
Towards stability and optimality in
stochastic gradient descent
Supplementary material for AISTATS 2016

1 Note

Lemmas 1, 2, 3 and 4, and Corollary 1, were originally derived by Toulis and Airoldi (2014). These
intermediate results (and Theorem 1) provide the necessary foundation to derive Lemma 5 (only in
this supplement) and Theorem 2 on the asymptotic optimality of θ̄n, which is the key result of the
main paper. We fully state these intermediate results here for convenience but we point the reader
to the aforementioned reference for the proofs and for more details on the theory of (non-averaged)
implicit stochastic gradient descent (implicit SGD).

2 Introduction

Consider a random variable ξ ∈ Ξ, a parameter space Θ that is convex and compact, and a loss
function L : Θ× Ξ→ R. We wish to solve the following stochastic optimization problem:

θ? = arg min
θ∈Θ

E (L(θ, ξ)) , (1)

where the expectation is with respect to ξ. Define the expected loss,

`(θ) = E (L(θ, ξ)) , (2)

where L is differentiable almost-surely. In this work we study a stochastic approximation procedure
to solve (1) defined through the iterations

θn = θn−1 − γn∇L(θn, ξn), θ0 ∈ Θ, (3)

θ̄n =
1

n

n∑
i=1

θi, (4)

where {ξ1, ξ2, . . .} are i.i.d. realizations of ξ, and∇L(θ, ξn) is the gradient of the loss function with
respect to θ given realized value ξn. The sequence {γn} is a non-increasing sequence of positive
real numbers. We will refer to procedure defined by (3) and (4) as averaged implicit stochastic
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gradient descent, or averaged implicit sgd (ai-sgd) for short. Procedure ai-sgd combines two
ideas, namely an implicit update in Eq. (3) as θn appears on both sides of the update, and averaging
of the iterates θn in Eq. (4).

3 Notation and assumptions

Let Fn = {θ0, ξ1, ξ2, . . . , ξn} denote the filtration that process θn (3) is adapted to. The norm || · ||
will denote the L2 norm. The symbol , indicates a definition, and the symbol def= denotes “equal
by definition”. For example, x , y defines x as equal to known variable y, whereas x def

= y denotes
that the value of x is equal to the value of y, by definition. We will not use this formalism when
defining constants. For two positive sequences an, bn, we write bn = O(an) if there exists a fixed
c > 0 such that bn ≤ can, for all n; also, bn = o(an) if bn/an → 0. When a positive scalar sequence
an is monotonically decreasing to zero, we write an ↓ 0. Similarly, for a sequenceXn of vectors or
matrices, Xn = O(an) denotes that ||Xn|| = O(an), and Xn = o(an) denotes that ||Xn|| = o(an).
For two matrices A,B, A � B denotes that B−A is nonnegative-definite; tr(A) denotes the trace
of A.

We now introduce the main assumptions pertaining to the theory of this paper.
Assumption 1. The loss function L(θ, ξ) is almost-surely differentiable. The random vector ξ can
be decomposed as ξ = (x, y), x ∈ Rp, y ∈ Rd, such that

L(θ, ξ) ≡ L(xᵀθ, y). (5)

Assumption 2. The learning rate sequence {γn} is defined as γn = γ1n
−γ , where γ1 > 0 and

γ ∈ (1/2, 1].
Assumption 3 (Lipschitz conditions). For all θ1, θ2 ∈ Θ, a combination of the following conditions
is satisfied almost-surely:

(a) The loss function L is Lipschitz with parameter λ0, i.e.,

|L(θ1, ξ)− L(θ2, ξ)| ≤ λ0||θ1 − θ2||,

(b) The map∇L is Lipschitz with parameter λ1, i.e.,

||∇L(θ1, ξ)−∇L(θ2, ξ)|| ≤ λ1||θ1 − θ2||,

(c) The map∇2L is Lipschitz with parameter λ2, i.e.,

||∇2L(θ1, ξ)−∇2L(θ2, ξ)|| ≤ λ2||θ1 − θ2||.

Assumption 4. The observed Fisher information matrix, Î(θ) , ∇2L(θ, ξ), has non-vanishing
trace, i.e., there exists φ > 0 such that tr(Î(θ)) ≥ φ, almost-surely, for all θ ∈ Θ. The expected
Fisher information matrix, I(θ) , E

(
Î(θ)

)
, has minimum eigenvalue 0 < λf ≤ φ, for all θ ∈ Θ.

