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Abstract

A formidable challenge in uncertainty mod-
eling in general, and when learning Bayesian
networks in particular, is the discovery of
unknown hidden variables. Few works that
tackle this task are typically limited to dis-
crete or Gaussian domains, or to tree struc-
tures. We propose a novel approach for
discovering hidden variables in flexible non-
Gaussian domains using the powerful class of
Gaussian copula networks. Briefly, we de-
fine the concept of a hypothetically optimal
predictor of variable, and show how it can
be used to discover useful hidden variables in
the expressive framework of copula networks.
We demonstrate the merit of our approach
for learning succinct models that generalize
well in several real-life domains.

1 Introduction

Hidden variables are ubiquitous in most scientific do-
mains ranging from psychology and economics to nat-
ural speech recognition. For example, a hidden mar-
ket factor or trend may jointly influence a collection
of stocks, a web user’s “mood” may influence his en-
tire online behavior, etc. Indeed, the discovery of hid-
den variables is of fundamental interest in probabilistic
modeling and goes back to the work of Charles Spear-
man on factor analysis [Spearman, 1904].

Aside from the semantic appeal in terms of inter-
pretability, inclusion of such centralized hidden mecha-
nisms can also lead to succinct models, and thereby im-
proved statistical estimation, often resulting in prob-
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abilistic graphical models that generalize well. As an
example, consider the Naive Bayes model where all ob-
served variables are independent of each other given a
single hidden parent. Obviously, this model is usually
an approximation of reality, yet it often performs well
and is widely used both in academic and industrial
applications [Lazarsfeld et al., 1968]. In this work, we
focus on the statistical axis and aim to discover hid-
den variables in non-Gaussian domains that lead to
favorable generalization performance.

Bayesian Networks (BNs) [Pearl, 1988] are widely used
to model and reason about high-dimensional distribu-
tions via a qualitative graph that captures the inde-
pendencies of the domain and quantitative parameters.
Numerous methods exist for parameter and structure
learning with complete or partial observations, as well
as in the presence of known hidden variables [Koller
and Friedman, 2009]. However, significantly fewer
works address the greater challenge of discovering hid-
den variables. At the high level, this task consists of
two steps. The first is the identification of components
(sets of variables) that can benefit from the introduc-
tion of a latent factor. On the second step such factors
are included into the model, together with the required
parameter and structural adaptation.

Unfortunately, works aiming at automatic discovery of
hidden variables in BNs are typically either limited to
discrete domains [Elidan and Friedman, 2005, Chan-
drasekaran et al., 2010] or to tree structured models
[Zhang and Kocka, 2004, Chen et al., 2008, Kirsh-
ner, 2012], or are focused on the Gaussian case [Choi
et al., 2011]. Real-valued non-Gaussian domains pose
formidable difficulties and, to the best of our knowl-
edge, only a very few works discover hidden variables
in this setting. Some are limited to relatively simple
functional forms [Elidan et al., 2007, Hoyer et al., 2008,
Janzing et al., 2009] while the others are applicable
only to tree networks [Kirshner, 2012] (see Section 2
for a detailed discussion of related works). Yet, real-
life domains are often far from Gaussian, and most
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likely do not have simple tree structures. Our goal in
this work is to overcome these barriers and take the
discovery of hidden variables in non-Gaussian BNs a
step further.

We focus on copula networks: a fusion of BNs and
copulas [Nelsen, 2007, Joe, 1997]. Briefly, copulas
conveniently allow us to separately model the univari-
ate marginals and the dependence function that joins
them. Fused with BNs, the result is an expressive high-
dimensional model. Indeed, even with the so-called
Gaussian copula, the modelled distribution can be far
from Gaussian and the representation leads to appeal-
ing predictive gains in various domains (e.g., [Kirshner,
2007, Elidan, 2010, Tenzer and Elidan, 2013]).

We start by generalizing the Ideal Parent (IP) concept
[Elidan et al., 2007] to Gaussian copula networks. An
IP of a random variable X is the hypothetical optimal
parent predictor that X could have. More formally,
an IP profile of a random variable X is a hypothetical
vector of realizations (one for each training sample)
which, given the current predictors of X, perfectly
predicts X. This concept is useful in the context of
discovering a hidden variable using the following in-
tuition: if several variables have similar ideal parents,
then a single hypothetical parent can be used for their
joint prediction.

In a non-Gaussian setting, the original IP definition is
not directly useful. Instead, we introduce a generalized
concept of a Quazi Ideal Parent (QIP) and develop
the machinery needed for efficiently discovering and
embedding useful hidden variables in copula networks.

