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Abstract

We present a new estimator for precision ma-
trix in high dimensional Gaussian graphical
models. At the core of the proposed estimator
is a collection of node-wise linear regression
with nonconvex penalty. In contrast to exist-
ing estimators for Gaussian graphical models
with O(s

√
log d/n) estimation error bound

in terms of spectral norm, where s is the
maximum degree of a graph, the proposed
estimator could attain O(s/

√
n+

√
log d/n)

spectral norm based convergence rate in the
best case, and it is no worse than exiting esti-
mators in general. In addition, our proposed
estimator enjoys the oracle property under a
milder condition than existing estimators. We
show through extensive experiments on both
synthetic and real datasets that our estimator
outperforms the state-of-the-art estimators.

1 INTRODUCTION

In high dimensional statistical learning, the prob-
lem of estimating the sparse inverse covariance ma-
trix (precision matrix) in the Gaussian graphical
model has attracted increasing attention in recent
years [2, 11, 20, 22]. In Gaussian graphical models,
a d-dimensional random vector X = (X1, . . . , Xd)

>

follows a multivariate normal distribution Nd(0,Σ
∗).

It corresponds to the vertex set V = {1, . . . , d} of an
undirected graph G = (V,E), where the edge set E
describes the conditional independence relationships
between X1, . . . , Xd. It is well-known that the graph
G is encoded by the sparsity pattern of the precision
matrix Θ∗ = Σ∗−1. More specifically, no edge con-
nects Xi and Xj if and only if Θ∗ij = 0. Consequently,

Appearing in Proceedings of the 19th International Con-
ference on Artificial Intelligence and Statistics (AISTATS)
2016, Cadiz, Spain. JMLR: W&CP volume 51. Copyright
2016 by the authors.

estimation of the precision matrix Θ∗ corresponds to
parameter estimation, and specifying the non-zero set
of Θ∗ corresponds to graphical model selection [4].
Note that in Gaussian graphical models, a graph with
maximal degree s corresponds to the precision matrix
with at most s non-zero elements per row, and we call
this precision matrix is s-sparse.

A large body of literature has studied the problem of
estimating the precision matrix in the high dimensional
setting. For example, Meinshausen and Bühlmann [20]
proposed a neighborhood pursuit approach for estimat-
ing Gaussian graphical models by solving a collection
of sparse regression problems using Lasso in parallel.
Yuan and Lin [30], Friedman et al. [8], Banerjee et al.
[1] developed a `1-penalized likelihood approach to di-
rectly estimate the precision matrix, namely graphical
Lasso (GLasso). Rothman et al. [24], Ravikumar et al.
[22] studied the theoretical properties of GLasso under
different assumptions. For example, Rothman et al. [24]
derived a rate in terms of Frobenius norm under mild
conditions on the eigenvalues of Θ∗. More recently,
Yuan [29], Cai et al. [2] proposed the graphical Dantzig
selector and CLIME, respectively. Both of these meth-
ods can be solved by linear programming and have more
favorable theoretical properties than GLasso. In partic-
ular, they are able to attain O(s

√
log d/n) estimator

error rate in terms of spectral norm. Very recently, Ren
et al. [23] developed a novel estimator based on scaled
Lasso [25] to estimate each column of the precision
matrix. One draw back of their method is that they
need to solve a large number of regression problems.
In their study, they proved the estimation error bound
of their estimator matches the minimax lower bound,
and provided a confidence interval for each entry of the
precision matrix. However, all above estimators are
based on the convex penalty, which incurs bias in esti-
mation. Recent studies [5, 10, 12, 31, 33] have shown
that the nonconvex regularization is able to correct in-
trinsic estimation bias. Motivated by advantages of the
nonconvex regularization, Lam and Fan [16] proposed
the nonconvex penalized likelihood approach for the s-
parse precision matrix estimation problem, where they
replaced the `1-penalty with the nonconvex penalty
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SCAD [5] in GLasso. Nevertheless, they failed to get
a sharper convergence rate in their analysis. Recently,
Loh and Wainwright [19] also studied Gaussian graphi-
cal model selection with non-convex regularizers, but
they did not consider the magnitude of the nonzero
entries in the precision matrix and failed to provide a
faster convergence rate. In another recent work, Fan
et al. [7] proved the oracle property of their estimator
using the nonconvex regularization in GLasso. Howev-
er, in the general case, they did not produce a sharper
convergence rate either.