Assumption 5. The zero-mean random variable Wθ , ∇L(θ, ξ) − ∇`(θ) is square-integrable,
such that, for a fixed positive-definite Σ,

E
(
Wθ?W

ᵀ
θ?

)
� Σ.
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4 Proof of Lemma 1

Definition 1. Suppose that Assumption 1 holds. For observation ξ = (x, y), the first derivative
with respect to the natural parameter xᵀθ is denoted by L′(θ, ξ), and is defined as

L′(θ, ξ) ,
∂L(θ, ξ)

∂(xᵀθ)
def
=
∂L(xᵀθ, y)

∂(xᵀθ)
. (6)

Similarly, L′′(ξ, θ) , ∂L′(θ,ξ)
∂(xᵀθ)

.

Lemma 1. Suppose that Assumption 1 holds, and consider functionsL′, L′′ fromDefinition 1. Then,
almost-surely,

∇L(θn, ξn) = sn∇L(θn−1, ξn); (7)

the scalar sn satisfies the fixed-point equation,

snκn−1 = L′ (θn−1 − snγnκn−1xn, ξn) , (8)

where κn−1 , L′(θn−1, ξn). Moreover, if L′′(θ, ξ) ≥ 0 almost-surely for all θ ∈ Θ, then

sn ∈

{
[κn−1, 0) if κn−1 < 0,

[0, κn−1] otherwise.

Proof. See Toulis and Airoldi (2014, Theorem 4.1).

5 Proof of Theorem 1

5.1 Useful lemmas

In this section, we will present the intermediate lemmas on recursions that will be useful for the
non-asymptotic analysis of the implicit procedures.
Lemma 2. Consider a sequence bn such that bn ↓ 0 and

∑∞
i=1 bi =∞. Then, there exists a positive

constant K > 0, such that
n∏
i=1

1

1 + bi
≤ exp(−K

n∑
i=1

bi). (9)

Proof. See Toulis and Airoldi (2014, Lemma B.1).

3



Lemma 3. Consider scalar sequences an ↓ 0, bn ↓ 0, and cn ↓ 0 such that, an = o(bn), and
A ,

∑∞
i=1 ai <∞. Suppose there exists n′ such that cn/bn < 1 for all n > n′. Define,

δn ,
1

an
(an−1/bn−1 − an/bn) and ζn ,

cn
bn−1

an−1

an
, (10)

and suppose that δn ↓ 0 and ζn ↓ 0. Fix n0 > 0 such that δn + ζn < 1 and (1 + cn)/(1 + bn) < 1,
for all n ≥ n0.

Consider a positive sequence yn > 0 that satisfies the recursive inequality,

yn ≤
1 + cn
1 + bn

yn−1 + an. (11)

Then, for every n > 0,

yn ≤ K0
an
bn

+Qn
1y0 +Qn

n0+1(1 + c1)n0A, (12)

where K0 = (1 + b1) (1− δn0 − ζn0)
−1, and Qn

i =
∏n

j=i(1 + ci)/(1 + bi), such that Qn
i = 1 if

n < i, by definition.

Proof. See Toulis and Airoldi (2014, Lemma B.2).

Corollary 1. In Lemma 3 assume an = a1n
−α and bn = b1n

−β , and cn = 0, where a1, b1, β > 0
and max{β, 1} < α < 1 + β, and β 6= 1. Then,

yn ≤ 2
a1(1 + b1)

b1

n−α+β + exp(− log(1 + b1)n1−β)[y0 + (1 + b1)n0A], (13)

where n0 > 0 and A =
∑

i ai <∞. If β = 1 then the above inequality holds by replacing the term
n1−β with log n.

Proof. See Toulis and Airoldi (2014, Corollary B.1).

Lemma 4. Suppose Assumptions 1, 3(a), and 4 hold. Then, almost surely,

sn ≥
1

1 + γnφ
, (14)

||θn − θn−1||2 ≤ 4λ2
0γ

2
n, (15)

where sn is defined in Lemma 1, and θn is the nth iterate of implicit SGD (3).

Proof. See Toulis and Airoldi (2014, Lemma B.3).

