u−i) =

∫ ∞
−∞

Φ(zi)φ (zi|z−i;β−i, σ) dui

= Eφ(Zi|z−i;β−i,σ)[Φ(zi)].

Proof of Lemma 5.1.
Recall that when a new variable W is added as parent of
Xi, we only estimate the scale parameter associated with
Zw = Φ−1(FW (w)), while all other parameters are held

fixed (see Section 5). That is, β+
j = β̂j , ∀j 6= i, and

similarly for the variance parameter σ+ = σ̂.

Now, by the definition of QIPzi[m]−
∑
j:j 6=i

β̂jzj [m]

2

= z∗[m]2, ∀m.

Similarly,

zi[m]−
∑
j:j 6=i

β̂jzj [m]− β+
wzw[m]

2

=
(
z∗[m]− β+

wzw[m]
)2
, ∀m.

Therefore, the change in the likelihood score is given by
the difference

∆Xi|Pari(W ) = −M
2

[
ln(σ+)2 − ln σ̂2]

− 1

2(σ+)2

∑
m

(
z∗[m]− β+

wzw[m]
)2

+
1

2σ̂2

∑
m

z∗[m]2.

Since σ+ = σ̂, using standard algebraic manipulations this
reduces to

∆Xi|Pari(W ) = − 1

2(σ̂)2

(
−2β+

w (zw · z∗) + (β+
w )2‖zw‖2

)
.

Taking the derivative w.r.t. β+
w and setting it to zero we

obtain

β̂+
w =

(z∗ · zw)

‖z∗‖2
,

where (·) is the standard inner product. Plugging this into
Equation (7), we get

∆̃Xi|Pari(W ) =
1

2σ̂2

(z∗ · zw)2

‖zw‖2
. (13)

Finally, we note that the ML estimator for σ2 is given by:

σ̂2 =
1

M

∑
m

zi[m]−
∑
j:j 6=i

β̂izj [m]

2

=
1

M
‖z∗‖2. (14)

Denote the angle between z∗ and zw by ∠(z∗, zw). Plug-
ging Equation (14) into Equation (13), and using the iden-

tity cos2(∠(z∗, zw)) = (z∗·zw)2

‖z∗‖2‖zw‖2
, we obtain

∆̃Xi|Pari(W ) =
1

2σ̂2

(z∗ · zw)2

‖zw‖2
=
M

2
cos2(∠(z∗, zw)).

Proof of Corollary 5.2.
Recall that

∆Xi|Pari(W )

≡ max
θ+

lX(D : Pari ∪ {W}, θ+)− lX(D : Pari, θ̂)

= max
θ+

∑
m log f(xi[m]|Pari[m], w[m];θ+)

−
∑
m log f(xi[m]|Pari[m]; θ̂)

= max
θ+

∑
m log c(Fi[m]|{Fj [m]}j∈Pari , FW [m];θ+)

−
∑
m log c(Fi[m]|{Fj [m]}j∈Pari ; θ̂)

= max
β+,σ+

∑
m φ

(
zi[m]|zPari [m], zw[m];β+, σ+

)
−
∑
m φ

(
zi[m]|zPari [m]; β̂, σ̂

)
, (15)
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Denote by Ω the parameter space of β+ and σ+. When
introducing a new parent variable, W , as a parent of Xi,

ideally, we should estimate θ by θ̂c, such that

θ̂c ∈ argmax
(β+,σ+)∈Ω

lX(D : Pari ∪ {W}, θ+).

Denote the corresponding change in the likelihood function
by:

∆c
Xi|Pari(W ) ≡ lX(D : Pari ∪ {W}, θ̂c)− lX(D : Pari, θ̂).

However, this can be prohibitive since we need to estimate
β+, σ+, for each candidate parent W , as well as due to the
constrain (β+, σ+) ∈ Ω. Instead, as described in Section 5,

we estimate ∆Xi|Pari(W ) by ∆̃Xi|Pari(W ), that is, by max-
imizing only over the scale parameter associated with Zw,
βw, while keeping all other parameters fixed to their value
before W was added. Note that by doing so, we implicitly
remove the constrain over βw and estimate it by solving
the following unconstrained optimization problem:

β̂w ∈ argmax
βw

lX(D : Pari ∪ {W}, θ+),

Next, let θ̂uc be an estimator of θ such that

θ̂uc ∈ argmax
(β,σ)

lX(D : Pari ∪ {W}, θ+),

that is, θ̂uc is a solution to an optimization problem which
is a relaxation of the original problem. Denote the corre-
sponding change in the likelihood function by:

∆uc
Xi|Pari(W ) ≡ lX(D : Pari ∪ {W}, θ̂uc)− lX(D : Pari, θ̂).

Finally, let θ0 be the true underlying parameters. Note
that by assumption θ0 ∈ Ω.

Denote the true change in the likelihood function by:

∆0
Xi|Pari(W ) ≡ lX(D : Pari ∪ {W}, θ̂0)− lX(D : Pari, θ̂).

By definition, for all M the following holds:

∆̃Xi|Pari(W ) ≤ ∆uc
Xi|Pari(W ). (16)

Due to consistency of ML parameters, as M →∞, θ̂uc →
θ0, therefore

∆uc
Xi|Pari(W )→ ∆0

Xi|Pari(W ), a.s.

Similarly, since we have assumed that θ0 ∈ Ω,

limM→∞ θ̂c = θ0, a.s., and therefore

∆c
Xi|Pari(W )→ ∆0

Xi|Pari(W ), a.s.

To summarize, we have that:

lim
M→∞

θ̂c = lim
M→∞

θ̂uc = θ0, a.s.,

and,

lim
M→∞

∆c
Xi|Pari(W ) = lim

M→∞
∆uc
Xi|Pari(W )

= ∆0
Xi|Pari(W ), M →∞, a.s. (17)

Combining now 17 and 16, by continuity of the limit we
get:

∆̃Xi|Pari(W ) ≤ ∆uc
Xi|Pari(W ) = lim

M→∞
∆c
Xi|Pari(W )

= ∆0
Xi|Pari(W ), M →∞, a.s. (18)


