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Abstract

Modeling diversity of sets of items is impor-
tant in many applications such as product
recommendation and data summarization.
Probabilistic submodular models, a family
of models including the determinantal point
process, form a natural class of distributions,
encouraging effects such as diversity, repul-
sion and coverage. Current models, however,
are limited to small and medium number
of items due to the high time complexity
for learning and inference. In this paper,
we propose FLID, a novel log-submodular
diversity model that scales to large numbers
of items and can be efficiently learned using
noise contrastive estimation. We show
that our model achieves state of the art
performance in terms of model fit, but can
be also learned orders of magnitude faster.
We demonstrate the wide applicability of
our model using several experiments.

1 INTRODUCTION

Suppose that a search query for images of Venice re-
turns only images of St. Mark’s Square — this is prob-
ably not matching the expectations of a user seeking
images that are both of high quality and represent all
important sights of Venice. For example, in addition
to St. Mark’s Square, one would also expect images of
the canals and the famous Carnival of Venice. There
are many more applications for which diversity is an
important property, e.g., product recommendation in
which given a partial shopping basket, recommended
products should be complementary to the products
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in the basket [1], and extractive text summarization
in which selected sentences from a text should not
only summarize the text, but also be diverse and non-
redundant [2].

Determinantal point processes (DPPs) are a prominent
tool [3, 4, 5] for modeling diversity of item sets, offering
the benefit of quantifying uncertainty. They have been
successfully used in several applications, such as search
result diversification [6] and video summarization [7].
However, DPPs scale poorly to large item sets because
the inference problem is computationally challenging
(the time complexity is roughly O(N3), where N is
the number of items). This renders them inapplicable
for the nowadays large scale and big data applications,
e.g., image search over millions of items.

As it turns out, DPPs are a special instance of Proba-
bilistic Submodular Models (PSMs) [8, 9], i.e., distri-
butions over subsets S of some finite ground set V , that
assign probabilities of the form P (S) ∝ exp(F (S)) for
some submodular function F : 2V → R. Such log-
submodular distributions can specify expressive prob-
abilistic models and generalize several existing proba-
bilistic models, e.g., repulsive Ising models and DPPs.
Because of the submodularity property, these distri-
butions are natural candidates for modeling the no-
tions of representativeness and diversity. Moreover,
this family of distributions is closed under condition-
ing, and there is an efficient algorithm that yields
a 1

2 -approximation to the MAP configuration [10].
Most existing literature on log-submodular distribu-
tions deals with performing inference for fixed (known)
submodular functions [8, 11, 12]. A natural and im-
portant direction, which we pursue in this paper, is to
investigate the problem of learning these distributions.

In this paper, we propose the FLID (Facility Loca-
tIon Diversity) model, a novel probabilistic submodu-
lar model based on embedding each item in a latent
vector space. Furthermore, even though the model
cannot generally be normalized efficiently, we show
how it can be efficiently fitted via noise contrastive
estimation (NCE) [13]. In extensive experiments on
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several applications, we show that our model provides
fits on par to current state of the art models, but at
the same time offers vastly superior scalability to large
sets of items.

2 DIVERSITY MODEL: FLID

We will now introduce our novel probabilistic submod-
ular diversity model. A probability distribution P (S)
over subsets S ⊆ V , where w.l.o.g. V = {1, . . . , N},
is log-submodular if it can be written as P (S) ∝
exp(F (S)), where F : 2V → R is a submodular set
function. Submodular functions F are characterized
by a natural diminishing returns property, i.e.,

F (A ∪ {i})− F (A) ≥ F (B ∪ {i})− F (B),

for all A ⊆ B ⊆ V \ {i}. Intuitively, this property
means that the gain of adding an item i in the context
of the smaller set A is larger than the gain of adding
that element in the context of the larger set B. This
property renders submodular functions natural candi-
dates for modeling coverage and diversity.