We use our QIP approach to discover hidden variables
in a variety of real domains some of which are markedly
larger than those considered by previous works. In all
cases, we show that the non-Gaussian representation
leads to improved generalization performance. Fur-
ther, we show that our method is superior to the con-
vex approximation approach of [Chandrasekaran et al.,
2010], and is competitive with the state-of-the art LTC
method [Kirshner, 2012] (where the latter is applica-
ble), while using substantially more succinct copula
network models.

2 Related Works

Numerous works involve learning in the presence of
hidden variables (see [Koller and Friedman, 2009] for
references), including some more recent ones in the
context of copula-based models [Dauwels et al., 2013,
Rey and Roth, 2012].

There are, however, significantly fewer works that aim
to discover hidden variables. which is the focus of our
work. One of the first general purpose approaches for

doing so in the context of BNs simply uses crude struc-
tural signatures and avoids the issue of the functional
form of the network [Elidan et al., 2000]. Subsequent
papers tackling this challenge are focused on either
the discrete (e.g. [Elidan and Friedman, 2005]) or tree
structured scenarios (e.g. [Zhang, 2004, Chen et al.,
2008, Daskalakis et al., 2006]).

More recent developments are still restricted to the
discrete or Gaussian scenarios, but offer theoretical
guarantees of consistency. However, these rely on as-
sumptions that can be quite unrealistic in practice.
For example, in [Choi et al., 2011] a correlation de-
cay is assumed, while in [Chandrasekaran et al., 2010]
some assumptions are made regarding the algebraic
properties of the matrix sets.

Few works address the challenge of discovering hidden
variables in non-Gaussian domains. Among the most
notable ones is the work of [Hoyer et al., 2008] which
is restricted to a linear relationships, and the work of
[Janzing et al., 2009] which heavily relies on the Con-
founder with Additive Noise (CAN) model. Unfortu-
nately, these two works are strongly limited in terms of
scalability. To quote [Hoyer et al., 2008]: ”High dimen-
sionalities are out the question, so good scalability is
probably not needed...”. In [Janzing et al., 2009], the
settings is further restricted to two observed variables
and a single confounder.

Two works are most relevant to ours in the context
of high-dimensional non-Gaussian domains. [Elidan
et al., 2007] introduced the concept of a hypothetically
optimal (ideal) parent profile in the Gaussian scenario.
They also offer an adaptation to a non-linear case
which requires case-by-case tailoring and is in prac-
tice limited to simple parametric forms (e.g. sigmoid
Gaussian). Our work generalizes the ideal parent con-
cept and introduces the machinery needed to make it
useful in the more powerful copula based setting.

The work of [Kirshner, 2012] is most similar to ours.
It relies on the copula network representation and also
aims to discover hidden variables with better general-
ization rather than focusing on guaranteed identifia-
bility. While the construction is more amenable than
ours to additional copula families, it is only applicable
to tree structured networks. Such models can be quite
powerful, but a large number of hidden variables is re-
quired to capture relatively modest domains. In con-
trast, our work is applicable to general structures. In
fact, even when constrained (for demonstration pur-
poses only) to bipartite networks, as shown in Sec-
tion 6, our method is on par with [Kirshner, 2012],
while using models that are substantially simpler. Fur-
ther, we show that our approach can be applied to
significantly larger domains.
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Figure 1: Illustration of the ”Ideal Parent” concept for a variable with
a single parent Y and a linear link function. The top panel in (a) shows
the profile (assignment in all instances) of the parent. The panel below
shows the profile of the child node (solid blue) along with the profile
predicted for the child based on its parent (dotted red). (b) shows the
profile of the ideal hypothetical parent that would lead to zero error
in prediction of the child variable if added to the current model.

3 Background

3.1 Bayesian Networks

A Bayesian network (BN) [Pearl, 1988] is used to rep-
resent a joint distribution over a finite set of random
variables X = {X1, . . . , Xn} using two components:
a directed acyclic graph G whose vertices correspond
to X encoding the independencies that are assumed
to hold, and a set of quantitative parameters of the
conditional density of each variable Xi given its par-
ents Pari in G. The joint density is then defined as
f(X) =

∏n
i=1 fθi(Xi|Pari).

Given a set of training examples D = (x[1], . . . ,x[M ])
and a structure G, parameter estimation involves
finding the parameters θ maximizing the log-
likelihood function l(D|G,θ) = log f(D|G,θ) =∑
m log(x[m]|G,θ). The common score-based ap-

proach for structure learning is to search for G that
maximizes a penalized likelihood measure, such as
the Bayesian Information Criterion: BIC(D,G) =
maxθ l(D|G,θ) − logM

2 |G|, where |G| is the number
of parameters in G. Optimization is usually carried
out using a greedy search that employs local modifica-
tions of the graph structure. See [Koller and Friedman,
2009] for a thorough description of structure learning.