Another line of research is to scale up Gaussian graph-
ical model algorithms to large scale data, from the
computational perspective. For example, Hsieh et al.
[14, 15] provided an algorithm QUIC and its extension
to solve the GLasso with millions of dimensions. Wang
et al. [27] developed a large scale distributed algorithm
to estimate the sparse precision matrix with extra large
dimension using CLIME. Although all these algorithms
can solve extremely high dimensional problems, the
statistical rate of their estimators are no better than
the original GLasso and CLIME estimators.

In this paper, we propose a new estimator for the pre-
cision matrix Θ∗ in the Gaussian Graphical model
based on a collection of node-wise linear regression.
More specifically, our method estimates each column
of the precision matrix Θ∗ by solving a sparse lin-
ear regression problem using nonconvex penalty. The
idea of estimating the precision matrix in a column-
by-column fashion has been previously used in many
other methods, such as neighborhood selection [20],
graph Dantzig selector [29], and CLIME [2]. We will
show that our estimator outperforms existing estima-
tors both theoretically and empirically. In particular,
we derive a sharper convergence rate for our estimator
under mild conditions. We show that when the s-sparse
precision matrix Θ∗ enjoys the large entry magnitude
property, our estimator attains O(s/

√
n +

√
log d/n)

convergence rate in terms of spectral norm, which
is much faster than the spectral norm based esti-
mation error bound O(s

√
log d/n) of existing estima-

tors [20, 22, 29, 2]. In addition, we also prove the
oracle property of our estimator under this large mag-
nitude assumption. Even if the large entry magnitude
assumption does not hold, the convergence rate of our
estimator is O(

√
s
√
s1/n+

√
s
√
s2 log d/n+

√
log d/n)

in terms of spectral norm, which is also faster than
existing estimators. Here s1 corresponds to the pre-
cision matrix Θ∗ with at least s1 elements per row
which enjoy the large entry magnitude property, and
s2 = s− s1.

In terms of implementation, our method is attractive
because of its simplicity and scalability in the high
dimensional setting. In order to obtain our estimator,

we only need to solve a bunch of linear regression
problems, where each problem estimates one column
of the precision matrix. As a result, our estimator can
be easily paralleled or implemented in a distributed
manner.

The remainder of this paper is organized as follows:
Section 2 introduces notations used in this paper and
also gives some necessary backgrounds. In Section 3, we
summarize our proposed method in general. Section 4
presents our main results, as well as comparisons with
some existing methods. Section 5 provides numerical
results, for our method and a number of other methods,
of some simulated data sets and a real example on
breast cancer. Section 6 concludes with discussion.

2 NOTATION AND BACKGROUND

In this section, we introduce notations to be used
throughout the paper, and describe nonconvex penalty
functions we use in our method.

2.1 Notation

Let x = (x1, . . . , xd)
> ∈ Rd be a d-dimensional vec-

tor. For 0 ≤ q ≤ ∞, we define the `0, `q and

`∞ vector norms as ‖x‖0 =
∑d
i=1 I(xi 6= 0), ‖x‖q =

(∑d
i=1 |xi|q

) 1
q

, ‖x‖∞ = max1≤i≤d |xi|, where I(·) de-

notes the indicator function. Let A = (Aij) ∈ Rd×d
be a d× d matrix. We denote A∗j = (A1j , . . . ,Adj)

>

to be the jth column vector of A and A∗\j to be the

submatrix of A with the jth column A∗j removed. We
use the following notation for the matrix `q, `max and
`F norms

‖A‖q = max
‖x‖=1

‖Ax‖q, ‖A‖∞ = max
ij
|Aij |,

‖A‖1 = max
j
‖A∗j‖1, ‖A‖F =

(∑

ij

|Aij |2
) 1

2

.