The first component of our model is an item relevance
term. Specifically, to each item i in the ground set
V we will associate some number ui ∈ R that quan-
tifies the quality of that item. For example, in the
image search example from the introduction we would
expect the better looking images to have higher rele-
vance terms. The first model that one may try, which
we call modular, is to use a distribution of the form

P (S) ∝ exp

(∑

i∈S
ui

)
,

which is completely factorized. However, this can only
capture the frequencies of the individual items, ignor-
ing any dependences. We hence add an extra diversity
term to model the extent to which items are substi-
tutes of each other. To this end, we will assign to each
item i an L-dimensional vector wi ∈ RL

≥0. The intu-
ition is that each of these L dimensions will capture
some concept (e.g. image shows St. Mark’s Square, im-
age shows people in carnival costumes, etc.), and we
interpret wi,d as a quantification of how relevant that
item i is for that specific concept d. To quantify the di-
versity of some items S ⊆ V with respect to dimension
d, we propose the term maxi∈S wi,d−

∑
i∈S wi,d. This

term is a nonpositive penalty, evaluating to 0 iff S con-
tains at most one item i with positive value wi,d > 0.
Summing over all latent dimensions d, the complete
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Figure 1: Weights W learned from the synthetic ex-
periments. Each row corresponds to the factored rep-
resentation of an item. Different groups are separated
by a horizontal dotted line.

model that we propose is:

P (S | u,W)

=
1

Z
exp

(∑

i∈S
ui +

L∑

d=1

(
max
i∈S

wi,d −
∑

i∈S
wi,d

)

︸ ︷︷ ︸
Div(S)

)

︸ ︷︷ ︸
P̃ (S|u,W)

,

(1)

Hereby, u is the vector of item qualities u = [ui]i∈V ,
and W = [wi,d]i∈V,1≤d≤L represents the latent di-
versity embedding for all items i ∈ V . We refer to
this model as the FLID (Facility LocatIon Diversity)
model1. As a concrete example, consider the latent
properties encoded by the matrix shown in Figure 1.
In this example, we have that Div({1, 2}) ≈ −1 (items
1 and 2 have roughly the same latent properties), while
Div({1, 5, 7}) = 0 (these items have roughly pairwise
orthogonal latent properties). Also, note that Div(S)
is zero whenever |S| = 1. This is a desired property
because there is no meaningful notion of diversity for
sets containing only a single item.

Using ideas similar to the normalization of submodular
point processes [14], for any fixed L, we can compute
the partition function, and hence marginals, condition-
als etc., of the FLID model in time polynomial in the
ground set size by Algorithm 1 (the algorithm and the
proof are presented in the Appendix):

Proposition 1 (Partition Function of FLID). The
time complexity for computing the partition function
of the FLID model using Algorithm 1 is O(|V |L+1).

1Submodular functions F (S) =
∑

i maxj∈S mi,j for
some matrix M ≥ 0 are called facility location functions.
The idea is that mi,j models the value that a selected facil-
ity at location j may provide to customer i. Each customer
subscribes to the facility that provides largest value. F (S)
is thus the total value provided to all customers.
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For the case of L = 2, the time complexity for normal-
izing the FLID model is the same as for DPPs. For
larger values of |V | and L, the time complexity may
be prohibitive. In these cases, the partition function
can be estimated, e.g., using Gibbs sampling [11].

Note that exact sampling from the FLID model is in
general difficult. However, under certain conditions on
W sampling from FLID can be performed efficiently
using Gibbs sampling [11]. In contrast to our model,
there are customized and efficient algorithms for sam-
pling from DPPs. The main bottleneck of these algo-
rithms is however the eigendecomposition of the ker-
nel matrix which can be computationally expensive for
large ground sets V [4].

An important quantity, that is useful, e.g., for recom-
mender systems, is the probability of adding a sin-
gle item to some set of already chosen items S ⊆ V .
Formally, for any such S we will define the quantities

QS(i) = P ({i}|S)∑
j∈V \S P ({j}|S) for any i ∈ V \ S. Note that

these quantities can be computed efficiently for FLID
as we have to sum up over only |V \ S| items and the
normalization constants cancel.

3 EFFICIENT TRAINING

Unfortunately, maximum likelihood estimation of the
FLID model is intractable for large L, due to the pres-
ence of the partition function in the log-likelihood. In-
stead, we will use an alternative estimation method
known as noise contrastive estimation (NCE) [13].
The idea behind NCE is to pose the estimation prob-
lem as a discriminative learning task in which the goal
is to discriminate between samples from the data dis-
tribution and from a known noise distribution. This
noise distribution can be chosen almost arbitrarily un-
der mild conditions, cf. §4.3 for a brief discussion.

