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Abstract

Instrumental Variables are a popular way to
identify the direct causal effect of a random
variable X on a variable Y . Often no sin-
gle instrumental variable exists, although it
is still possible to find a set of generalized in-
strumental variables (GIVs) and identify the
causal effect of all these variables at once.
Till now it was not known how to find GIVs
systematically or even test efficiently, if given
variables satisfy GIV conditions. We provide
fast algorithms for searching and testing re-
stricted cases of GIVs. However, we prove
that in the most general case it is NP-hard
to verify if given variables fulfill the condi-
tions of a general instrumental sets

1 Introduction

Structural Equation Models (SEMs) are a widely ap-
plied tool in the social sciences and economics. They
are used to encode and analyze the causal and sta-
tistical relationships between the random variables
of interest whose interaction is assumed to be linear
(Bollen, 1989; Duncan, 1975). In this paper we study
the problem of estimating the strength of cause-effects
relationships in linear models from observational data
and the structure of the model. This problem, known
as the identification problem (Fisher, 1966), plays a
fundamental role in theory and practice of SEMs.
Though some partial solutions are given, in general,
the problem remains still open.

We investigate graphical methods to this problem. A
primary benefit of such approach is that it provides an
elegant framework for analyzing linear models by en-
coding the structure of the model as a directed acyclic
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graph (DAG). This allows one to attack the identifica-
tion problem using techniques developed in computer
science.

One of the most popular methods to identify single
parameters in linear models is based on the concept
of instrumental variables (IV) (Bowden and Turking-
ton, 1984). Since the methods provide sufficient but
not necessary criteria, they are often not applicable,
even if the parameters are uniquely identified. Brito
(2004, 2010) and Brito and Pearl (2002a) have general-
ized this method to allow the identification of multiple
parameters simultaneously, introducing instrumental
sets. However, an important barrier to the application
of this method is of algorithmic nature: So far, it was
not clear whether such instrumental sets can be found
efficiently. Moreover, until now no results have been
known demonstrating that searching for instrumental
sets is hard either.

Recently, other methods providing sufficient graphical
criteria for the parameter identification have been pro-
posed (Tian, 2007; Brito and Pearl, 2006, 2002b; Chen
et al., 2014). Though it is not clear whether the meth-
ods have more identification power than the instru-
mental set based ones, their great advantage is that
they lend themselves well to algorithmic implemen-
tations. In our paper we show that many variants of
instrumental sets can be constructed efficiently as well.

We analyze three layers of instrumental sets, from very
simple ones introduced by Pearl (2009) and extended
by Brito (2010) to the most general ones defined by
Brito and Pearl (2002a) and Brito (2004). We provide
efficient algorithms to find instrumental sets and to
test given sets for being instrumental sets on the sim-
plest level, as well as to test them on the middle level.
We show that testing on the most general layer is NP-
complete, however, we describe an algorithm that runs
in polynomial time under the assumption that the size
of the set is bounded by a constant.

In the next section we provide graph preliminaries and
define the identification problem in linear models for-
mally. Section 3 discusses IV methods for identifica-
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tion. Section 4 presents our constructive results, while
Section 5 lists the algorithms themselves. Finally in
Section 6 we prove the NP-hardness of the general case.

2 Preliminaries

Graphs, d-Separation, Paths. We denote sets by
bold upper case letters (S), and sometimes abbrevi-
ate singleton sets as S = {S}. Graphs are written
calligraphically (G), and variables in upper-case (X).

We consider graphs G = (V,E) with nodes (ver-
tices, variables) V and directed (A → B) and bidi-
rected (A ↔ B) edges E. Nodes linked by an edge
are adjacent. A path of length ` is a node sequence
A1, . . . , A`+1, in which no Ai occurs more than once,
such that there exists an edge sequence E1, E2, . . . , E`

for which every edge Ei connects Ai, Ai+1. Then A1

is called the start node and A`+1 the end node of the
path. We use the terms child, parent, ancestor and
descendant to describe node relationships in graphs in
the same way as in Pearl (2009); in this convention,
every node is an ancestor (but not a parent) and a de-
scendant (but not a child) of itself. For a node set Y
we denote by An(Y) the set of all ancestors of nodes in
Y. For a path π we denote by π[Ai ∼ Aj ] the subpath
of π consisting of the nodes Ai, Ai+1, . . . , Aj .