It is easy to see that when q = 2, ‖A‖2 is the spectral
norm of matrix A. We also denote by λmax(A) and
λmin(A) the largest and smallest eigenvalues of matrix
A, respectively. In this paper, the set Sd++ = {A ∈
Rd×d | A = A>,A � 0} denotes all symmetric positive
definite matrices in d dimensions, where A � 0 means
A is positive definite. Furthermore, for a matrix Θ
and a set of tuples S, ΘS denotes the set of numbers
(Θjk)(j,k)∈S . Finally, as mentioned in introduction, we
define the maximum degree of a graph or row cardi-
nality as s = max1≤i≤n |{j ∈ V | Θ∗ij 6= 0}|, where
V = {1, . . . , d} is the vertex set mentioned before.
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2.2 Nonconvex Penalty Functions

One important component of our method is the non-
convex penalty. Throughout this paper, we consider
the decomposable nonconvex penalty function, i.e.,
Gλ(β) =

∑d−1
i=1 gλ(βi). Examples of these nonconvex

penalties include the smoothly clipped absolute devia-
tion (SCAD) penalty [5] and minimax concave penalty
MCP [31]. These estimators can eliminate the estima-
tion bias and attain more refined statistical rates of
convergence [28]. For example, MCP penalty is defined
as follows

gλ(β) = λ

∫ |β|

0

(
1− z

λb

)
+
dz,

where b > 0, λ > 0 are fixed regularization parameters.
In particular, the nonconvex penalty gλ(β) can be
equivalently rewritten into the sum of the `1 penalty
and a concave function hλ(β), i.e., gλ(β) = λ|β|+hλ(β).
In the case that gλ(β) is MCP penalty, hλ(β) has the
form as follows

hλ(β) = −β
2

2b
I(|β| ≤ bλ) +

(bλ2
2
− λ|β|

)
I(|β| > bλ).

In fact, our method is not limited to specific nonconvex
penalties, like MCP and SCAD. More generally, we only
require some common regularity conditions, which will
be described later, on gλ(β) and its concave component
hλ(β).

3 NEIGHBORHOOD SELECTION
WITH NONCONVEX PENALTIES

In this section, we will introduce our proposed estima-
tor, which is based on neighborhood selection [20].

3.1 Properties of Gaussian Graphical Models

It is well known that if X follows a multivariate nor-
mal distribution: X ∼ Nd(0,Σ

∗), then the condi-
tional distribution of Xj given X\j remains normal-

ly distributed as Xj |X\j ∼ N
(
Σ∗j,\jΣ

∗−1
\j,\jX\j , Σ∗jj −

Σ∗j,\jΣ
∗−1
\j,\jΣ

∗
\j,j
)
, where \j = {1, . . . , j−1, j+1, . . . , d}.

This implies that Xj = X>\jβ
∗
j + εj , where β∗j =

Σ∗−1\j,\jΣ
∗
\j,j is a (d − 1)-dimensional vector, and εj ∼

N(0,Σ∗jj − Σ∗j,\jΣ
∗−1
\j,\jΣ

∗
\j,j). Thus, σ2

j = Var(εj) =

Σ∗jj−Σ∗j,\jΣ
∗−1
\j,\jΣ

∗
\j,j . By the inverse formula for block

matrices [9], we can show that

Θ∗jj = (Σ∗jj −Σ∗j,\jΣ
∗−1
\j,\jΣ

∗
\j,j)

−1

= (Σ∗jj − 2β∗>j Σ∗\j,j + β∗>j Σ∗\j,\jβ
∗
j )−1,

Θ∗\j,j = −Θ∗jjβ
∗
j .