We now describe the parameter estimation in more
detail. Assume that we are given a labeled data set
A = {(S, YS)}, where S ⊆ V and YS ∈ {0, 1}, formed
from a set of data samples D and noise samples N
by labeling them as 1 and 0, respectively. That is,
A = {(S, 1) : S ∈ D}∪{(S, 0) : S ∈ N}. The data sam-
ples are from the unknown and to be estimated data
distribution Pd, while the noise samples are drawn
from some known and properly normalized noise dis-
tribution Pn. Then, the conditional likelihood that
S ∈ D ∪N came from D is

P (YS = 1 | S) =
P (S | YS = 1)

P (S | YS = 1) + ηP (S | YS = 0)

=
Pd(S)

Pd(S) + ηPn(S)
,

where η = P (N)/P (D) = |N |/|D|. As Pd is unknown,

we cannot compute P (Ys = 1 | S). In NCE, Pd is thus
substituted by the (un-normalized) model distribution
to be estimated including a parameter Ẑ to scale the
model, i.e., in our case Pd is substituted by 1

Ẑ
P̃ (S |

u,W). The parameters of the model together with
Ẑ, i.e., θ = [uNCE,WNCE, Ẑ], are then estimated by
maximizing the conditional log-likelihood of the labels
YS given S for S ∈ D ∪ N , which is equivalent to
maximizing the following objective:

g(θ)=
∑

S∈D
logP (YS = 1 |S, θ)+

∑

S∈N
logP (YS = 0 |S, θ)

(2)
For maximizing g(θ), the parameters of the FLID
model must be adjusted to effectively discriminate be-
tween data and noise samples. Furthermore, the pa-
rameter Ẑ is adjusted — this corresponds to a rescal-
ing of P̃ (S | u,W). For convenience, Ẑ can also be
included in the model itself yielding an approximately
normalized model after NCE [13].

Although NCE is not as common as maximum like-
lihood estimation, it enjoys several nice theoretical
guarantees. Assuming that the true data distribution
is in the model class, that Pn is nonzero whenever
Pd is nonzero, and two other mild technical conditions
(having their counterparts in maximum likelihood esti-
mation), the NCE estimator is guaranteed to converge
to the true parameters in probability [13] in the limit
of infinite data.

For our model, the objective g(θ) is non-convex, hence
we can only aim to identify good local optima. This is
akin to similar non-convexity challenges arising when
fitting DPPs (despite the fact that these can be effi-
ciently normalized). In the following, we show how
gradient-based techniques can be efficiently imple-
mented for optimizing g(θ).

Gradient-based optimization In our experi-
ments, cf., §5, we optimize the NCE objective (2)
using adaptive gradient descent (AdaGrad) [15].
Thus, in every iteration of AdaGrad, the gradient
∇ logP (YS = Y | S) of a labeled sample (S, Y ) ∈ A
must be computed (at points at which the function
is not differentiable, we break ties arbitrarily). This
gradient is given as

∇ logP (YS = Y | S)

=

(
Y − 1

1 + η Pn(S)
1
Ẑ
P̃ (S|u,W)

)
∇ log

1

Ẑ
P̃ (S | u,W),

(3)
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with
(
∇u log

P̃ (S | u,W)

Ẑ

)

i

=

{
1 i ∈ S
0 otherwise

(
∇W log

P̃ (S | u,W)

Ẑ

)

i,d

=

{
−1 i 6= arg maxj∈S wj,d

0 otherwise

∇Ẑ log
P̃ (S | u,W)

Ẑ
= − 1

Ẑ
,

where (∇u log P̃ (S | u,W))i denotes the ith entry

of the gradient with respect to u and (∇W log P̃ (S |
u,W))i,d the (i, d)th entry of the gradient with respect
to W, respectively. Evaluating (3) requires O(L|S|)
time. A full pass through all the samples (including
the noise samples) takes O(|D ∪ N |κL) time, where
κ = maxS∈D∪N |S|. This is a noteworthy smaller cost
than that of performing one iteration of projected gra-
dient descent for learning DPPs, as explained in more
detail in §4.3.