A node V on a path π is called a collider if two arrow-
heads of π meet at V , e.g. if π contains U → V ← Q.
There can be no collider if π is shorter than 2. Two
nodes U, V are called d-connected by a set W if there
is a path π between them on which every node that
is a collider is in An(W) and every node that is not a
collider is not in W. Then π is called a d-connecting
path. If U, V are d-connected by the empty set, we
simply say they are d-connected. If U, V are not d-
connected by W, we say that W d-separates them or
blocks all paths between them. Two node sets X,Y
are d-separated by W if all their nodes are pairwise d-
separated by W, which we denote as (X ⊥⊥ Y |W)G .
Otherwise, if they are not d-separated by W, we write
(X �⊥⊥ Y | W)G .

Let π1, . . . , πk be unblocked paths connecting the vari-
ables Z1, . . . , Zk to the variables X1, . . . , Xk, respec-
tively. We say that the paths π1, . . . , πk are incom-
patible if for all 1 ≤ i < j ≤ k, variable Zj does not
appear in path πi; and, if paths πi and πj have a com-
mon variable V , then both πi[V ∼ Xi] and πj [Zj ∼ V ]
point to V . This definition implies that it is not pos-
sible to rearrange the edges of incompatible paths to
create new paths between the same nodes.

Parameter Identification in Linear Models. A
linear model over random variables V1 . . . , Vn is defined

Z1 = ε1
Z2 = ε2
X1 = a1Z1 + a2Z2 + ε3
X2 = b1Z1 + b2Z2 + ε4
Y = c1X1 + c2X2 + ε5

Cov(ε3, ε5) = α1 6= 0
Cov(ε4, ε5) = α2 6= 0 Y

X1 X2

Z1 Z2

a1
b1 a2

b2

c1 c2

α
1 α 2

Figure 1: The linear model and its causal graph.

by a set of equations of the form

Vj =
∑

i

cjiVi + εj , j = 1, . . . , n. (1)

Parameters cji are called path coefficients and they
describe direct causal effects of Vi on Vj . In this paper
we consider only recursive models, i.e. we assume that
for all i ≥ j we have cji = 0. Thus, in particular, in
Eq. (1) we sum over all i < j. Values εj represent error
terms and are assumed to be normally distributed. We
denote the matrix of coefficients c as C = [cji], the
error covariance matrix as Ψ = [Cov(εi, εj)] and the
covariance matrix over the observed variables as Σ =
[Cov(Vi, Vj)]. The parameters of the linear system are
the non-zero entries in C and Ψ.

The structure of a linear model over V1 . . . , Vn can be
represented by a DAG G, called a causal graph, whose
nodes V correspond to the model’s variables and edges
indicate the non-zero parameters of the model; G con-
tains a directed edge Vi → Vj if Vi appears in Eq. (1)
on the right hand side of the equation for Vj with
cji 6= 0 and G contains a bidirected edge Vi ↔ Vj (dis-
played in dashed style) if Cov(εi, εj) 6= 0. The causal
graph can be completed with edge labeling represent-
ing the parameters. For an exemplary linear model
and its causal graph, see Fig. 1.

Given a structure of a linear model and its parameters
represented as C and Ψ, the covariance matrix Σ of
the model is given by the formula (Bollen, 1989):

Σ = (I − C)−1Ψ((I − C)−1)T . (2)

The identification problem consists of recovering the
parameters C given the observed covariance matrix Σ
and the structure of the model, given e.g. as a causal
graph. To solve the identification problem one can at-
tempt to search for a solution of Eq. (2) for given Σ
with unknowns C which is independent of the unob-
served error correlation Ψ.

If, given Σ and a causal graph, there exists a unique
solution cji satisfying Eq. (2), independent of Ψ, then
the path coefficient cji is said to be identified ; other-
wise it is said to be nonidentifiable. If every parameter
of the model is identified then we say that the model
is identified.
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Figure 2: (A) The classical IV and (B) an example of
a conditional IV Z given W .

3 Identification with IV Methods

The instrumental variable (IV) approach is one of the
most popular methods to identify a single parameter
X

c→ Y in linear models. Expressed in graphical lan-
guage, Z is an IV relative to X → Y in a graph G
if Z is not d-separated from X and Z is d-separated
from Y in the graph obtained from G by deleting the
edge X → Y (for an example see Fig. 2(A)). If such
an instrument exists, then the parameter c can be
estimated as c = Cov(Z, Y )/Cov(Z,X). The condi-
tions of IV are sufficient but not necessary to identify
the parameter X

c→ Y . Pearl (2009) gave a general-
ization of the method through the use of condition-
ing. Variable Z is said to be a conditional instrument
relative to X → Y , if there exists a set W of non-
descendants of Y such that W does not d-separate
Z and X, and W d-separates Z and Y in the graph
obtained from G by deleting the edge X → Y (see
Fig. 2(B)). When a conditional variable Z given W
is found, the causal effect of X on Y is identified and
given by c = Cov(Z, Y |W)/Cov(Z,X |W).