This immediately yields

Θ∗jj = (σ2
j )−1, Θ∗\j,j = −(σ2

j )−1β∗j . (3.1)

Now, we can recover each column of Θ∗, and the prob-
lem turns into estimating β∗j for each variable Xj given
X\j . Note that in our paper, we denote the support set
of the vector β∗j = (β∗1 , . . . , β

∗
d−1) as Sj = {i | β∗i 6= 0}

for j = 1, . . . , d.

3.2 The Proposed Estimator

Given n i.i.d. observations X = [X1, . . . ,Xn]>, our
proposed estimator is as follows, where λ > 0 is a
tuning parameter.

1. Estimation: For j = 1, . . . , d, calculate

β̂j = argmin
β

1

2n
‖X∗j −X∗\jβ‖22 + Gλ(β), (3.2)

σ̂2
j =

1

n
‖X∗j −X∗\jβ̂j‖22, Θ̂1

jj = 1/σ̂2
j ,

Θ̂1
\jj = −Θ̂1

jjβ̂j . (3.3)

2. Symmetrization:

Θ̂ = argmin
Θ∈Sd

++

‖Θ− Θ̂1‖1. (3.4)

Note that the nonconvex penalty term in (3.2) can
avoid over-penalization when the magnitude is very
large, which allows us to get a sharper convergence
rate. Although ‖X∗j−X∗\jβ‖22 is quadratic and Gλ(β)
is nonconvex, it can be shown that, under certain con-
ditions, the problem in (3.2) is strongly convex, and
therefore has a unique global solution. For computa-
tional purpose, the regression problem (3.2) can be
solved by proximal-gradient descent algorithm with
iteration complexity O(log(1/ε)), where ε is the opti-
mization precision. And the symmetrization procedure
in (3.4) can be solved by the projected gradient descent
method. Based on the strongly convex property of the
problem (3.2), we will show the theoretical results of
our estimator in next section.

4 THEORETICAL RESULTS

This section presents our main results, and discusses
connections with some related works. We start by
stating some assumptions, which are required in our
analysis.

4.1 Assumptions

The first assumption is about regularity conditions on
the nonconvex penalty gλ(β) introduced in Section 2.2.
Recall that gλ(β) can be formulated as gλ(β) = λ|β|+
hλ(β).
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Assumption 4.1. We provide following regularity
conditions on gλ(β) and its concave component hλ(β):

(a) g′λ(β) = 0, for |β| ≥ ν > 0.

(b) h′λ(β) is monotone, and Lipschitz continuous, i.e.,
for β′ ≥ β, there exists a constant ζ− ≥ 0 such
that −ζ−(β′ − β) ≤ h′λ(β′)− h′λ(β).

(c) hλ(β) and h′λ(β) pass through the origin, i.e.,
hλ(0) = h′λ(0) = 0.

(d) h′λ(β) is bounded, i.e., |h′λ(β)| ≤ λ for any β.

The above conditions have been made in Loh and Wain-
wright [18], Wang et al. [28] and hold for a variety of
nonconvex penalty functions including MCP penalty
and SCAD penalty. In particular, MCP penalty satis-
fies the above conditions with ν = bλ and ζ− = 1/b.

Next, we impose an important eigenvalue condition on
the population covariance matrix.

Assumption 4.2. We have 1/κ ≤ λmin(Σ∗) ≤
λmax(Σ∗) ≤ κ, where κ is a constant.

From Assumption 4.2, we can exclude singular or n-
early singular covariance matrices, thus guarantee the
uniqueness of Θ∗.

In this paper, we consider the precision matrix
Θ∗ which belongs to the class of matrices U(0, s),
i.e., U(0, s) =

{
Ω ∈ Rp×p

∣∣ Ω � 0, ‖Ω‖1 ≤
M,max1≤i≤p

∑p
j=1 1(Ωij 6= 0) ≤ s

}
. Note that this

sparse precision matrix class has been previously con-
sidered in Cai et al. [2], Liu and Wang [17], Zhao
and Liu [32]. In addition, it immediately implies that
‖Θ∗∗j‖1 ≤ ‖Θ∗‖1 ≤ M , where Θ∗∗j is the jth column
vector of Θ∗.