To ensure that all weights remain non-negative,

they have to be projected onto R|V |×L≥0 after each
gradient step. Let W′ be the weights after a
gradient step. Then, their projection is W =
[max{0, w′i,d}]i∈V,1≤d≤L. This requires an additional
O(L|S|) time for sample S.

4 EXPERIMENTAL SETUP

We now describe the setup for our experiments in §5,
including the used datasets, details on the application
of NCE, baselines and the considered metrics.

4.1 Datasets

Amazon Baby Registries This dataset consists
of baby registries collected from Amazon [16] and is
a standard benchmark dataset for evaluating DPPs.
These registries are split into sub-registries according
to categories, e.g., safety and feeding. For each cate-
gory, the data consists of a set of products V and a set
of registries over these products. The number of items
in the sub-registries ranges from 32 to 100, and each-
subregistry contains about 5,000 to 13,300 instances.
More details on the dataset can be found in [16].

For demonstrating the scalability of our model, we fur-
thermore considered a larger version of the Amazon
baby registries data. For creating this data, we did not
split the originally collected data into categories, but
considered the whole data. We filtered out all items
that did not appear in at least 10 registries, resulting
in a total of 7,058 items and 32,468 registries.

In the experiments, we used 10 fold cross-validation
for estimating statistics.

Product Recommendation We adopted the baby
registry data from above for a product recommenda-
tion task. In this task, we aim to predict an item that
best complements a given registry. For this task we
created new test datasets

T ′ = {(S \ {i}, i) : S ∈ T , |S| ≥ 2, i ∈ S}

from the original test datasets T . In other words, T ′
consists of partial registries obtained from S ∈ T by
removing a single element i ∈ S, keeping also the el-
ement that was removed. We will use the shorthand
Ši = S \ {i}.

Image Collection Data For the image collection
summarization task in §5.5 we considered the dataset
from [17] consisting of a total of 14 image collections
with 100 images each. The image collections were, for
the most part, taken during holiday trips. For each im-
age collection, several hundred human generated sum-
maries of size 10 of that collection were obtained using
Amazon Mechanical Turk.

4.2 Details on the Application of NCE

Noise Distribution In all experiments using NCE,
we must make use of a noise distribution for contrast-
ing the model distribution against, cf. §3. The per-
formance of NCE depends on the quality of this noise
distribution. Intuitively, the noise distribution should
be close to the data distribution to efficiently estimate
its properties [13]. Furthermore, evaluating the prob-
ability of a sample under the noise distribution Pn

must be efficient so that g(θ) can be optimized effi-
ciently. Additionally, it must be efficient to sample
from Pn to obtain the noise samples for NCE. There-
fore, one natural choice for the noise distribution is a
product (log-modular) distribution. For such distri-
butions, the maximum likelihood parameters and the
partition function can be computed in closed form.

Parameter Initialization As our objective g(θ) is
non-convex, initialization is an important issue. We
initialize the utilities ui corresponding to the empiri-
cal marginal distribution of {i}. The weights W were
initialized randomly to small non-zero values drawn
from a uniform distribution on [0, 0.001].

Weight Projection During Gradient Descent
As discussed in §2, the weights must be projected dur-
ing the application of AdaGrad to ensure that they
stay non-negative. We found that instead of project-
ing the parameters W′ after each gradient step via
W = [max{0, w′i,d}]i∈V,1≤d≤L, better performance can
be achieved by adding small random noise to weights
that would have had become clipped, i.e., the weights
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are projected by

wi,d =

{
wi,d = w′i,d w′i,d ≥ 0

wi,d ∼ U([0, 0.001]) w′i,d < 0,

where wi,d ∼ U([0, 0.001]) means that wi,d is drawn
from a uniform distribution on [0, 0.001]. The ran-
domness introduced in this way may help to escape
local optima.

