
On Searching for Generalized Instrumental Variables

A Appendix

A.1 Algorithm for Finding Simple

Instruments

function Find-Simple-IVs(G, X, Y)
Let B be all nodes d-separated from Y in G
Let D = De(An(X))
Construct a flow graph F ′(G) with nodes:
{V + | V ∈ D} ∪ {V −|V ∈ An(X)} ∪ {S, Y }

and edges:
{V + →W+ | V,W ∈ An(D) and V ←W ∈ E} ∪
{V + → V − | V ∈ An(X)} ∪
{V − →W− | V,W ∈ An(X) and V →W ∈ E} ∪
{S → V + | V ∈ (D ∩M ∩B)+} ∪
{X− → Y | X ∈ X}
Assign capacities to nodes in G′:

infinite capacity to S, Y ;
zero capacity to nodes of Pa(Y) \X and
unit capacity to all other nodes.

if an |X|-flow from S to Y in F ′(G) exists then
return First nodes of the flow

else return ⊥

Figure 7: Find-Simple-IVs

A.2 Algorithm for Testing Generalized

Instrumental Sets

The algorithm presented in Fig. 8 tests if Z is a gen-
eralized instrumental set relative to X and Y . For a
given input it constructs consecutively instances of k′-
GVDPP, with k ≤ k′ ≤ 2k, and for each of them it
uses a subroutine for solving GVDPP. The algorithm
returns true if at least one k′-GVDPP instance has a
solution.

In the algorithm we use an auxiliary procedure, called
Add-Arc, which, to improve the readability, we define
separately. The aim of this procedure is to compute
a consecutive triple Sp, Tp, and W′

p for an instance of
a k′-GVDPP as well as to update the set C appropri-
ately.

Below we present a pseudocode for Add-Arc:

procedure Add-Arc(i, S, T,W)
Sp := S; Tp := T ;
if T = Zi then

⊲ Path towards the instrument
W′

p := W ∪ Z ∪ {Xj | i ≥ j ∨ Fj = Xj}
U := U ∪ {p}

else

⊲ Path towards Y
W′

p := W ∪ {Zj | i ≤ j ∨ Fj = Zj} ∪X

C := C ∪ {{u, p} | u ∈ U}

W′
p := W′

p \ {S, T}
p := p+ 1

function Test-General-IVs(G, X, Y , Z)
for i in 1, . . . , k do

Wi := a nearest separator for (Y, Zi) in G
if Wi = ⊥ ∨ (Wi ∩De(Y) 6= ∅) then

return false

for all permutations π and π′ of {1, . . . , k} do
Let (X1, . . . , Xk) corresponds to π and let
(Z1, . . . , Zk), (W1, . . . ,Wk) correspond to π′

if ∃i : Xi ∈Wi then continue

if ∃i, j : i < j ∧Xi = Zj then continue

for all F1, . . . , Fk ∈ V \ (Y ∪W1∪ ...Wk) do
if ∃i 6= j : Fi ∈ {Fj , Xj , Zj} then

continue

F := {Fi | 1 ≤ i ≤ k}
k′ := k + |F \ (X ∪ Z)|
Construct a k′-GVDPP instance
S1, . . . , Sk′ , T1, . . . , Tk′ ,W′

1, . . . ,W
′
k′ ,C:

p := 1; U := ∅; C := ∅;
for i in 1, . . . , k do

if Fi = Xi then

Add-Arc (i,Xi, Zi,Wi ∪ F ∪ Y)
else if Fi = Zi then

Add-Arc (i, Zi, Xi,Wi ∪ F ∪ Y)
else

Add-Arc (i, Fi, Xi,Wi ∪ F ∪ Y)
Add-Arc (i, Fi, Zi,Wi ∪ F ∪ Y)

if (S1, . . . , Sk′ , T1, . . . , Tk′ ,W′
1, . . . ,W

′
k′ ,C)

is a Yes-instance of k′-GVDPP
then return true

return false

Figure 8: Test-General-IVs

In the next section, we prove (see proof of Proposi-
tion A.3) that algorithm Test-General-IVs satisfies
the requirements of Lemma 5.6.