3.2 Copula and Copula Networks

A copula is a flexible general purpose tool for de-
scribing real-valued distributions [Joe, 2014, Nelsen,
2007]. Formally, let U1, . . . , Un be a set of marginally
uniform random variables Ui ∼ U([0, 1]). A copula
C : [0, 1]n → [0, 1] is a cumulative distribution function
(CDF) over such variables C(u1, . . . , un) = P(U1 ≤
u1, . . . , Un ≤ un).

Sklar’s seminal theorem [Sklar, 1959] shows that
for any joint distribution FX(X1, . . . , Xn), there ex-
ists a copula C(·) satisfying FX(X1, . . . , Xn) =
C(F1(X1), . . . , Fn(Xn)), where {Fi(Xi)}ni=1 are the
univariate marginal CDFs. This copula is unique
when the marginals are continuous. Conversely,
given the marginals X1, . . . , Xn, and any copula,
C(F1(X1), . . . , Fn(Xn)) defines a valid joint distribu-

tion whose with marginals Fi(Xi). This provides
substantial modeling advantages since the univariate
marginals can be estimated independently from the
copula that binds them.

The copula density can be derived by differentiat-
ing FX(X1, . . . , Xn) w.r.t. each Xi, and using Ui ≡
Fi(Xi):

f(x1, . . . , xn) =
∂nCu1, . . . , un
∂U1, . . . ∂Un

∏
i fi(xi)

≡ c(F1(x1), . . . , Fn(xn))
∏
i fi(xi),

where fi(xi) are the univariate densities and c(·) is the
copula density.

Perhaps, the most popular copula family is the Gaus-
sian copula defined as [Nelsen, 2007]

CΣ(u1, . . . , un) = ΦΣ

(
Φ−1(u1), . . . ,Φ−1(un)

)
,

where ΦΣ is the multivariate normal CDF, Σ is a corre-
lation matrix and Φ is the standard normal CDF. Let
φΣ be the multivariate normal density, let φ the uni-
variate standard normal density, and let zi ≡ Φ−1(ui).
The copula density is cΣ(u) = φΣ(z)/

∏
i φ(zi). Im-

portantly, this copula can capture distributions that
are far from Gaussian and is widely used in numerous
domains. See [Embrechts et al., 2003] for more details.

For a vector v ∈ Rn, denote v−i ≡
(v1, . . . , vi−1, vi+1, . . . , vn). Given a copula den-
sity c(U1, . . . , Un), we use c(Ui|u−i) to denote the
conditional density of Ui given u−i. For the Gaussian
copula, using properties of the Gaussian distribution,
this density takes a simple form that will be useful
in the sequel: c(Ui|u−i) = φ (Zi|z−i; Σ) /φ(zi), where
φ (Zi|z−i; Σ) is the conditional density induced from
φΣ(z) by conditioning Zi on z−i.

A copula network [Elidan, 2010] is a BN with the local
conditional density defined as

fi(Xi|Pari) =
cθ(Fi(Xi), {Fj(Xj)}j∈Pari)∫
Xi
cθ(Fi(Xi), {Fj(Xj)}j∈Pari)

fi(Xi).

Appealingly, the denominator can be computed from
the numerator without integration. Thus, the repre-
sentation relies solely on the estimation of joint copu-
las.See [Elidan, 2010] for more details.
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4 The Ideal Parent Paradigm

We start this section by an outline on the Ideal Parent
(IP) concept [Elidan et al., 2007], we then relax and
generalize it for the copula-based setting and, finally,
concretize for the powerful case of a Gaussian copula.

4.1 Relaxation of the Ideal Parent

Let Y = {Y1, . . . , Yk} be a set of explanatory variables,
and X be a target random variable that depends on
Y through a link function g : Rk × Ω → R with pa-
rameters θ ∈ Ω:

X = g(y1, . . . , yk|θ) + ε, (1)

ε ∼ N (0, σ2). For example, if g(·) adds up its argu-
ments, then X follows a Gaussian distribution; if g(·)
is the sigmoid of the sum of its arguments, then X fol-
lows a log-linear distribution, etc. Note that formally
g(·) depends on the number of inputs k, but we omit
this dependence to simplify notations.