4.3 Baselines

For benchmarking our model, we use modular distri-
butions estimated using maximum likelihood estima-
tion and DPPs as baselines. Determinantal point pro-
cesses (DPP) [18] are probably the most well-known
log-submodular diversity models. They are parame-
terized by a positive semi-definite matrix A < 0, and
the mass assigned to any set S ⊆ V is given by P (S) =
detAS/ det(A + I), where AS denotes the submatrix
obtained from A by taking the rows and columns S.
As evident from the formula, the model is already nor-
malized and there is no need for approximate inference
if one can afford the cost of computing the determi-
nant. The task of learning the matrix A from data is
very challenging, however, as it results in non-convex
problems. In [16] the authors develop an EM algo-
rithm for learning these models, and a faster scheme
has been proposed recently in [19]. We refer to this
faster scheme as fixed-point iterations (FP). One may
be tempted to estimate DPPs using NCE to reduce
computational complexity. However, a naive approach
fails: Computing the gradient of the likelihood of the
DPP requires computation of matrix inverses which
has complexity O(|V |3) [16]. This renders this ap-
proach infeasible, even for medium-scale values of |V |.

4.4 Evaluation Metrics

To quantify the model fit, we report the relative im-
provement in log-likelihood over a modular distribu-
tion (fully factorized distribution over the items, i.e.,
no diversity term) fitted using maximum likelihood es-
timation, i.e., we report

LLRI = 100 · Lmethod − Lmodular

|Lmodular|
, (4)

where Lmodular is the log-likelihood of the test data for
the modular distribution and Lmethod for the evaluated
methods (DPPs with EM, DPPs with FP, FLID with
NCE), respectively. We call this measure log-likelihood
relative improvement (LLRI).

For assessing the performance of the considered mod-
els on the product recommendation task we use the
following two metrics:

• Accuracy. Given a partial registry (Ši, i) ∈ T ′,
the models are asked to complete Ši by propos-
ing an element j ∈ V \ Ši. For the FLID and
modular model, we proposed the most likely el-
ement under QŠi

. For DPPs, we proposed the
element with largest marginal probability given
Ši. The accuracy of this proposal is computed as
|{i} ∩ {j}|, i.e., equal to 1 if j was the removed
item and 0 otherwise. These accuracies are then
averaged over all partial registries in T ′.
• Mean reciprocal rank (MRR). Given test data

(Ši, i), we compute using each model the proba-
bility of adding single items QŠi

(j) ∝ P ({j} | Ši)

over the candidates j ∈ V \ Ši, which we have al-

ready discussed at the end of §2. The rank rankŠi
j

of item j ∈ V \Ši in the context of Ši ism ifQŠi
(j)

is the mth largest probability (we break ties arbi-
trarily). The MRR score is then computed as

MRR =
100

|T ′|
∑

Ši∈T ′

1

rankŠi
i

.

5 EXPERIMENTS

This section consists of three parts: (i) we show that
the FLID models estimated using NCE match our in-
tuition on synthetic data, (ii) we evaluate our model on
a standard benchmark dataset for learning DPPs, and
(iii) we demonstrate that FLID models can be easily
scaled to large ground sets and datasets consisting of
thousands of samples, beyond reach of DPPs.

5.1 Synthetic Experiments

In our synthetic experiments, we demonstrate that our
proposed FLID model can effectively discover groups
of items where all items within a particular group are
substitutes of each other. For this purpose, we assume
a ground set V = ∪Gi=1Gi composed of G groups of
mutually disjoint sets of items Gi. We now create ran-
dom subsets of V such that smaller subsets are more
likely and subsets never contain multiple items from
any particular group. In more detail, we created sub-
sets Si ∈ V as follows:

1. Sample |Si| according to a truncated geometric
distribution, i.e., |Si| ∝ exp(−λ|Si|), with |Si| ∈
{1, . . . , G}, where λ > 0 is a parameter.

2. Select |Si| groups uniformly at random, and draw
one element uniformly at random from each of
these groups. The drawn items constitute Si.

Following this sampling scheme, every set Si contains
at most one item from each group G1, . . . ,GG.
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We instantiate the above setup for G = 4, λ = 1 and
Gi = {2i − 1, 2i} for all i ∈ {1, . . . , G} and drew 500
samples. Using L = G latent dimensions, we estimate
a model of the form (1) by NCE using 1,000 noise sam-
ples. The learned weights W are shown in Figure 1.
One can observe that

(i) items from the same group have similar factored
representations (there is a penalty for including
multiple items from a single group), and that

(ii) the factored representations from items of differ-
ent groups are approximately orthogonal to each
other (there is no penalty for including items from
different groups).