However, the graphical characterization of conditional
instruments does not indicate how to find Z and W.
A direct implementation of the conditions requires an
exponential running time. This has been regarded as
one of the major drawbacks of this approach. Recently
van der Zander et al. (2015) have shown that this bar-
rier can be overcome: they give efficient and simple
algorithms to find conditional instruments in causal
graphs.

The IV method was further generalized to allow iden-
tification of multiple parameters simultaneously (Brito
and Pearl, 2002a; Brito, 2010). Such an approach can
be applied in cases when the linear model includes the
equation Y = c1X1+. . .+ckXk+ε, but repeated appli-
cation of a method for single parameter identification
is not possible, like e.g. in the model in Fig. 1.

Let Y be a fixed variable and let X1
c1→ Y, . . . ,Xk

ck→
Y be edges representing directed causes of Y in the
causal diagram G = (V,E) of a linear model. Let G
be the graph obtained from G by deleting edges X1 →
Y, . . . , Xk → Y from G. Brito (2010) proposed the
following simple generalization of the IV which allows
identification of parameters c1, . . . , ck simultaneously.

Definition 3.1 (Brito (2010)). The set Z is said to be
a simple instrumental set relative to X and Y in G if
for a permutation Z1, . . . , Zk of Z and a permutation
X1, . . . , Xk of X it is true:

(a) There exist unblocked paths π1, . . . , πk connecting
Z1, . . . , Zk to X1, . . . , Xk, resp., s.t. the paths are
incompatible.

(b) The variables Zi are d-separated from Y in G.

Using Wright’s method of path coefficients (Wright,
1934) Brito proves that if we can find variables
{Z1, . . . , Zk} satisfying the conditions above, then the
parameters c1, . . . , ck are identified1, and can be com-
puted by solving the following system of linear equa-
tions:

ρZ1,Y = a11c1 + . . .+ a1kck
. . .
ρZk,Y = ak1c1 + . . .+ akkck,

where aij = ρZi,Xj and ρZ,Y denotes the correlation
coefficient of Z of Y . Thus, each coefficient of the sys-
tem of equations above can be estimated from data
and the solution of the equations provides the param-
eter values for c1, . . . , ck.

It is easy to see that variables Z1 and Z2 of the model
in Fig. 1 satisfy the conditions of Def. 3.1 relative to
X1, X2 and Y . Thus, from the result above, the pa-
rameters c1 and c2 are identified.

Brito and Pearl have generalized the simple instrumen-
tal sets through the use of conditioning.

Definition 3.2 (Brito and Pearl (2002a); Brito
(2004)). The set Z is said to be a generalized instru-
mental set relative to X and Y in G if for a permuta-
tion Z1, . . . , Zk of Z and a permutation X1, . . . , Xk of
X there exist triples (Z1,W1, π1), . . . , (Zk,Wk, πk),
with Wi ⊆ V, such that:

(a) Every πi is an unblocked path between Zi and Y
including edge Xi → Y and for i = 1, . . . , k, Zi

and the elements of Wi are non-descendents of Y .
(b) Every set Wi d-separates Zi from Y in G; but Wi

does not block path πi.
(c) Paths π1, . . . , πk are incompatible.

Analogously, they prove that if {Z1, . . . , Zk} is a gen-
eralized instrumental set relative to {X1, . . . , Xk} and
Y then the parameters of edges Xi → Y can be com-
puted by solving a system of linear equations which
involve partial correlations of Zi and Y given Wi.

Note that by restricting the cardinality k to k = 1 for
the simple instrumental sets (Def. 3.1) we get just the
IV. However, restricting k to 1 in Def. 3.2 leads to a

1except for parameterizations Θ ∈ Rh that reside on a
subset of Lebesgue measure zero of Rh, where h is the total
number of parameters.
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new notion of singular conditional instrumental sets
which, in general, does not coincide with the concept
of conditional instruments. This is because Def. 3.2
requires that X and Z must be connected by a path
that is neither blocked by the empty set nor by W,
while a conditional instrument only assumes the con-
nection with a path not blocked by W. Actually the
case is a further restriction of an ”ancestral instru-
ment” (van der Zander et al., 2015). We discuss this
case separately in the appendix.