Given a set of samples of X and Y and a link function
g(·), the Ideal Parent profile defined by [Elidan et al.,
2007] is a set of realizations y∗, one for each training
sample, defining a hypothetical r.v. Y ∗ such that, X
is perfectly predicted by Y ∪ {Y ∗}. Formally,

Definition 4.1. : Given a set of realizations
{x[m],y[m]}Mm=1 and a link function g(·), y∗ is an Ideal
Parent (IP) profile of X if

x[m] = g(y1[m], . . . , yk[m], y∗[m] | θ), ∀m. (2)

Figure 1 illustrates the IP profile concept. Note that
there could be multiple perfect predictors for X and,
thus, an IP does not have to be unique, depending on
the specific form of g(·).
Taking the conditional expectation of both sides of
Equation (1) and recalling the normality of ε, we get
g(·) = E[X|Y = y]. Plug this into Equation (2) to
obtain the IP profile as a solution to the system

x[m] = Ef(X|y1[m],...,yk[m],y∗[m])[X], ∀m. (3)

Next, with the goal of removing the Gaussianiny as-
sumption, we can use Equation (3) as a relaxed def-
inition of an IP, and only require that ε be cen-
tered. We refer to the solution of Equation (3) as
the relaxed IP of the random variable X. Denoting
FY(y[m]) ≡ {FY1(y1[m]), . . . , FYk(yk[m])}, the follow-
ing lemma provides a rank-based formulation that is
equivalent to this relaxed IP definition:

Lemma 4.2.: Let c(·) be the joint copula density cor-
responding to the joint distribution of X,Y, Y ∗ defined

as above and let U ∼ U([0, 1]). The IP profile is given
as a solution to the following system of equations:

x[m] = Ec(U |FY(y[m]),FY ∗ (y∗[m]))[F
−1
X (U)], ∀m. (4)

The proof is provided in the supplementary material.

The above lemma implies that the IP realizations
profile is unique only up to the CDF transformation
{FY ∗(y∗[m])}Mm=1, and that, to extract y∗, we will first
need to solve Equation (4), and then invert using F−1

Y ∗ .
This should not come as a surprise since, for the pur-
pose of prediction, we only care about the dependence
between X and Y that is independent of the marginal
properties of these random variables. Indeed, this is
the precise semantics of the copula construction.

4.2 Quasi Ideal Parent

Our goal is now to get an explicit expression for the
realizations {FY ∗(y∗[m])}Mm=1, such that Equation (4)
will hold for every m. In Section 5 we will use these
realizations as a signature to discover new hidden vari-
ables. Unfortunately, this is infeasible even for the sim-
ple case of FX(X) = Φ(X), where Φ is the standard
Gaussian distribution, since we need to solve a set of
integral equations that can have a complex form. To
overcome this, we adopt the following approximation
(see an assessment of its quality below):

Definition 4.3. : Let X,Y be defined as above
and let U ∼ U([0, 1]). Assuming that the dependence
structure is modeled by c(·), y∗ is a Quazi Ideal Parent
(QIP) realizations profile if

x[m] = F−1
X (Ec(U |FY(y[m]),FY ∗ (y∗[m]))[U ]), ∀m. (5)

At the technical level, the change from Equation (4) is
a simple interchange between the function evaluation
and expectation. A similar change has been suggested
in the past, albeit in a completely different context
(e.g. [Friedman, 1998]). More importantly, similarly
to the relaxed IP, the notion of QIP also implies that
y∗ realizations can only be identified up to the CDF
transformation FY ∗(y∗[m]), for all m. Applying FX
to both sides of Equation (5), we get

FX(x[m]) = Ec (U |FY(y[m]), FY ∗(y∗[m])) , ∀m. (6)

Therefore, QIP is a solution to a system of equations
in the copula domain.

4.3 QIP for The Gaussian Copula

We are now ready to make the notion of QIP concrete
for the case of the Gaussian copula. As we shall see
in Section 6, even this “simple” copula leads to clear
predictive advantages.
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Figure 2: Evaluation of the quality
of the expectation approximation. We
compare Eφ(Z;µ,σ)[Φ(Z)] (solid blue) and

Φ
(
Eφ(Z;µ,σ)[Z]

)
(dashed red) as a function

of µ (x-axis) for different values of σ.