Theorem 1. Suppose that Assumptions 1, 2, 3(a), and 4 hold. Define δn , E (||θn − θ?||2), and
constants Γ2 = 4λ2

0

∑
γ2
i <∞, ε = (1+γ1(φ−λf ))−1, and λ = 1+γ1λfε. Also let ργ(n) = n1−γ

if γ 6= 1 and ργ(n) = log n if γ = 1. Then, there exists constant n0 > 0 such that, for all n > 0,

δn ≤(8λ2
0γ1λ/λfε)n

−γ + e− log λ·ργ(n)[δ0 + λn0Γ2].
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Proof. See Toulis and Airoldi (2014, Theorem 3.1).

Remarks. #1. Assuming Lipschitz continuity of the gradient ∇L instead of function L, i.e.,
Assumption 3(b) over Assumption 3(a) would not alter the main result of Theorem 1 about the
O(n−γ) rate of the mean-squared error. Assuming Lipschitz continuity with constant λ1 of ∇L
and boundedness of E (||∇L(θ?, ξn)||2) ≤ σ2, as it is typical in the literature, would simply add a
term γ2

nλ
2
1E (||θn − θ?||2)+γ2

nσ
2 in the corresponding recursive inequality. Specifically, by Lemma

1, sn ≤ 1, and thus

E
(
||∇L(θn, ξn)||2

)
= E

(
s2
n||∇L(θn−1, ξn)||2

)
≤ E

(
||∇L(θn−1, ξn)||2

)
= E

(
||∇L(θn−1, ξn)−∇L(θ?, ξn) +∇L(θ?, ξn)||2

)
≤ λ2

1E
(
||θn−1 − θ?||2

)
+ γ2

nE
(
||∇L(θ?, ξn)||2

)
≤ λ2

1E
(
||θn−1 − θ?||2

)
+ γ2

nσ
2. (16)

The recursion for the implicit errors would then be

E
(
||θn − θ?||2

)
≤ (

1

1 + γnλfε
+ λ2

1γ
2
n)E

(
||θn−1 − θ?||2

)
+ γ2

nσ
2,

which also implies the O(n−γ) convergence rate. However, it is an open problem whether it is
possible to derive a nice stability property for implicit SGD under Assumption 3(b) similar to the
result of Theorem 1 under Assumption 3(a).

Remarks. #2. An assumption of almost-sure convexity can simplify the analysis significantly. For
example, similar to the assumption of Ryu and Boyd (2014), assume that L(θ, ξ) is convex almost
surely such that

(θn − θ?)ᵀ∇L(θn, ξn) ≥ µn
2
||θn − θ?||2, (17)

where µn ≥ 0 and E (µn) = µ > 0. Then,

θn + 2γn∇L(θn, ξn) = θn−1 [by definition of implicit SGD (3)]

||θn − θ?||2 + 2γn(θn − θ?)ᵀ∇L(θn, ξn) ≤ ||θn−1 − θ?||2.
(1 + γnµn)||θn − θ?||2 ≤ ||θn−1 − θ?||2.

E
(
||θn − θ?||2

)
≤ 1

1 + γnµ
E
(
||θn−1 − θ?||2

)
+ SD(1 + γnµn)SD(||θn − θ?||2),

(18)

where the last inequality follows from the identity E (XY ) ≥ E (X)E (Y )−SD(X)SD(Y ). How-
ever, SD(1 + γnµn) = O(γn), and assuming bounded θn we get

E
(
||θn − θ?||2

)
≤ 1

1 + γnµ
E
(
||θn−1 − θ?||2

)
+O(γn), (19)

which indicates a fast convergence towards θ?. It is also possible to work with the recursion

||θn − θ?||2 ≤
1

1 + γnµn
||θn−1 − θ?||2, (20)

and then use a stochastic version of Lemma 3 although the analysis would be more complex in this
case.
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6 Proof of Theorem 2

In this section, we prove Theorem 2. To do so, we need bounds for E (||θn − θ?||2), which are
available through Theorem 1, but also bounds for E (||θn − θ?||4), which are established in the
following lemma.
Lemma 5. Suppose that Assumptions 1, 2, 3(a), and 4 hold. For a constant K3 > 0, define ζn ,
E (||θn − θ?||4), and constants ∆3 , K3

∑
γ3
i <∞, ε , (1 + γ1(φ− λf ))−1, and λ , 1 + γ1λfε.