A.3 Proofs

Proof of Lemma 5.2. Since Y can only occur once in
π, π contains only one edgeX→ Y and thus π[Z ∼ X]
also exists in the graph G.

If π is blocked by W and not by W′ there is a blocking
node V ∈ W \W′ on π. Since V ∈ W ⊆ An(Y ∪
Z), the subpath between V and Z exists in the moral
graph ((G)An(Y ∪Z))

m. Since W is a nearest separator,
it can only contain V , if W′ also contains it, which
contradicts W′ not blocking π.

Proposition A.1. Algorithm Test-SimpleCond-

Instru-ments (Fig. 5) satisfies the requirements of
Theorem 4.2.

Proof. Assume Z is a simple conditional instrumental

van der Zander, Lískiewicz

set, then there exist a set W′ and pairs (Zi, πi) satisfy-
ing Def. 3.3. Because all paths from S pass through a
node of Z, W′ d-separates S and Y in G′. According to
lemma 5.1 calling algorithm Nearest-Separating-

Set finds a nearest-separator set W with (Y ⊥⊥
S | W)G′ , which does not contain descendants of Y .
Due to Lemma 5.2 this set does not block any path πi.

Every path πi can be split into two (possible empty)
paths π+

i and π−i . The first is directed away from Z

and the second is directed towards Y . π+
i corresponds

to a directed path π+
i of plus nodes in F (G) and π−i to a

directed path of minus nodes. A possibly existing fork
Fi corresponds to a subpath F+

i → F−i . These paths
exist in F (G), because π+

i only contains ancestors of
Z and π−i only ancestors of X.

These paths do not intersect. If, for i < j, there were
two paths π′i and π′j containing a common node V +,
the corresponding paths πi, πj would have the form

Zi
+
← V , Zj

+
← V or V ∈ {Zi, Zj}. Which violates

condition (c) of Def. 3.3, since πj [Zj ∼ V] has to point
towards V . The same argument holds for V −. Since
each of these paths can carry an unit flow, a |Z|-flow
exists and the algorithm returns true.

In the other direction: if the algorithm returns true, it
has found a set W and a |Z|-flow from S to Y . The
set W d-separates every Zi from Y in G, because it
d-separates S from Y . The flow can be represented
as k = |Z| disjoint paths π′1, . . . , π

′
k from S to Y not

blocked by W. We can assume that the paths are cho-
sen, such that their total length is minimal5. We can
project these paths to d-connected paths π1, . . . , πk in
G, by dropping the ± markers from nodes, the first
edge and replacing → V + → V − → with a single fork
← V →.

The first two conditions of Def. 3.3 are satisfied by the
construction, and because no element of Z can be a
descendant of Y , unless there is a path in G that can
only be blocked by a descendant of Y .

If path πi intersects path πj , there is a common node
V , which corresponds to V + and V − in π′i and π′j .
W.l.o.g let V − be in π′j , so V → occurs in πj , which
leads to a partial ordering πi ≺ πj .

If these partial orderings cannot be combined to a valid
total ordering, there is a cycle of k paths πi1 ≺ . . . ≺
πik ≺ πi1 intersecting at nodes Vi1 , . . . , Vik with Vij ←
in πij and Vij → in πij+1

(we set ik+1 = i1). Since
the construction of F (G) can neither lead to colliders
in the projected paths nor intersections at forks, since
a path containing a fork contains the + and − variant
of the node, the paths πij+1

have the form Zij+1

∗
←

5Such paths can be found efficiently by a min-cost-max-
flow algorithm.

Vij+1
←

∗
→ Vij

∗
→ Xij+1

. So from every node Vij

there exist directed paths to nodes in X and Z. Thus
we can replace each path πij with a path Zij

∗
← Vij

∗
→

Xij+1
. These new paths are shorter than the original

paths, violating the initial assumption (this also holds
if Vij = Zij , Vij = Xij or the new paths intersect
themselves).