In order to prove the oracle property of our estimator,
we first introduce the definition of an oracle estimator,
denoted by Θ̂O.

Definition 4.3 (Oracle Estimator). The oracle esti-

mator Θ̂O is constructed as follows:

1. Estimation: Recall (3.3), we construct Θ̂O by the
same method

β̂O,j = argmin
supp(β)⊆Sj

L(β), for j = 1, . . . , d, (4.1)

σ̂2
O,j =

1

n
‖X∗j −X∗\jβO,j‖22, Θ̂jj = 1/σ̂2

O,j ,

Θ̂\jj = −Θ̂jjβ̂O,j , (4.2)

where L(β) = 1/(2n)‖X∗j −X∗\jβ‖22. We call β̂O the
oracle estimator of β∗.
2. Symmetrization:

Θ̂O = argmin
Θ∈Sd

++

‖Θ− Θ̂‖1. (4.3)

The oracle estimator Θ̂O is not a practical estimator,
since we do not know the true support in practice. The
oracle estimator is introduced as a reference estimator
for our analysis.

4.2 Main Theory

We present two main results of our estimator. The first
one shows that under a large magnitude condition on
elements of the true precision matrix Θ∗, our estimator
can exactly recover the support of Θ∗. With this con-
dition, we also provide a significant faster convergence
rate for our estimator. The second one shows that even
without this condition, our estimator can also obtain a
sharper convergence rate than existing estimators.

The following theorem presents the advantage of our
estimator when all the nonzero entries in the precision
matrix have large magnitude: it not only enjoys the
oracle property but also attains a faster convergence
rate.

Theorem 4.4 (Large Entry Magnitude). Suppose the

nonconvex penalty Gλ(β) =
∑d−1
i=1 gλ(βi) satisfies con-

ditions in Assumption 4.1. If nonzero entries of Θ∗

satisfies

min
i 6=j
|Θ∗ij | ≥ ν/λmax(Σ∗) + C

√
log s/n,

and as stated in Assumption 4.2 that min |Θ∗jj | ≥
1/λmax(Σ∗). For the estimator Θ̂ in (3.4) with the
regularization parameter satisfying λ = C

√
log d/n

and ζ− ≤ λmin(Σ∗)/64, we have following results that
hold with probability at least 1− C/d:

1. Θ̂ = Θ̂O, which further implies supp(Θ̂) =

supp(Θ̂O) = supp(Θ∗).

2. The convergence rate of Θ̂ is

‖Θ̂−Θ∗‖2 ≤ C1
s√
n

+ C2

√
log d

n
,

where C1 and C2 are absolute constants.

Theorem 4.4 indicates that in order to recover the
support of the precision matrix Θ∗, we need to
impose a large entry magnitude assumption. Actually,
this assumption is widely assumed in the Gaussian
graphical model estimator for model selection. For
example, with MCP or SCAD penalty, we require
mini6=j |Θ∗ij | ≥ C

√
log d/n to guarantee oracle prop-

erty of the proposed estimator, which is similar to
the magnitude assumption for model selection of
CLIME estimator. In addition, we can see that
the convergence rate of our method for large entry
magnitude is O(s/

√
n+

√
log d/n), which is significant

faster than existing methods.
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Next, we turn to the general case, where the nonzero
entries of Θ∗ have both large and small magnitude. In
this case, for j = 1, . . . , d, we define Sj = {i ∈ V |
Θ∗ij 6= 0}, S1

j = {i ∈ V | |Θ∗ij | ≥ ν/λmax(Σ∗)}, and

S2
j = {i ∈ V | 0 < |Θ∗ij | < ν/λmax(Σ∗)}. We also

define that s = maxj∈V |Sj |, s1 = minj∈V |S1
j |, and

s2 = s−s1. Note that here s is also the row cardinality,
as defined in Section 2.1, for the symmetric matrix Θ∗.