σ = 1 σ = 0.5 σ = 0.1

Recall that a conditional Gaussian φ(Zi|z−i; Σ) pa-
rameterized by a covariance matrix Σ can be equiv-
alently parameterized via a vector of scalars β−i ≡
(β1, . . . , βi−1, βi+1, . . . , βn), corresponding to z−i, and
a variance term σ2 [Bilodeau and Brenner, 1999].
We will use this parametrization and the notation
φ(Zi|z−i;β−i, σ) to represent the conditional Gaus-
sian. We begin by deriving an explicit form to the RHS
of Equation (6) under the Gaussian copula model:

Lemma 4.4. : Assume U ∼ CΣ with CΣ denoting
the Gaussian copula with correlation matrix Σ, and let
Z ≡ (Φ−1(U1), . . . ,Φ−1(Un)), then

ECΣ
[Ui|u−i] = Eφ(Zi|z−i;β−i,σ)[Φ(Zi)].

The proof can be found in the supplementary mate-
rial. Applying this lemma to Equation (6), we get
that in the case of the Gaussian copula the QIP can
be characterizes by a system of equations in z∗[m] ≡
Φ−1(FY ∗(y∗[m])) (with an additional corresponding
coefficient β∗):

Fi(xi[m]) = Eφ(Zi|z−i[m],z∗[m];(β−i,β∗),σ)[Φ(Zi)], ∀m.
(7)

We can approximate the expectation in the above us-
ing standard tools. Specifically, given a normally dis-
tributed variable Z ∼ N (µ, σ) and a smooth function
h(·), we use its Taylor’s expansion to obtain

E[h(Z)] =

∫
h(z)

1√
2π
e−

(z−µ)2

2σ2 dz = h(µ) + h′′(µ′)
σ2

2
,

where we used E[Z − µ] = 0. In our case h(z) = Φ(z),
and the second derivative is bounded by h′′(z) ≤
1/
√

2π. Moreover, we have σ2 = 1−∑j 6=i ρ
2
i,j , where

ρi,j = corr(Zi, Zj) and thus σ2 ≤ 1. This suggests
that we approximate E[Φ(Xi)] with the zero-order
term, Φ(E[Xi]). Note that when the variables in Equa-
tion (7) have greater correlation, σ2 shrinks and the
approximation improves.

Figure 2 shows the quality of approximation: even
in the worst case σ2 = 1, it is surprisingly accurate.
Thus, we can reliably replace Equation (7) with

Fi(xi[m]) = Φ
(
Eφ(Zi|z−i[m],z∗[m];(β−i,β∗),σ) [Zi]

)
, ∀m.

From this, using the standard properties of the normal

distribution, we obtain

Fi(xi[m]) = Φ
(∑

j 6=i βjzj [m] + β∗z∗[m]
)
, ∀m.

The coefficients β are identifiable up to scale and thus
(similarly to [Elidan et al., 2007]), we set β∗ = 1. Re-
call that zi[m] ≡ Φ−1(Ui[m]) = Φ−1(Fi(xi[m])), for
all m. Applying Φ−1 to both sides and solving w.r.t.
z∗, we get

z∗[m] = zi[m]−∑j 6=i βjzj [m], ∀m. (8)

With a little abuse of notation, we refer to z∗[m] as
the Quasi Ideal Parent (QIP) realizations profile. (for-
mally to get the QIP realizations as defined in 4.3, we
need to apply F−1

Y ∗ ◦ Φ to z[m]∗). Note that on the
one hand the QIP Equation (8) closely resembles the
IP Equation (2). On the other hand, it captures the
residuals in the {Zi} space. As we shall see, this re-
formulation turns out to be beneficial in practice.

5 Discovering Hidden Variables

We are now ready for our central goal of discovering
hidden variables in non-Gaussian domains. We start
by describing how QIP can be used to approximate
structural modifications in general, and then how this
can be used to discover and embed hidden variables.

5.1 Efficient Approximate Scoring

Consider a set D of M training examples and a cop-
ula network model M where Pari are parents of Xi.
In score-based structure learning, we are interested in
evaluating the change of the score of the model as re-
sult of structural modification, specifically the addi-
tion of a new parent variable W to Xi. Using the BIC
score, this involves trivial computation of a penalty
term and more difficult evaluation of the log-likelihood
function l(·), that requires a computation of the max-
imum likelihood parameters.

Let θ̂ denote the (already estimated) maximum likeli-
hood parameters before W is added as a new parent
of Xi, and let θ+ denote the parameters (to be esti-
mated) after this structural operation. For brevity,
we use the shorthands Fi[m] ≡ Fi(xi[m]), zPari ≡
{Φ−1 (Fj(xj))}j∈Pari and zw = Φ−1(FW (w)).
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Figure 3: Illustration of how the QIP is used to suggest new
hidden variables. Shown on the left are the QIP profiles
Z∗1 , ..., Z

∗
4 of four variables. Recall that these correspond

to the residual information of the variables that is not ex-
plained by the current model, in the copula domain. Note
that the first, second and fourth variables have similar ideal
profiles. These profiles are averaged (top right), resulting
in a candidate joint hidden parent profile for X1, X2, X4

(top right). This variable will be added to the network
(bottom right) and its profile will serve a starting point for
the parameteric and structural EM that follows.