So we have pairs (Zi, πi), where Zi ∈ Z is the first
node of πi.

If two paths πi, πj with i < j intersect in a node V ,
π′i contains V + and π′j contains V −. Since π′j starts

in Z+
j , V cannot be Zj and Zj does not occur in πi.

Because V cannot be a fork, πi contains V ← and πj

contains → V →, which satisfies condition (c).

The runtime is given by the maximum runtime of the
nearest separator algorithm and the maximum flow
algorithm, which can both run in O(nm).

Proposition A.2. Algorithm Find-Simple-

Instruments (Fig. 7) satisfies the requirements
of Theorem 4.1 .

Proof. We will base the proof on the algorithm Test-

SimpleCond-Instruments.

Assume there exists simple instruments Z. Then
Z ⊆ De(An(X)) ∩M ∩ B, so F ′(G) is a supergraph
of F (G) and the flow found by Test-SimpleCond-

Instruments also exists in F ′(G). Thus Find-

Simple-Instruments returns a set.

Assume Find-Simple-Instruments returns a set
Z. Then it satisfies the conditions of Def. 3.1 that
do not depend on paths. Algorithm Find-Simple-

Instruments will choose the empty set for W. The
flow found by Find-Simple-Instruments can be rep-
resented as k disjoint paths π1, . . . , πk starting at
S and pointing to nodes of M. Each path πi =
V +
1 . . . V −li consists of a (positive empty) subpath of

plus nodes followed by a subpath of minus nodes, each
node being associated with a node De(An(X)) of G.
Due to the construction of F ′(G), every node V +

j on
the plus subpath is an ancestor of the node V1 ∈ Z as-
sociated with the first node V +

1 . Likewise every node
V −j belongs to an ancestor of X. Thus all the nodes
participating in the flow also exists in F (G) and Test-

SimpleCond-Instruments returns true.

Proof of Lemma 5.4. If there exists a solution, it is
easy to see that the game can be won by moving peb-
ble pi along the path pi, whenever pebble pi can be
moved.

If the game can be won, the pebbles trace paths pi
through the graph that satisfy the conditions of k-

On Searching for Generalized Instrumental Variables

GVDPP: Each pi is a directed path from Si to Ti and
does not contain a node of Wi. Two paths pi, pj
with {i, j} /∈ C cannot intersect each other in a non-
endpoint node, otherwise there would be a node X
that is visited by pebble pi and pj . Assume w.l.o.g. pi
moves to node X first. Then the game cannot be won,
since pebble pj on an ancestor of X must move before
pebble pi, but cannot move to node X as long as pi is
on that node.

Proof of Lemma 5.5. There are only O((n + 1)k) dif-
ferent configurations of pebble placements and O((n+
1)k) different transitions of one pebble moving to an-
other node, so a reachability search on the graph of all
configurations can be done in O(k(n+ 1)k+1) .

Proposition A.3. Algorithm Test-General-

Instru-ments (Fig. 8) satisfies the requirements of
Lemma 5.6.

Proof. If Z is a generalized instrumental set relative
to X and Y , algorithm Test-General-IVs will re-
turn true: Let (Z1,W1, π1), . . . , (Zk,Wk, πk) be the
triples of Def. 3.2. We consider the iteration in which
the algorithm tests the same permutation of X,Z.
These triples remain valid, if we replace the Wi with
the nearest separating sets used by the algorithm, be-
cause a nearest separator does not contain descendants
of Y and neither blocks path πi nor contains Xi if such
a set exists due to Lemmas 5.2 and 5.1. There is no
i < j with Xi = Zj , since Zj must not appear in path
πi.