Theorem 4.5 (Arbitrary Entry Magnitude). Suppose

the nonconvex penalty Gλ(β) =
∑d−1
i=1 gλ(βi) satisfies

conditions in Assumption 4.1. For the estimator Θ̂ in
(3.4) with the regularization parameter satisfying λ =
C
√

log d/n and ζ− ≤ λmin(Σ∗)/128, with probability
at least 1− C/d, we have

‖Θ̂−Θ∗‖2 ≤ C1

√
s

√
s1
n

+ C2

√
s

√
s2 log d

n
+ C3

√
log d

n
,

where C1, C2 and C3 are absolute constants.

Theorem 4.5 suggests that, for those entries with large
magnitude, i.e., S1

j ⊂ Sj for all j ∈ V , the error of our

estimator is O(s/
√
n +

√
log d/n), which is the same

as Theorem 4.4. On the other hand, for those entries
with small magnitude, i.e., S2

j ⊂ Sj for all j ∈ V , our

estimation error is O(s
√

log d/n), which is identical to
existing methods such as GLasso and CLIME. Using
nonconvex penalty regularization, our method provides
a refined rate of convergence, which is better than the
rate obtained by existing estimators.

4.3 Comparisons with Existing Estimators

In this subsection, we will compare our estimator with
existing estimators in more details.

First, the most relevant estimator to ours is neigh-
borhood selection, which was originally proposed in
Meinshausen and Bühlmann [20]. Neighborhood s-
election can recover the support of Θ∗ and obtain
O(s

√
log d/n) convergence rate in terms of spectral

norm [17]. As we have seen, the rate of our estimator is
sharper than theirs. To guarantee the model selection
consistency, they imposed incoherence condition on
the covariance matrix: ‖ΣScS(Σ−1SS)‖1 ≤ 1− α, where
α ∈ (0, 1]. In contrast, our Theorem 4.4 only requires
the Large magnitude entry assumption, which is a mild
condition.

Second, we compare our results with GLasso [30, 24,
22]. For example, Ravikumar et al. [22] obtained
O(s

√
log d/n) rate of convergence in spectral norm.

In addition, Ravikumar et al. [22] proved the model
selection consistency for GLasso. However, both the
spectral norm based convergence rate and the consis-
tency result obtained by Ravikumar et al. [22] require

the stringent incoherence condition on the covariance
matrix. Our proposed estimator achieves a sharper
convergence rate in terms of spectral norm and ora-
cle property under the Large magnitude assumption,
which is milder than incoherence condition. The reason
why non-convex regularizers can lead this improvement
is that for parameters with large absolute values, the
non-convex regularizers impose smaller penalization
than `1 penalty. Thus it will not over penalized our
problem, and is able to remove bias introduced by over
penalization. We note that Lam and Fan [16] stud-
ied GLasso with nonconvex penalty such as SCAD [5].
However, their estimation error rate is the same as
GLasso, i.e., O(s

√
log d/n). In addition, Fan et al.

[7] proved the oracle property of GLasso with noncon-
vex penalty. Nevertheless, they failed to improve the
convergence rate either.

Finally, we compare our results with CLIME [2] and
graph Dantzig selector [29]. These two estimators also
attain O(s

√
log d/n) rate of convergence in spectral

norm. Yuan [29], Cai et al. [3] prove that the minimax
optimal rate for estimating the sparse precision matrix
is O(s

√
log d/n). The reason why our estimator can

have a faster rate than this minimax rate is that our
theory considers the magnitude information of the pre-
cision matrix, while the minimax lower bound in Yuan
[29], Cai et al. [3] does not take into account the entry
magnitude information.

5 NUMERICAL EXPERIMENTS

In this section, we use synthetic data to compare our
proposed method with others (NS [20], GLasso [30],
and CLIME [2]). Our comparisons focus on their per-
formance in graph recovery and parameter estimation.
The implementation of the baseline algorithms are from
R package huge1.