Then, there exists constant n0 such that, for all n > 0,

ζn ≤(2K3γ
2
1λ/λfε)n

−2γ + e− log λ·ργ(n)[ζ0 + λn0∆3].

Proof. DefineWn , sn(θn−1 − θ?)ᵀ∇L(θn−1, ξn) for compactness, and proceed as folllows,

||θn − θ?||2 = ||θn−1 − θ?||2 − 2γnsn(θn−1 − θ?)ᵀ∇L(θn−1, ξn) + γ2
n||∇L(θn, ξn)||2

||θn − θ?||2 = ||θn−1 − θ?||2 − 2γnWn + γ2
n||∇L(θn, ξn)||2 [by definition]

||θn − θ?||2 ≤ ||θn−1 − θ?||2 − 2γnWn + 4λ2
0γ

2
n,

||θn − θ?||4 ≤ ||θn−1 − θ?||4 + 4γ2
nW

2
n + 16λ4

0γ
4
n

− 2γn||θn−1 − θ?||2Wn + 4λ2
0γ

2
n||θn−1 − θ?||2 − 8λ2

0γ
3
nWn. (21)

By Lemma 4 we have

E (Wn| Fn−1) ≥
λf

2(1 + γnφ)
||θn−1 − θ?||2. (22)

Furthermore,

E
(
W 2
n

∣∣Fn−1)
def
= E

(
[sn(θn−1 − θ?)ᵀ∇L(θn−1, ξn)]2

∣∣Fn−1)
def
= E

(
[(θn−1 − θ?)ᵀ∇L(θn, ξn)]2

∣∣Fn−1) [by Lemma 1]

≤ ||θn−1 − θ?||2E
(
||∇L(θn, ξn)||2

∣∣Fn−1) [by Cauchy-Schwartz inequality]

≤ 4λ2
0||θn−1 − θ?||2 [by Lemma 4] (23)

Define Bn , E (||θn − θ?||2) for notational brevity. We use results (22) and (23) to get

E
(
||θn − θ?||4

)
≤
(

1−
γnλf

1 + γnφ

)
E
(
||θn−1 − θ?||4

)
+ 4λ2

0γ
2
n(5−

γnλf

1 + γnφ
)Bn−1 + 16λ4

0γ
4
n

E
(
||θn − θ?||4

)
≤
(

1−
γnλf

1 + γnφ

)
E
(
||θn−1 − θ?||4

)
+ 20λ2

0γ
2
nBn−1 + 16λ4

0γ
4
n

E
(
||θn − θ?||4

)
≤ 1

1 + γnλfε
E
(
||θn−1 − θ?||4

)
+ 20λ2

0γ
2
nBn−1 + 16λ4

0γ
4
n. [by Assumption 4]

E
(
||θn − θ?||4

)
≤ 1

1 + γnλfε
E
(
||θn−1 − θ?||4

)
+K0γ

3
n + e− log λ·n1−γ

K1 +K2γ
4
n, [by Theorem 1]

(24)
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where λ = (1 + γ1(φ − λf ))
−1 and Γ2 = 4λ2

0

∑
γ2
i , (as in Theorem 1), K0 , 160λ4

0λ/λf ,
K1 , 20λ2

0(E (||θ0 − θ?||2) + λn0Γ2), andK2 , 16λ4
0, and n0 is a constant defined in the proof of

Theorem 1.

Now, define

K3 , K0 +K2γ1 + max{e
− log λ·ργ(n)K1

γ3
n

}, (25)

which exists and is finite. Through simple algebra it is easy to verify that

K0γ
3
n + e− log λ·ργ(n)K1 +K2γ

4
n ≤ K3γ

3
n, (26)

for all n. Therefore, we can simplify Ineq. (24) as

E
(
||θn − θ?||4

)
≤ 1

1 + γnλfε
E
(
||θn−1 − θ?||4

)
+K3γ

3
n. (27)

We can now apply Corollary 1 with an ≡ K3γ
3
n and bn ≡ γnλfε to derive the final bounds for

E (||θn − θ?||4).

We now evaluate the mean squared error of the averaged iterates, θ̄n.
Theorem 2. Consider the ai-sgd procedure 4 and suppose that Assumptions 1, 2, 3(a), 3(c), 4,
and 5 hold with γ < 1. Then,

(E
(
||θ̄n − θ?||2

)
)1/2 ≤ 1√

n

(
trace(∇2`(θ?)