Now consider the iteration in which each Fi is the fork
on path πi or, if πi does not have a fork and is a
directed path from Zi to Y , is Zi. Since the paths
end at Y , this fork cannot be Y . It cannot be in Wi

or πi was blocked. A path πi cannot intersect πj at
a fork, since no arrow at a fork points to that fork
violating condition three of Def. 3.2. So the condition
∃i 6= j : Fi ∈ {Fj , Xj , Zj} is false, and the algorithm
does not abort there. The set F is the set of all forks,
including Zi for paths πi without fork.

The algorithm now creates a (k′ = k + |F \ (X ∪Z)|)-
GVDPP instance, whose solution are the paths πi,
whereby paths containing a fork are split into two di-
rected paths πi,←, πi,→ and the tail→ Y of every path
is removed. It does this by calling Add-Arc for all
endpoint node pairs of the split paths in the innermost
loop.

The sets W′
i created by Add-Arc do not contain a

non-endpoint node of the respective πi,← or πi,→: This
is true for the initial Wi ∪F∪Y as argued above. An
arc πi,← towards Zi cannot contain another Zj . For
j > i this follows directly from Def. 3.2 (c), for j < i,

πi,←[Zi ∼ Zj] should point towards Zj , but this path
is directed towards Zi. For the same reason, it cannot
contain a node Xj with j < i. It also cannot contain
Xj if Xj is a fork on πj . An arc πi,→ cannot contain
a Zj with j > i due to condition (c) of Def. 3.2. If
πj is a directed path from Zj to Y , πi cannot contain
Zj with j < i as πj [Zj ∼ Y] should point towards
Zj . πi cannot contain a Xj with j < i because then
πj [Xj ∼ Y] should point towards Xj , but is an edge
Xj → Y . For j > i, πi[Xj ∼ Y] should point towards
Xj , but all edges on πi,→ point towards Y . Since πi

is a path, Xi, Zi can only occur in one of the arcs
πi,←, πi,→.

Also all intersecting arcs are included in the set C:
The set U contains the indices of all upwards directed
arcs, i.e. when Add-Arc for πi,→ is called, U contains
the indices of all πj,← with j < i. Arcs directed in
the same direction, i.e. πi,→ and πj,→ or πi,← and
πj,←, cannot intersect each other, since the edges at
an intersection have to point in opposite directions.
So only intersections between an upward πi,← and a
downward directed arc πj,→ occur, with i < j due to
condition (c) of Def. 3.2 . These are precisely the arcs
contained in C.

Thus the generated k′-GVDPP instance is solvable and
the algorithm returns true.

In the other direction, if the algorithm returns true,
Z is a general instrumental set: Then the algorithm
has fixed permutations X1, . . . , Xk, Z1, . . . , Zk, sets
W1, . . . ,Wk and paths π1 = π1,←π1,→ → Y, . . . πk =
πk,←πk,→ → Y , where πi,←, πi,→ denote the paths in
the solution of k′-GVDPP for the nodes added by the
call of Add-Arc for i in the respective direction. Wi

does not contain descendants of Y , d-separates Zi from
Y in G and does not block πi.

For 1 ≤ i < j ≤ k the node Zj does not occur as
non-endpoint node in πi, since it was added to the
forbidden nodes in W′

·. If paths πi and πj have a
common node, this node is either an endpoint node
(of an arc) or the indices of the corresponding arcs
were added to C.

If two endpoints nodes are the same, this node cannot
be a fork in πi or πj , since there is no Fi with Fi ∈
{Fj , Xj , Zj} for i 6= j. There is also no Zi = Zj or
Xi = Xj , thus the intersecting node has to be Zi = Xj

with i ≤ j due to the test after the X permutation.
If i = j, it is not an intersection. Because Fi 6= Zi

and Fj 6= Xj , both πi[Zi ∼ Y] and πj [Zj ∼ Xj] point
towards Zi = Xj satisfying 3.2 (c).