5.2 Amazon Baby Registries – Benchmark
Comparison

We next considered the Amazon baby registry data.
The task was, given the registries of a category, to fit
a probabilistic model and use that model for inference.
More concretely, we simply computed the likelihood of
the test data. We compared the model fit and running
time of our FLID model with the baseline models.
We fitted FLID models using NCE and L = 3 latent
dimensions (this small number of latent dimensions al-
ready allows for a clustering of the items; experiments
with larger values of L are considered in §5.3). The
step size of AdaGrad was set to 1. For optimization,
AdaGrad was shown 20 · |D ∪ N| samples selected
uniformly at random from the training data and the
noise samples (we created 10 · |D| noise samples).

We report the LLRI score based on 10-fold cross-
validation in Figure 2a. We observe that our model
has the largest improvement over the modular distri-
bution for categories with smaller |V |, e.g., safety and
furniture. For some of the categories with larger |V |,
e.g., feeding, we significantly outperform DPPs. For
the other categories, our model performs on par with
DPPs estimated using EM and FP, respectively.

For running time comparisons with DPPs we used
the implementation provided by the authors2, while
our model is implemented in Python/C++.3 Results
showing the cumulative running time for training on
all 10 folds are presented in Figure 2b. We observe
that for all categories, our model is significantly faster

2We found that computing the termination criterion
used in [19] is substantial more time consuming than per-
forming the actual fixed-point iterations. Therefore, we
modified the authors’ code to check the termination crite-
rion only in every 10th iteration resulting in a speedup for
the whole training procedure.

3The source code will be publicly released after publi-
cation. Experiments were run on an OS X system with 2.8
GHz Intel Core i5 and 16 GB memory.

than DPPs — even faster than DPPs estimated us-
ing FP. The gap in runtime between our model and
DPPs would become even more significant for datasets
with even larger ground sets. This is a consequence
of the linear cost per iteration of the FLID model,
compared to the cubic per iteration cost of DPPs. In
more detail: The per iteration cost for learning DPPs
using FP is O(|D|κ3 + |V |3), where κ = maxS∈D |S|.
Thus, the cubic complexity in κ and |V | (which may be
much larger for typical data), is the limiting factor for
scaling DPPs to large ground sets.4 In contrast, our
model has a per iteration cost of O(|D ∪N|κ′D) time,
where κ′ = maxS∈D∪N |S|. Thus, the per iteration
cost scales only linear with κ′ ≤ |V |.

5.3 Amazon Baby Registries – Product
Recommendation

For learning our FLID model, we used L = 10 (for
smaller L the performance degrades) latent dimensions
to allow for rich structure in W and |N | = 10|D| noise
samples. The step size of AdaGrad was set to 1.
The accuracy and mean reciprocal rank results results
are summarized in Figures 2c and Figures 2d, respec-
tively. We can observe that FLID compares favorably
with both the modular distributions and DPPs. FLID
improves significantly over the modular distributions
in several cases. Compared to DPPs, FLID performs
mostly on par, improving over DPPs significantly on
a few datasets, e.g., carseats and strollers.

5.4 Large Scale Experiments

We performed the product recommendation experi-
ments from the last section on the 7,058 item version
of the Amazon baby registry data. For estimating the
FLID model using NCE, we used L = 40 latent di-
mensions and 50 · |D| noise samples. In contrast to the
experiments before we used stochastic gradient descent
for optimization because this gave better results. We

used a step size of 10−2

t0.1 , where t is the iteration, and
performed a total of 50 · |D ∪ N | iterations. Training
on a single fold took roughly 7 minutes. Training of
DPPs did not finish within 2 hours. We achieved a
small improvement over the modular distributions on
this task, i.e., a relative improvement in accuracy of
6.56% ± 4.49, and a relative improvement in MRR of
1.35% ± 1.19, respectively. This is considerable given
only a very limited number of registries in relation to
the relatively large number of items.