In this paper we introduce a natural intermediate level
between the simple and the generalized instrumental
sets by restricting Def. 3.2 such that the sets W1 =
W2 = . . . = Wk have to be equal.

Definition 3.3. The set Z is said to be a simple con-
ditional instrumental set relative to X and Y in G if
for a permutation Z1, . . . , Zk of Z and a permutation
X1, . . . , Xk of X there exists a set W ⊆ V and pairs
(Z1, π1), . . . , (Zk, πk), such that:

(a) Every πi is an unblocked path between Zi and Y
including edge Xi → Y and all Zi and all elements
of W are non-descendents of Y .

(b) W d-separates every Zi from Y in G; but W does
not block any path πi.

(c) Paths π1, . . . , πk are incompatible.

As we will show, this definition provides a substan-
tial subclass of generalized instrumental sets (Def. 3.2)
that can be verified by an algorithm in polynomial
time. The NP-hardness result says that no such al-
gorithm exists for the generalized instrumental sets,
unless P = NP.

4 Finding and Testing Instruments

One of the major drawbacks of the IV methods for
identification of multiple parameters is that any di-
rect approach to find generalized instrumental sets re-
quires large computational efforts. So far it was not
clear, whether generalized instrumental sets, respec-
tively maximal instrumental sets, can be found effi-
ciently (for a more discussion see e.g. (Tian, 2007) or
(Brito and Pearl, 2006)). Moreover, until now no re-
sults have been known which would demonstrate the
intractability of this problem. In our paper we provide
a complete answer to these questions.

Assume G = (V,E) is a causal graph of n nodes and
m edges. Let Y be a node and let X be direct causes
of Y in G. Our first result shows that the simple in-
strumental sets can be found by an algorithm running
in polynomial time O(nm).

Theorem 4.1. There exists an algorithm which for
given node Y and a set of nodes X in a causal graph

G, finds simple instrumental sets Z relative to (X, Y )
(Def. 3.1), if such a set exists; Otherwise it returns ⊥.
The running time of this algorithm is O(nm).

Importantly, this algorithm is easily implementable
and it can be used to find a maximal set of simple
instruments, i.e. a set of variables Z′ of maximum car-
dinality which satisfies conditions of Def. 3.1 relative
to X′ ⊆ X and Y .

Our next result shows that testing whether, for a
given Z, there exists a common set W which satis-
fies the conditions of generalized instrumental sets can
be solved in polynomial time.

Theorem 4.2. There exists an algorithm which for
given node Y and node sets X and Z in a causal graph
G, tests whether Z is a simple conditional instrumental
set relative to (X, Y ) (Def. 3.3).

Also this algorithm is easily implementable. Moreover,
in cases when k is bounded by a constant, say d, we
can use this algorithm to find a simple conditional in-
strumental set in time O(nd+3). Finding a generalized
instrumental set seems to be harder. In fact, in Sec-
tion 6 we confirm this intuition by proving that testing
if a given set Z is a generalized instrumental set rel-
ative to X and Y is NP -complete. However, if k is
bounded by a constant, generalized instrumental sets
can be found in polynomial time.

Theorem 4.3. There exists an algorithm which for a
given node Y and node set X of size k in a causal graph
G, finds a generalized instrumental set Z relative to
(X, Y ) (Def. 3.2). The running time of this algorithm
is O(k(k!)2n4k+1).

In the next section we describe the algorithms for The-
orems 4.1, 4.2, and 4.3.

5 Polynomial Time Algorithms

For simplicity of presentation we will assume in this
section that the causal graph is a DAG having only
directed edges, but no bidirected ones. To apply our
algorithms for graphs with bidirected edges, for every
edge Vi ↔ Vj we introduce a unique node U , replace
Vi ↔ Vj with Vi ← U → Vj and assume U is an
unobservable variable.

So, let G = (V,E) be a DAG and let M ⊆ V denote
the subset of measurable nodes. Moreover, let n = |V|
and m = |E|. We will generally assume that W ⊆M,
if W is used for d-separation.