The change in l(·) that is due to the addition of the
edge W → X can then be calculated as

∆Xi|Pari(W )

≡ max
θ+

lX(D : Pari ∪ {W}, θ+)− lX(D : Pari, θ̂)

= max
θ+

∑
m log f(xi[m]|Pari[m], w[m];θ+)

−∑m log f(xi[m]|Pari[m]; θ̂)

= max
θ+

∑
m log c(Fi[m]|{Fj [m]}j∈Pari , FW [m];θ+)

−∑m log c(Fi[m]|{Fj [m]}j∈Pari ; θ̂)

= max
β+,σ+

∑
m φ (zi[m]|zPari [m], zw[m];β+, σ+)

−∑m φ
(
zi[m]|zPari [m]; β̂, σ̂

)
, (9)

where the last line follows from the reparametrization
discussed in the previous section. The terms not de-
pending on β+ and σ are intentionally separated and
will cancel out with other terms later.

Ideally, we would like to evaluate ∆Xi|Pari(W ) exactly
but this can be prohibitive since we need to estimate
β+ and σ+ for each candidate parent W . Instead,
similarly to the original IP, we only estimate the scale
parameter associated with Zw, while keeping all the
other parameters fixed to their values before W was
added. Using the QIP profile developed in Section 4.2,
this approximation can be computed efficiently:

Lemma 5.1. : Let Xi,Pari and W be as above,
and z∗ = (z∗[1], . . . , z∗[m]) be a QIP profile of X.
Denote the scaling parameter associated with zw =
(zw[1], . . . , zw[m]) by β+

w and let ∆̃Xi|Pari(W ) be simi-
lar to ∆Xi|Pari(W ) but maximized only over β+

w . Then

∆̃Xi|Pari(W ) =
1

2σ̂2

(z∗ · zw)2

‖zw‖2
=
M

2
cos2(∠(z∗, zw)),

(10)
where (z∗ · zw) is the standard inner product, and
∠(z∗, zw) is the angle between z∗ and zw.

Thus, we can use the QIP to efficiently approximate
the merit of adding a new parent to the model. Note
that this approximation, ∆̃Xi|Pari(W ), is an asymp-
totic lower-bound of the objective ∆Xi|Pari(W ):

Corollary 5.2.:

∆̃Xi|Pari(W ) ≤ ∆Xi|Pari(W ), M →∞, a.s. (11)

Proofs of the above lemma and corollary can be found
in the supplementary material.

5.2 Adding New Hidden Variables

We are now ready for our core goal: discovering non-
Gaussian hidden variables. Recall that the QIP ap-
proximates the ideal predictor of a variable. Intu-
itively, similarly to the original IP, if several variables
have a similar QIP, they could benefit from a joint pre-
dictor. The high level idea is illustrated in Figure 3
and the technical details are discussed next.

We start by approximating the change to the log-
likelihood when a latent H is added as a joint parent to
X1, . . . , XL. Denote by z∗i the QIP profile of Xi, let h
be the unobserved realizations of H and zH ≡ Φ−1(h).
Using Lemma 5.1, the gain is approximated by

∆̃X1,...,L
(H) ≡∑L

i=1 ∆̃Xi|Pari(H) =
∑L
i=1

1
2σ̂i2

(z∗
i ·zH)2

‖zH‖2 ,

where σ̂i is the variance estimate before the addition of
H (note that the change to the likelihood also includes
a term associated with H as a root and a complexity
term but these are easy to compute).

Our goal is to find H that is most beneficial as a pre-
dictor to all of its children X1, . . . , XL. Thus, we need
to compute the following:

zH = argmaxz∆̃X1,...,XL(H)

While a seemingly complex optimization problem, sim-
ilarly to the IP, this can actually be solved using the
eigen vector problem

(
γT γ

)
zH = λzH , where γ is a

matrix whose columns are z∗i /σ̂i and λ is the largest
eigenvalue associated with γT γ (see [Elidan et al.,
2007] for details).

Now that we can approximate the gain of adding a new
hidden parent to a cluster of variables, we still find the
most beneficial cluster. Since the number of clusters is
exponential, we follow an agglomerative clustering ap-
proach to explore different clusters [Duda et al., 1973].
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Figure 4: Comparison of the log-
likelihood and complexity of the mod-
els learned from synthetic data using
our copula-based QIP approach, the
original Gaussian IP, the Full copula
network with a hidden parent for all
variables, and a Tree copula network
over the observables. Shown are mean
and deviation over 10 random train/test
partitions. Univariate marginals are
Gaussian (left) and exponential (right).