4The per iteration cost for using the EM algorithm
from [16] is similar, i.e., quadratic in κ and cubic in |V |.
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Figure 2: Experimental results for the Amazon baby registry data. The horizontal grey bars in the figures
indicate the variance of the shown metrics across the cross-validation folds (their widths equal two standard
deviations). The FLID model improves the LLRI, accuracy and MRR metrics over the modular baseline on all
datasets. In several cases, FLID also improves significantly over DPPs, e.g., in terms of LLRI on feeding, in
terms of accuracy on strollers and carseats, and in terms of MRR on strollers and diaper. FLID can be trained
much faster than DPPs.

5.5 Image Collection Summarization

Finally, we considered an image collection summariza-
tion application. Here, the task is, given a set of im-
ages, to select a subset of those images that represent
the whole collection best and is as little redundant as
possible. We used 90% of the summaries for fitting
a FLID model using NCE with D = 10. As noise,
we used 200,000 samples. To illustrate the usefulness
of the resulting model, we considered summary com-
pletion, i.e., given a partial summary Š ⊆ S created
from a human summary S, we sampled completions of
that summary in an item-wise manner. In more detail:
starting from a partial summary Š, we computed the
probability QŠ(i) of adding the single element i to Š,
cf. §2. We then sampled an item according to QŠ(i)
and added it to Š. We iterated this procedure until
Š had the size of S. Illustrative results are shown in
Figure 3b. One can observe that the proposed images
are mainly complementary to the given images and

that there is little redundancy within the completed
summary. Furthermore, one can observe similarities
of the images removed from the human summary and
the images proposed by our model.

6 RELATED WORK

Probabilistic modeling with submodularity
The study of Probabilistic Submodular Models
(PSMs), i.e., Gibbs distributions associated with gen-
eral submodular set functions, has been recently ini-
tiated by [8]. PSMs define distributions of the form
P (S) ∝ exp(+F (S)) or P (S) ∝ exp(−F (S)) for some
submodular function F , called log-submodular and
log-supermodular respectively. While exact inference
is intractable, both variational [8, 9] and sampling-
based [12, 11] inference methods have been developed.
Some special cases, such as the determinantal point
process [18] or attractive and repulsive Ising mod-
els [20, 21], have been explored extensively. Another
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(b) Completed summaries

Figure 3: Results for completing image summaries. (a) Whole image collection; (b) Summary completion results.
The first row shows a partial human generated summary provided to our model. The row H shows the images
removed from the human summary. The rows 1 to 4 show completions of the partial summary computed from
our model. The proposed completions are complementary to the given images and every completion consists of
diverse images. Every proposed completion has at least a one image overlap with the images removed from the
human summary.

way of utilizing submodular functions to define dis-
tributions are submodular point processes (SPPs), in-
troduced in [14]. Some of these models can be effi-
ciently normalized, but in contrast to PSMs, they are
not closed under multiplication, which makes it diffi-
cult to use them as priors in Bayesian models.

Learning submodular functions The problem of
learning submodular functions has been considered in
the literature, albeit only in the non-probabilistic set-
ting. Goemans et al. in [22] and Balcan et al. in [23]
analyze the setting of learning in a value oracle setting.
Yue and Guestrin have considered submodular maxi-
mization in a bandit setting [24]. Several authors have
proposed learning mixtures (nonnegative linear com-
binations) of submodular functions in a max-margin
framework [17, 25].

Diversity models Models with diversity compo-
nents have been used for many different problems.
The problem of document summarization, i.e., the se-
lection of sentences from a document that compactly
represent the information in it, is one example that
has received much attention, e.g., [26, 25]. The re-
lated problem of summarizing image collections has

been also attacked [27, 17]. El-Arini et al. [28] use a
coverage function to select relevant and diverse posts
from the blogosphere. For probabilistically modelling
diversity, the most well-known model is probably the
determinantal point process (DPP) [18], cf. §4 for some
more details.

7 CONCLUSIONS

In this paper, we proposed FLID, a novel log-
submodular diversity model that easily scales to thou-
sands of items. We showed how it can be efficiently
learned using noise contrastive estimation. Our exper-
iments demonstrate that FLID achieves state of the
art performance in terms of model fit, while offering
superior scalability (linear vs. cubic as is the case for
DPPs). We believe that our results present an impor-
tant step towards modeling and estimating complex,
high-order probabilistic dependencies from data.
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