5.1 Nearest Separators

Testing if a certain set is a generalized instrumental set
requires one to solve two different problems: finding
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A U1

Z B C D Y

E U2

Figure 3: A DAG with 2 unobservable variables
{U1, U2}. The only nearest separator of Y and Z is
{A,D,E}.

separating sets Wi and finding paths πi. As the Wi

we can use nearest separators, which are defined in
(van der Zander et al., 2015) as follows (see Fig. 3 for
an example):

Let G = (V,E) be a graph and let M ⊆ V denote
the measured nodes and let Y and Z be nodes in V.
We say that Y and Z are separable in G if there exists
W ⊆ M such that (Z ⊥⊥ Y | W)G . For given nodes
Y and Z in V we call a subset W ⊆ M ∩ An(Y,Z)
a nearest separator2 according to (Y,Z) if and only if
(i) (Z ⊥⊥ Y | W)G and (ii) for all X ∈ An(Y ∪ Z) \
{Y, Z} and any path π in the moral graph (GAn(Y ∪Z))

m

connecting X and Z, if there exists W′ ⊆M such that
(Z ⊥⊥ Y |W′)G and W′ does not contain a node of π
then W does not contain a node of π either.

They describe an efficient, greedy algorithm to find
such a nearest separator:

Lemma 5.1. (van der Zander et al., 2015) There ex-
ists an algorithm that finds a nearest separator W ⊆
An(Y ∪ Z) if Y and Z are separable in G; otherwise
it returns ⊥. Moreover, if Y and Z can be separated
in G by a set that does not contain a descendant of Y ,
then W ⊆ An(Y ∪ Z) \ De(Y ). The runtime of the
algorithm is O(nm).

In the appendix we show that a nearest separator Wi

does not block the πi of a generalized instrumental set,
because it could only block the part of πi contained in
the moral graph, which it does not block by definition,
leading to:

Lemma 5.2. Let Y and Z be nodes in a graph G =
(V,E), X a subset of parents of Y , X ∈ X a certain
node, π an active path between Z and Y including edge
X → Y in G, G = (V,E\(X→ Y )), and W a nearest
separator between Y and Z in G. If there exists a set
W′ that d-separates Y and Z and does not contain a
node of π, then W also does not contain a node of π.

2The definition of the nearest separator used in this
paper is stricter than the one given by van der Zander et al.
(2015), but their proofs are also valid for our definition.

G:

Z1 Z2

F

X1 X2

Y

F (G):

S

Z+
1 Z+

2

F+ X+
2

Z−1 F−

X−1 X−2

Y

Figure 4: A DAG G and its flow graph F (G).

5.2 Testing Simple Conditional Instruments

For given X, Y and Z the separator W for a simple
conditional instrumental set can be computed as the
nearest separator according to (Y, Z ′) in the graph ob-
tained from G by deleting the edges from X to Y and
adding a new node Z ′ and edges Z ′ ← Z for all Z ∈ Z.

To find the corresponding paths we transform the
graph G to a flow graph, referred as F (G), with re-
spect to Z,X, and Y . In F (G) collider-free d-paths
(treks) become directed paths. Nodes of F (G) consists
of two sets, which we denote as V+ and V−, as well
as Y and a new start node S. The first set, also called
(+)-layer, is the induced subgraph of all ancestors of Z
with inverted edges. The second set, called (−)-layer,
the induced subgraph of all ancestors of X. If the same
node exists in both layers, the two version of it are dis-
tinct but connected by an edge from the (+)-layer to
the (−)-layer. Thus a d-path e.g. containing a fork,
becomes a directed path to the fork in the first layer
and a directed path from the fork to Y in the second
layer3.

The flow graph F (G) with respect to Z,X, Y is for-
mally defined as follows. Let V+ = {V + | V ∈ An(Z)}
and V− = {V −|V ∈ An(X)}. Then

V (F (G)) =V+ ∪V− ∪ {S, Y }
E(F (G)) ={V + →W+ | V,W ∈ V+;V ←W ∈ E} ∪

{V + → V − | V ∈ V+ ∩V−} ∪
{V − →W− | V,W ∈ V−;V →W ∈ E} ∪
{S → Z+ | Z ∈ Z} ∪ {X− → Y | X− ∈ X}.

In F (G) the disjoint paths πi correspond to a |Z|-flow
from S to Y and can be found with a standard max-
flow algorithm with vertex-capacities. S and Y have

3Signs + and − can be seen as the arrow head of the
edge leaving a node of this layer.
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infinite capacity, the ± nodes resulting from nodes in
W have zero capacity, and all other nodes have unit
capacity.

function Test-Simple-Cond-IVs(G,X, Y,Z)
Construct graph G′ from G by:

adding a node Z ′, edges Z ′ ← Z, and
removing all edges X→ Y from G

Let W be a nearest separator for (Y, Z ′) in G′
if W = ⊥∨W ∩De(Y ) 6= ∅ ∨Z ∩W 6= ∅ then

return false
Construct F (G) with respect to Z,X, and Y
Assign capacities to the nodes of F (G):

infinite capacity to S, Y ,
zero capacity to nodes stemming from W,
unit capacity to all other nodes

if a |Z|-flow from S to Y exists in G′ then
return true else return false

Figure 5: Test-Simple-Cond-IVs

The complete algorithm to test simple conditional in-
strumental sets is given in Fig. 5. For a proof that
it satisfies the requirements of Theorem 4.2. see the
appendix.