5.1 Numerical Simulation

For the purpose of our comparisons, we consider 3
different settings: (i) d = 200, n = 200; (ii) d = 300,
n = 200; (iii) d = 400, n = 200. We use 4 graph
models: cluster, band, scale-free, random to generate
our graphs and precision matrices. More specifically,
the covariance matrices are generated by huge package,
and the magnitude of correlations is the default value
in the huge generator.

First, we use receiver operating characteristic (ROC)
curves to compare the overall performance of our pro-
posed method with other methods in model selection
over the full paths. The ROC curves for cluster and
band graphs are shown in Figure 1 and ROC curves

1http://cran.r-project.org/web/packages/huge
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Figure 1: ROC curves of different methods on cluster and band models. Top (a-c): ROC curves for cluster models.
Bottom (d-f): ROC curves for band models

Table 1: Quantitative comparisons of Our estimator, NS, GLasso and CLIME on the cluster, scale-free, random,
and band models in terms of spectral norm ‖Θ̂−Θ‖2.

Model d GLasso CLIME NS Ours

200 7.459(0.025) 6.672(0.355) 6.425(0.163) 3.738(0.194)
Cluster 300 8.269(0.080) 7.932(0.264) 7.347(0.132) 4.660(0.132)

400 7.970(0.055) 7.307(0.174) 6.952(0.130) 4.049(0.291)
200 12.649(0.058) 12.036(0.251) 13.014(0.117) 8.405(0.694)

Scale-free 300 12.522(0.128) 12.353(0.314) 12.827(0.104) 9.015(0.490 )
400 13.680(0.110) 13.184(0.136) 13.882(0.122) 9.847(0.295)
200 5.696(0.031) 5.588(0.179) 5.040(0.101) 2.887(0.104)

Random 300 5.441(0.011) 4.932(0.202) 4.640(0.140) 1.843(0.244)
400 6.760(0.071) 6.179(0.158) 6.100(0.375) 2.447(0.140)
200 6.716(0.011) 6.487(0.031) 5.492(0.233) 4.976(0.091)

Band 300 6.757(0.015) 6.462(0.007) 5.235(0.018) 4.861(0.141)
400 6.794(0.026) 6.593(0.081) 5.246(0.059) 4.929(0.076)
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Figure 2: ROC curves of different methods on random and scale-free models. Top (a-c): ROC curves for random
models. Bottom (d-f): ROC curves for scale-free models

Table 2: Quantitative comparisons of the Our estimator, NS, GLasso and CLIME on the cluster, scale-free,
random, and band models in terms of Frobenius norm ‖Θ̂−Θ‖F .

Model d GLasso CLIME NS Ours

200 18.924(0.147) 18.199(0.766) 15.612(0.211) 11.264(0.130)
Cluster 300 22.624(0.205) 22.479(0.076) 18.256(0.170) 13.611(0.363)

400 22.761(0.130) 22.592(0.252) 17.758(0.183) 13.805(0.452)
200 14.492(0.061) 14.292(0.214) 13.995(0.145) 9.379(0.695)

Scale-free 300 16.872(0.134) 16.398(0.281) 16.334(0.107) 11.426(0.455)
400 16.639(0.122) 15.967(0.177) 15.445(0.136) 11.518(0.242)
200 18.852(0.162) 19.435(0.888) 15.141(0.240) 10.254(0.559)

Random 300 18.280(0.174) 18.342(0.067) 13.404(0.099) 7.777(0.482)
400 20.129(0.177) 20.049(0.208) 15.341(0.485) 8.802(0.134)
200 36.577(0.084) 34.805(0.157) 28.991(1.237) 25.996(0.392)