Edges Vars Train Test
Tree 69 70 -93.15 -94.72

(0) (0) (2.25) (2.1)
IP 182.37 78.72 -85.6 -86.34

(4.71) (2.47) (2.4) (2.25)
Full 328.19 74.4 -98.25 -98.6

(5.73) (2.57) (3.1) (3.79)
QIP 186.15 76.86 -85.24 -85.73

(5.35) (2.64) (2.21) (1.84)

Edges Vars Train Test
Tree 69 70 -70.53 -71.41

(0) (0) (3.81) (3.63)
IP 206.74 84.52 -86.24 -87.16

(4.91) (2.36) (3.86) (2.94)
Full 323.8 75.42 -94.85 -96.38

(5.65) (2.44) (2.78) (3.62)
QIP 184.77 78.49 -64.72 -66.59

(5.31) (2.52) (4.21) (3.85)

Figure 5: Comparision of our QIP method to LTC [Kirsh-
ner, 2012] for the S&P100 datasets (left), and CVO [Chan-
drasekaran et al., 2010] for the Dow dataset (right). Shown
is the mean test log-probability/instance over 10 folds, and
the number of hidden variables learned.

Test LL Hiddens
QIP 107.63 12
LTC 108.38 83

Test LL Hiddens
QIP -14.08 5
CVO -22.02 29

SP100 Dow

Starting with each variable as an individual cluster and
repeatedly merging two clusters that lead to the best
expected improvement in the BIC score. A new hidden
variable H is then introduced as a parent of each of
the resulting cluster variables.

Specifically, let DH denote the unobserved part of the
data over the hidden variables, DO be the observed
data, and Q be the distribution represented by the
current network. We use the posterior distribution
Q(DH |DO) to estimate the expected BIC score

EQ(BIC(D;G)|DO) =

∫
Q(DH |DO)BIC(D;G)dDH .

where the network parameters are estimated using a
standard Expectation Maximization (EM) approach
[Dempster et al., 1977]. As a starting point of the
EM procedure, we use our pseudo observations zH .

6 Experiments

We now evaluate the merit of our QIP approach for
discovering hidden variables using Gaussian copula
Bayesian networks, both in synthetic and real-life sce-
narios. Although our approach is applicable to gen-
eral structures, for concreteness, we learn bipartite
networks where hidden variables in the top layer are
parents of observed children in the lower level. These
networks allow each observed variable to have many
parents and contain many loops and can thus be quite
expressive. Indeed, some popular large-scale networks
use this representation, among them are the QMR sys-
tem and BN2O [Koller and Friedman, 2009].

In all experiments we use the standard greedy score-
based structure learning. At each iteration a new hid-
den variable is introduced as a parent of a subset of
variables. The difference between the methods is in

how this subset is chosen, and how the hidden vari-
able is constructed. The structure is then adapted
using a standard structural EM procedure that allows
for addition/removal of edges [Friedman, 1998].

6.1 Synthetic Evaluation

We construct random two-layer Gaussian copula net-
works with 7 hidden and 70 observed variables as fol-
lows. Edges connect observed and hidden nodes ran-
domly, allowing up to 3 parents. Correlation param-
eters of the local densities are sampled in the inter-
val [0.4 0.8], allowing for a wide range of dependence
strengths. We generate 2000 samples from the net-
work and split them into train/test sets. All results
are reported over 10 random splits.

We compare our Gaussian copula QIP approach to a
Gaussian network using the original IP as well as two
additional copula baselines: a Full model, where at
each iteration a hidden variable is added as a parent
of all observables (also followed by structural adapta-
tion), and a Tree network over the observed variables.

Figure 4 (left panel) shows the log-probability and
complexity of the learned models when the univari-
ate marginals are Gaussian. In this case the Gaus-
sian copula is just a standard multivariate Gaussian
and, as expected, QIP and IP are very similar. The
Full approach is substantially inferior, demonstrating
the need for informed discovery of hidden variables.
Also clear is the advantage over Tree, highlighting the
power coming from the discovery of hidden variables.
Note that the scale of log-probability is in bit/instance
so that the advantage of k translates to each instance
being, on average, 2k times more likely.

Figure 4 (right panel) compares the different models
when the univariate marginals are exponential with
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Figure 6: Performance of our copula-
based QIP approach, the original
Gaussian IP, and the maximum like-
lihood copula Tree over the observed
variables for several real datasets.
Shown is the mean and standard devi-
ation log-probability/instance over 10
random train-test splits.