If it is only an endpoint node in one arc, it can only be
a node of X∪Z, because all other endpoint nodes are
in F and thus forbidden. Within πi,← only a node Xj

van der Zander, Lískiewicz

with i < j and Fj 6= Xj can occur, leading to subpaths
in πi and πj of ← Xj ← and → Xj →. Within πi,→

only Zj with i > j and Fj 6= Zj occurs, leading to
subpaths → Zj → and Zj ←. Both intersections are
allowed by Def. 3.2 (c).

If the paths intersect at a non-endpoint node V , it
only occurs in arcs with indices in C, i.e. πi,← and
πj,→ with i < j. Thus the subpaths are ← V ← and
→ V →, which is also allowed by Def. 3.2 (c).

Thus all conditions of Def. 3.2 are satisfied and Z is a
generalized instrumental set.

Proof of Corollary 5.7. This follows from lemma 5.5
and 5.6. The time spend to construct a k′-GVDPP
instance is negligible compared to the time needed to
solve it. Note that we can change (n + 1) to n as the
node Y cannot occur in the paths.

A.4 Singleton Sets as Active Instruments

If a set Z = {Z} contains only a single node, it obvi-
ously is a generalized instrumental set if and only if it
is a simple conditional instrumental set, so the algo-
rithm Test-SimpleCond-Instruments can be used
for testing. It is, however, still from theoretical interest
to explore the relation between singleton generalized
instruments and a conditional instrument. We first
define a restricted version of a conditional instrument:

Definition A.4 (Active Conditional Instrument).
Given a DAG G, let c be the path coefficient of the
edge X → Y and let Gc be the graph obtained from G
by deleting the edge X → Y . Variable Z is said to be
an active conditional instrument relative to X → Y ,
if there exists a set W and a path π from Z to X such
that

(a) W does not block the path π in Gc,
(b) W d-separates Z from Y in Gc and W consists of

non-descendants of Y , and
(c) path π is active in Gc.

Lemma A.5. Every active conditional instrument rel-
ative to X → Y is a conditional instrument relative to
X → Y .

Proof. Since W does not block the path π between Z
and X in Gc the condition (Z �⊥⊥ X |W)Gc is satisfied.

There exists a Z which is a conditional instrument
relative to X → Y , but which does not satisfy the
conditions of an active conditional instrument:

Z W X Y

However, every singleton generalized instrumental set
is an active conditional instrument:

Lemma A.6. A set {Z} is a generalized instrumental
set relative to {X} and Y if and only if Z is an active
conditional instrument relative to X → Y .

Proof. Let the triple (Z,W, π) satisfies the conditions
of Def. 3.2. The path π is of the form π′ → Y , where
π′ is a path between Z and X. It is easy to see that
W and π′ satisfy the conditions of Def. A.4.

Below we show that the opposite implication is true,
too. So, let the set W and path π satisfy the condi-
tions of Def. A.4. Since W does not block the path
π in Gc, we have X /∈ W. We show that the triple
(Z,W, π → Y) satisfies the conditions of a general-
ized instrumental set.

Set W consists of non-descendants of Y due to condi-
tion 1 of Def. A.4. Node Z is a non-descendant of Y ,
otherwise the directed path between Y and Z could not
be blocked by W using only non-descendants. Path π
ends with X and does not contain Y , since W does
not block π in Gc, but d-separates Z and Y in Gc and
we have that Y /∈W. So, π → Y is an unblocked path
between Z and Y including the edge X → Y .

W d-separates Z from Y in Gc = G due to condition 2
of Def. A.4. Set W does not block the path π → Y ,
since it does not block π in Gc due to 4. Finally, note
that the last condition of Def. 3.2 is always true for a
singleton set.

In (van der Zander et al., 2015) we define a class of
ancestral instruments and it is not difficult to see that
every active conditional instrument is also an ances-
tral instrument. Thus, from Theorem 4.3 in (van der
Zander et al., 2015) we can conclude that there exists
an algorithm which for given X,Y, and Z returns a set
W that satisfies the properties of active conditional
instrument (Def. A.4) relative to X → Y , if such a set
exists; Otherwise it returns ⊥. The running time of
the algorithm is O(nm).