5.3 Finding Simple Instruments

In this section we duscuss an algorithm to find a simple
instrumental set (Def. 3.1). Testing if a given Z fulfills
the conditions of simple instruments can be done in
time O(nm) using the algorithm Test-SimpleCond-
IVs presented in Section 5.2. To this aim we modify
the algorithm by replacing the calculation of W as
nearest separator with a fixed W = ∅.
The algorithm (see Fig. ?? in the appendix) which sat-
isfies the requirements of Theorem 4.1 is a modifica-
tion of algorithm Test-SimpleCond-IVs. Basically,
instead finding a maximum flow from S to Y through
Z, we search a flow from S to Y through every node
in De(An(X)) that might be in Z. The proof of its
correctness can be found in the appendix.

5.4 Testing Generalized Instruments

Generalized vertex disjoint paths problem. Let
us now reconsider the problem of finding the paths πi
in the general case. In this case the endnodes of the
paths are not interchangeable, so it cannot be solved
with a network flow. However, for a fixed k, finding k
paths that are just node-disjoint is a well-researched
problem (k-vertex disjoint paths problem, k-VDPP or
k-linkage), and known to be NP-complete in general
directed graphs (Garey and Johnson, 1979) but solv-
able in DAGs in polynomial time (Fortune et al., 1980).

The problem k-VDPP asks, given 2k not necessar-

ily distinct nodes (s1, . . . , sk), (t1, . . . , tk) if there are
k paths from each si to ti that do not share a common
node except for the end nodes.

We generalize k-VDPP to find directed paths that sat-
isfy the following conditions:

Definition 5.3 (Generalized vertex disjoint paths
problem (k-GVDPP)). Let (S1, . . . , Sk), (T1, . . . , Tk)
be 2k not necessarily distinct nodes of a DAG G =
(V,E), let W1, . . . ,Wk ⊆ V be sets of nodes, with
Si, Ti /∈ Wi, and let C ⊆ {{i, j} | 1 ≤ i, j ≤ k} be a
set of pairs. Question: Do there exist paths pi, s.t.

1. pi is a directed path from Si to Ti,
2. pi does not contain a node of Wi, and
3. pi does not share a node with pj, i 6= j, unless

that node is Si, Ti, Sj , Tj; or {i, j} ∈ C.

We generalize the pebbling game algorithm given by
Perl and Shiloach (1978) for k = 2 and generalized by
Fortune et al. (1980) to arbitrary k.

Our pebble game is defined by the following rules of
which rule 2 and 3 may be applied arbitrary often in
any order. In the description below, the level of a node
V is defined to be the length of the longest, directed
path starting at V .

1. Initially: use k pebbles pi and place pi on Si.
2. Pebble pi may be moved along a directed edge
V →W if W is not in Wi and
- V has the largest level of any pebbled node and
- there is no pebble pj on W unless {i, j} ∈ C or
W ∈ {Sj , Ti}.

3. Pebble pi may be removed once it reaches Ti.
4. The game is won if all pebbles are removed.

In the appendix we prove that this game is equivalent
to the k-GVDPP and that it can be played efficiently:

Lemma 5.4. The pebbling game can be won iff there
exists a solution to k-GVDPP.

Lemma 5.5. There exists an O(k(n + 1)k+1) algo-
rithm to solve k-GVDPP.

Reducing instrumental set testing. We show that
a test if a given instance is a generalized instrumen-
tal set can be done by an algorithm which has access
to a subroutine for solving k-GVDPP. The algorithm
begins by creating a nearest separator according to
(Y,Zi) in G for each i to use it as set Wi. Next
it enumerates all permutations Z1, . . . , Zk of Z and
X1, . . . , Xk of X as well as all combinations for di-
rected and fork paths for each πi, i.e. πi is considered
either as directed from Zi to Xi, directed from Xi to
Zi, or containing a fork Fi. Knowing the direction
and/or fork of a d-path, we can treat it as one or two
directed paths. From condition (c) of Def. 3.2 it fol-
lows that two of these directed paths can only intersect
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each other iff one path is directed towards a Zi and
the other path towards an Xj with i < j. These nodes
and constraints directly correspond to a k-GVDPP in-
stance with up to 2k nodes. If one of these k-GVDPP
instances has a solution, Z is a generalized instrumen-
tal set4. The details of this algorithm can be found in
the appendix. Thus, we obtain the following:

Lemma 5.6. There exists an algorithm which for a
given Y and sets of k nodes X and Z, using a solver
for GVDPP tests if Z is a generalized instrumental set
relative to X and Y calling the solver O((k!)2nk) times
for k′-GVDPP instances, with k′ ∈ {k, . . . , 2k}.
Corollary 5.7. Given Y and sets X,Z containing k
nodes, we can test if Z is a generalized instrumental
set relative to X and Y in time O(k(k!)2n3k+1).

This corollary implies Theorem 4.3.

6 Intractability Result

Now we prove that it is an NP-complete problem to
test if a given set is a generalized instrumental set:

Theorem 6.1. Given a DAG G = (V,E), a node Y
and sets X,Z ⊂ V determining if Z is a generalized
instrumental set relative to X and Y (Def. 3.2) is an
NP-complete problem.

Proof. Obviously the conditions of Def. 3.2 can be eas-
ily verified after guessing the tuples. Thus, the prob-
lem is in NP. To prove the NP-hardness, we show a
polynomial time reduction from 3-SAT to the problem.
Let V be a set of nV variables and let C = (V1,1∨V1,2∨
V1,3) ∧ (V2,1 ∨ V2,2 ∨ V2,3) ∧ . . . (VnC ,1 ∨ VnC ,2 ∨ VnC ,3)
with Vi,j ∈ V ∪ {V | V ∈ V} be a 3-SAT instance
with nC clauses. The variables V = {Vi | 1 ≤ i ≤ nV }
and clauses of C = {Ci | 1 ≤ i ≤ nC} are arbitrarily
indexed. Let oi = |{C ∈ C | Vi ∈ C}|, resp. oi, denote
the number of occurrences of literal Vi, resp. V i, in C.
W.l.o.g. we assume oi > 0 and oi > 0.

We adapt the proof given by Even et al. (1976) for
multi-commodity flows to instrumental sets. So we
construct a DAG G as shown in Fig. 6.

G has the following nodes:

VG = {Y,Z ′0, Z0, . . . , ZnC
, X0, . . . , XnC

}
∪{C1, . . . , CnC

, D1, . . . , DnC
}

∪{V s
i , V

t
i | 1 ≤ i ≤ nV }

∪{V j
i | 1 ≤ i ≤ nV ∧ 1 ≤ j ≤ oi}

∪{V j

i | 1 ≤ i ≤ nV ∧ 1 ≤ j ≤ oi}
4The algorithm also has to consider various, cumber-

some cases of endnodes in Z∪X that might occur in other
paths.

and edges:

E = {Z0 ← Z ′0 → V s
1 }

∪{V s
i → V 1

i → . . .→ V oi
i → V t

i | 1 ≤ i ≤ nV }
∪{V s

i → V
1

i → . . .→ V
oi
i → V t

i | 1 ≤ i ≤ nV }
∪{V t

i → V s
i+1 | 1 ≤ i ≤ nV − 1}

∪{V t
nV
→ X0 → Y }

∪{Zi → V k
j | 1 ≤ i ≤ nC ∧ 1 ≤ j ≤ nV ∧ 1 ≤ k ≤ oj}

∪{Zi → V
k

j | 1 ≤ i ≤ nC ∧ 1 ≤ j ≤ nV ∧ 1 ≤ k ≤ oj}
∪{V k

j → Ci | the k-th occurrence of Vj is in Ci}
∪{V k

j → Ci | the k-th occurrence of V j is in Ci}
∪{Ci → Di → Xi → Y | 1 ≤ i ≤ nV }
∪{Y ↔ Di → Z0 | 1 ≤ i ≤ nV }

We use indices 0 to nC for Xi instead of 1 to nC + 1
to simplify the notation. We claim that there exists
an assignment to V1, . . . , VnV

that satisfies C =
∧

i Ci

iff Z = {Z0, . . . , ZnC
} is a generalized instrumental set

relative to X = {X0, . . . , XnC
} and Y in G.