Dow (29 vars) Crime (100) Music (68 vars) SP (500 vars)
Train Test Train Test Train Test Train Test

Tree -15.0 -15.4 73.6 74.5 -68.3 -69.3 -426.2 -427.8
(0.32) (0.45) (1.78) (2.12) (0.82) (1.05) (2.73) (2.25)

IP -18.0 -18.7 52.7 54.3 -81.4 -82.7 -526.7 -529.2
(0.26) (0.34) (1.72) (2.16) (1.52) (1.83) (2.78) (2.97)

QIP -13.7 -14.0 77.4 78.4 -61.7 -62.4 -414.8 -416.9
(0.24) (0.19) (2.63) (2.31) (1.33) (1.42) (2.35) (2.46)

λ = 1. Appealingly, even with this simple marginal
representation, the gap between QIP and IP is sub-
stantial, emphasizing the importance of allowing for
non-Gaussian representations.

6.2 Real-World Domains

We now evaluate the ability of our QIP to discover
effective hidden variables in real-life domains, starting
with a comparison to current state-of-the-art baselines.

We compare to the LTC approach [Kirshner, 2012] us-
ing the reported 8-fold cross-validation protocol on the
S&P100 data set: 85 monthly stock returns over the
years years 1990 - 2007. Results are shown in Figure 5
(LTC numbers are from [Kirshner, 2012]). The differ-
ence between the two approaches is within a standard
deviation and is, thus, not significant. However, while
LTC uses 83 hidden variables on average, our QIP
approach is able to compete with an average of just 12
hidden variables. This difference has scalability rami-
fication when bigger network are considered e.g. such
as S&P 500 that is considered below.

Next, we compare to the convex optimization (CVO)
approach introduced in [Chandrasekaran et al., 2010].
Due to the prohibitive computational demands of this
method, we consider the more modest Dow domain
with 29 variables. We use the standard CVX tool
[Grant and Boyd, 2013, 2008] for the computations.
Figure 5 (right) shows the results using 8-fold cross-
validation. To give CVO a fighting chance, we search
for the best fit for its parameters λ ∈

√
p
M × [1, 100]

and γ ∈ [1, 20]. The superiority of QIP is evident.
This should not come as a surprise since CVO assumes
a Gaussian model, and we expect its performance to
be close to that of the the original IP (see Table 6).

Finally, we compare QIP to the standard IP as well
as a Gaussian copula Tree baseline on several real-life
domains, some of which are significantly bigger than
those explored in the literature: Dow. End of day
changes of the 29 Dow-Jones stocks for 2000 trading
days; Music (UCI repository). 68 audio features cor-
respond to 1059 tracks; Crime (UCI repository). 100
variables relating to crime in the U.S. for 1994 samples;
SP500. Daily returns of 500 Standard and Poor’s in-

dex stocks for 2000 trading days.

Results are summarized in Figure 6, where the im-
provement over IP demonstrates the importance of
using a non-Gaussian representation. Similarly, the
substantial advantage over Tree highlights the advan-
tage of discovering hidden variables.

Interestingly, despite of the fact that the notion of con-
sistency does not hold for QIP, the models learned are
semantically appealing. For example, when running
QIP over the SP500 data set, in all random folds, a
new parent variable governing a cluster of gas and oil
producers was created. Additionally, another cluster
of health care providers was created. Similar appeal-
ing qualitative clusters are also evident for the other
datasets (not shown for lack of space).

7 Discussion and Future Work

In this work we tackled the challenge of discovering
novel hidden variables in non-Gaussian domains based
on the Gaussian copula representation. We introduced
QIP, a generalization of the concept of an ideal predic-
tor, and provided the machinery needed to make this
concept useful for effective discovery of hidden vari-
ables. We demonstrated the advantages of our ap-
proach in synthetic and real-life settings.

To the best of our knowledge, only two previous works
consider the task of discovering hidden variables in
real-valued non-Gaussian high dimensional domains.
[Elidan et al., 2007], which we generalize, is limited to
simple parametric forms and requires specific tailor-
ing for each one. [Kirshner, 2012] is potentially more
flexible in terms of the local copula representation but
is limited to a tree structure. As we showed, this re-
sults in overly complex models and is inherently less
scalable than our approach. Indeed, some of the do-
mains we consider are substantially large than those
previously considered in the literature.

An important future derection is the extension of QIP
formulation to additional copula families. The goal is
to discover effective hidden variables in domains where
the dependence structure follow elaborate patterns,
such as heavy tail dependence.
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