−1Σ∇2`(θ?)
−1)
)1/2

+
2γ + 1

λf
1/2γ1

(8λ2
0γ1λ/λfε)

1/2n−1+γ/2

+
2γ + 1

λf
1/2nγn

[δ0 + λn0,1Γ2]1/2e− log λ·n1−γ/2

+
λ2

2λf
1/2

(2K3γ
2
1λ/λfε)

1/2n−γ

+
λ2

2nλf
1/2

[ζ0 + λn0,2∆3]1/2K2(n). (28)

whereK2(n) =
∑n

i=1 exp (− log λ · i1−γ/2), and constants λ, ε, n0,1, δ0,Γ
2 are defined in Theorem

1 (susbtituting n0 for n0,1), and ζ0, n0,2,∆
3 are defined in Lemma 5, substituting (n0 for n0,2).

Proof. We leverage a result shown for averaged explicit stochastic gradient descent. In particular,
it has been shown that the squared error for the averaged iterate satisfies:

(E
(
||θ̄n − θ?||2

)
)1/2 ≤ 1√

n

(
trace(∇2`(θ?)

−1Σ∇2`(θ?)
−1)
)1/2

+
2γ + 1

λf
1/2nγn

(E
(
||θn − θ?||2

)
)1/2

+
λ2

2nλf
1/2

n∑
i=1

(E
(
||θi − θ?||4

)1/2
. (29)
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The proof technique for (29) was first devised by Polyak and Juditsky (1992), but was later refined
by Xu (2011), and Moulines and Bach (2011). In this paper,we follow the formulation of Moulines
and Bach (2011, Theorem 3, page 20); the derivation of Ineq.(29) for the implicit procedure is
identical to the derivation for the explicit one, however the two procedures differ in the terms that
appear in the bound (29).

All such terms in (29) have been bounded in the previous sections. In particular, we can use The-
orem 1 for E (||θn − θ?||2); we can also use Theorem 2 and the concavity of the square-root to
derive

n∑
i=1

(E
(
||θi − θ?||4

)1/2 ≤
n∑
i=1

(
(2K3γ

2
1λ/λfε)

1/2i−γ + e− log λ·i1−γ/2[ζ0 + λn0,2∆3]1/2
)

≤ (2K3γ
2
1λ/λfε)

1/2n1−γ +K2(n)[ζ0 + λn0,2∆3]1/2, (30)

whereK2(n) =
∑n

i=1 exp
(
− log λ

2
i1−γ

)
, ζ0 = E (||θ0 − θ?||4), and∆3, n0,2 are defined in Lemma 5,

substituting n0 for n0,2. Similarly, using Theorem 1,

(E
(
||θn − θ?||2

)1/2 ≤ (8λ2
0γ1λ/λfε)

1/2n−γ/2 + e− log λ·n1−γ/2[δ0 + λn0,1Γ2]1/2,

where δ0 = E (||θn − θ?||2), and n0,1,Γ
2 are defined in Theorem 1, substituing n0,1 for n0. These

two bounds can be used in Ineq.(29) and thus yield the result of Theorem 2.

7 Data sets used in experiments

description type features training set test set λ
covtype forest cover type sparse 54 464,809 116,203 10−6

delta synthetic data dense 500 450,000 50,000 10−2

rcv1 text data sparse 47,152 781,265 23,149 10−5

mnist digit image features dense 784 60,000 10,000 10−3

sido molecular activity dense 4,932 10,142 2,536 10−3

alpha synthetic data dense 500 400k 50k 10−5

beta synthetic data dense 500 400k 50k 10−4

gamma synthetic data dense 500 400k 50k 10−3

epsilon synthetic data dense 2000 400k 50k 10−5

zeta synthetic data dense 2000 400k 50k 10−5

fd character image dense 900 1000k 470k 10−5

ocr character image dense 1156 1000k 500k 10−5

dna DNA sequence sparse 800 1000k 1000k 10−3

Table 1: Summary of data sets and the L2 regularization parameter λ used

Table 1 includes a full summary of all data sets considered in our experiments. The majority of
regularization parameters are set according to Xu (2011).
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