“⇐”: Assume Z is a generalized instrumen-
tal set. Then there exist tuples (Zi0 ,W0, π0),
(Zi1 ,W1, π1), . . . , (ZinC

,WnC
, πnC

) satisfying Def.
3.2. First we show that the path from Z0 actually ends
at X0 → Y . There are active paths Y ↔ Di → Z0 for
all Di, which need to be blocked. Thus nodes Di are
in the Wj associated with the path starting at Z0, so
the path cannot contain Di. Since X1, . . . , XnC

can
only be reached by traversing D1, . . . , DnC

, the path
has to end at X0.

Since the nodes Z1, . . . , ZnC
are all connected to ex-

actly the same nodes, we can assume w.l.o.g. that path
πi starts at Zi.

Every node V j
i is only visited by a directed subpath

→ V j
i → because every path can only enter it through

a → edge. So none of these nodes is visited by two
paths. Otherwise condition (c) of Def. 3.2 (that the
subpath πi′ [V

j
i ∼ Xi′ ] has to point to V j

i ) would be
violated.

Since path π0 can neither visit node Ci nor Zi for i > 0
through a collider, it visits V s

i and then passes either
through the upper path or the lower path to V t

i . We
assign the following values to the variables Vi

Vi :=

{
true if V 1

i /∈ π0,
false otherwise.

This assignment satisfies the formula: Assume there
is clause Ci that is not satisfied. We know that path

πi has the form Zi → W j
k → . . .W j′

k → Ci → Di →
Xi → Y for W ’s corresponding to one variable Vk or
its negation V k, since πi cannot cross through V t

k to
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2
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V 1
2 V 2
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...
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DnC

XnC

Figure 6: A graph G with a generalized instrumental set Z constructed from a 3-SAT instance.

another lobe; Otherwise it would intersect π0 at V t
k .

Also W t
k /∈ π0. If W j

k corresponds to Vk then Vk is true

and clause Ci contains variable Vk. If W j
k corresponds

to V k, Vk is false and Ci contains the negation. So Ci

is satisfied.

“⇒”: Let Vi ∈ {true, false} be a satisfying assignment
for the variables Vi. Assume Ci is satisfied by a literal
W ∈ Ci which is the k-th occurrence of a variable Vj

in C. Let v(Ci) ∈ {V k
j , V

k

j } be the node corresponding

to W . Let p(i) = V 1
i → . . . → V oi

i if Vi = false; Oth-

erwise let p(i) = V
1

i → . . .→ V
oi
i . We choose the fol-

lowing tuples which satisfy the conditions of Def. 3.2:

• (Z0, {Ci, Di | 1 ≤ i ≤ nC},
Z0 ← Z ′0 → V s

1 → p(1) → V t
1 → V s

2 → p(2) →
V t
2 → V s

3 → . . .→ p(nV )→ V t
nV
→ X0 → Y ),

• (Z1, ∅, Z1 → v(C1)→ C1 → D1 → X1 → Y ),
• . . .,
• (ZnC

, ∅, ZnC
→ v(CnC

) → CnC
→ DnC

→
XnC

→ Y ).

(a) Y does not have any descendants and any πi is an
unblocked path connecting Zi with Xi → Y .

(b) In G all paths starting at Y begin with Y ↔ Di.
In the first tuple the paths Y ↔ Di → Z0 are blocked
by Di and the paths Y ↔ Di ← Ci ← are blocked by
Ci. In all other tuples the paths Y ↔ Di → Z0 are
irrelevant and the paths Y ↔ Di ← Ci ← are blocked
by Di. No path πi is blocked by Wi.

(c) No path π1, . . . , πnC
has a common node with π0.

Otherwise a node V j
k would correspond to a variable

Vk that is false, but literal Vk satisfies clause Ci; or a
variable that is true but literal V k satisfies Ci. Paths
π1, . . . , πnC

are vertex disjoint or the k-th occurrence
of a variable would be in two different clauses.

7 Conclusions and Future Work

In the paper we have shown that testing, if a given set
is a generalized instrumental set, is an NP-complete
problem, but it can be solved with a polynomial time
algorithm under the assumption of a constant set size.

We give a practically implementable O(nm) algorithm
for special cases, in which the connections between Z
and X are arbitrary, i.e. every Zi can be connected to
any Xj . The hardness arises in the case when Zi has
to be matched to Xi (or even just Z1 to X1, while the
remaining connections are arbitrary), which is a little
surprising, since one could assume that knowing and
verifying a matching would be easier than finding one.

We also give an O(nm) algorithm to directly find a
simple instrumental set. It is an open problem, if the
more general cases of instrumental sets can be found
without enumerating all possible sets. An interesting
problem for future research is also to find an efficiently
testable subclass of generalized instruments which is
larger than the simple conditional instrumental sets
provided in this paper.
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