Band 300 45.477(0.089) 42.455(0.159) 33.920(0.086) 31.199(0.140)
400 52.962(0.170) 49.914(0.144) 39.351(0.201) 36.741(0.157)
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for scale-free and random graphs are presented in Fig-
ure 2. From ROC curves, we can see that our method
outperforms others in all settings. These results indi-
cate that our method is very competitive in the graph
recovery problem. Then, we evaluate performance of
our proposed method and other methods in parameter
estimation by following procedures. For each model
settings mentioned above, we generate data with sam-
ple size n = 200 as training set, and an independent
data with the same size from the same distribution as
test set. We choose the tuning parameter λ by grid
search based on its performance on training set, and
evaluate those estimators on the test set. Here we use
spectral norm error ‖Θ̂ − Θ‖2 and Frobenius norm

error ‖Θ̂−Θ‖F to compare the performance of differ-
ent methods in parameter estimation. Table 1 and 2
summarizes our results averaged over 50 simulations.
We report the spectral norm error in Table 1 and the
Frobenius norm error in Table 2. We can see that, the
performance of our method in parameter estimation is
significantly better than others in all settings.

5.2 Real Data Experiments

In this subsection, we use the breast cancer data2 ,
which is analyzed by Hess et al. [13] and later on by
Fan et al. [6], Cai et al. [2], Zhao and Liu [32], to
illustrate the advantage of our method. This real data
set includes 133 subjects with 22, 283 gene expression
levels. 34 subjects have obtained pathological complete
response (pCR), and others have obtained residual
disease (RD). Some studies have pointed out that in
the long term, the chance of cancer-free survival of the
pCR subjects is higher than the RD subjects. Thus
studying the response states of patients (with RD or
pCR) to neoadjuvant (preoperative) chemotherapy is
of great value. The data are randomly divided into the
training set of 107 subjects and the testing set of 26
subjects. The testing set is consists of 6 pCR subjects
and 20 RD subjects. By using R package limma3

on training set, we select 110 most significant genes,
following Fan et al. [6], as predictors. We assume the
scaled gene expression data to be normally distributed
as N(µk,Σ), which means different group has different
mean but same covariance (LDA framework). Our
discriminant function is

δk(x) = x>Θ̂µ̂k −
1

2
µ̂>k Θ̂µ̂k + log π̂k,

where π̂k = nk/n. Note that the estimated precision
matrices obtained by different methods are applied
here, and we classify a sample to class k if the value of
δk(x) is largest. Thus the performance of estimated Θ

2Available on http://bioinformatics.mdanderson.org/
3Available on http://bioconductor.org/packages/limma

Table 3: Quantitative comparison of different estimator
in the breast cancer data analysis

Method Specificity Sensitivity MCC

Glasso 0.857(0.045) 0.424(0.099) 0.308(0.151)
CLIME 0.862(0.038) 0.453(0.097) 0.340(0.123)

NS 0.889(0.044) 0.442(0.093) 0.372(0.135)
Ours 0.897(0.042) 0.493(0.105) 0.428(0.143)

corresponds to the performance of classification. And
we use test set to evaluate the performance of different
Θ̂. For the choosing of tuning parameter λ, we adopt 5-
fold cross-validation on training set. We use specificity,
sensitivity, and Mathews correlation coefficient (MCC)
criteria, as defined below, to evaluate the performance
of classification.

Specificity =
TN

TN+FP
, Sensitivity =

TP

TP+FN
,

MCC =
TP · TN− FP · FN√

(TP+FP)(TP+FN)(TN+FP)(TN+FN)
,

where

TP =
∑

i

1(ŷi = 1, y∗i = 1), FP =
∑

i

1(ŷi = 1, y∗i = 0),

TN =
∑

i

1(ŷi = 0, y∗i = 0), FN =
∑

i

1(ŷi = 0, y∗i = 1),

where ŷi’s and y∗i ’s denote true labels and predicted
labels repectively. Results over 100 simulations are
presented in the Table 3. It can be seen that our pro-
posed estimator outperforms others in all three criteria,
especially for MCC. These results further corroborate
the superiority of our estimator.

6 Conclusions

In this paper, for the precision matrix estimation in
high dimensional Gaussian graphical models, we pro-
pose a new estimator based on neighborhood selection
method with nonconvex penalty. Theoretically, our esti-
mator not only achieves sharper convergence rates, but
also enjoys the oracle property under mild conditions.
The results of simulations and real data experiments
also demonstrate the outstanding performance of our
estimator.
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