Graph Connectivity in Noisy Sparse Subspace Clustering

Appendix A PROOFS OF THEOREMS FOR NOISELESS SSC
We prove Theorem 3.1, the main theorem for the noiseless clustering consistent SSC algorithm given in Sec. 3.1

Proof of Theorem 3.1. Fix a connected component G, = (V,., E,) C G. By the self-expressiveness property we
know that all data points in V; lie on the same underlying subspace S®. It can be easily shown that if X is in
general position then |V,.| > dy + 1 because for any x; € S@ | at least d; other data points in the same subspace
are required to perfectly reconstruct x;. Consequently, we have 3(,.) = S because V. contains at least d; data
points in S that are linear independent. On the other hand, due to the self-expressiveness property, for every
£=1,---,L there exists a connected component G, such that S(T) = S because otherwise nodes in X® will
have no edges attached, which contradicts Eq. (3.1) and the definition of G. As a result, the above argument
shows that Algorithm 1 achieves perfect subspace recovery; that is, there exists a permutation 7 on [L] such that
SO =8=0) forall ¢ =1,---, L.

We next prove that Algorithm 1 achieves perfect clustering as well, that is, w(2;) = z; for every i = 1,--- | N.
Assume by way of contradiction that there exists ¢ such that 2; = £ and z; = ¢/ # 7n(¢). Let G, = (V,., E.) CG
be the connected component in G that contains the node corresponding to ;. Since Z; = £, by SEP and the
above analysis we have 3(,,) =80 = §x(1) On the other hand, because z; = ¢ and data points in V,. are in
general position, we have S(T) = 8. Hence, S™®) = SU) with ¢ # m(¢), which contradicts the assumption
that no two underlying subspaces are identical. O

Appendix B DISCUSSION ON IDENTIFIABILITY AND ¢, FORMULATION
OF NOISELESS SUBSPACE CLUSTERING

B.1 The identifiability of noiseless subspace clustering

If we use a more relaxed notion of identifiability, even the “general position” assumption could be dropped for
consistent clustering. In Theorem B.1 we define such a relaxed notion of identifiability for the union-of-subspace
structure.

Theorem B.1. Any set of N data points in R™ has a partition that follows a union-of-subspace structure, where
points in each subspaces are in general position. We call this partition the minimal union-of-subspace structure.

Proof. Given a finite set X C R™. We will algorithmically construct a minimal partition. Initialize set ) = X.
Start with & = 1, do the following repeatedly until it fails, then increment k, until ) = §: find the maximum
number of points that lie in a hyperplane of dimension (k+ 1), assign a new partition for these points and remove
these points from ). It is clear that in this way, every partition is a distinct subspace and points in any subspace
are in general position. O

One consequence of Theorem B.1 is that if SEP holds with respect to any minimal union-of-subspace structure
(i.e., a minimal ground truth), then Algorithm 1 will recover the correct ground truth clustering. We remark that
SEP does not hold for any finite subset of points in R™ if /1 regularization is used, unless the data satisfy certain
separation conditions [19]. However, in Section B.2 we propose an £, regularization problem which achieves SEP
(and hence consistent clustering) for any X C R9.

We note that the minimal union-of-subspace structure may not be unique. An example is that if there is one point
in the intersection of two subspaces with equal dimension, then this point can be assigned to either subspaces.
Now, suppose the intersection has dimension k, there can be at most k points in the intersection, otherwise these
points will form a new k-dimension subspace and the original structure is no longer minimal.

B.2 The merit of /)-minimization and agnostic subspace clustering

A byproduct of our result is that it also addresses an interesting question of whether it is advantageous to use
lo over ¢1 minimization in subspace clustering, namely

min |¢llo, st x; = Xe;, ¢ = 0. (B.1)
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If one poses this question to a compressive sensing researcher, the answer will most likely be yes, since ¢y
minimization is the original problem of interest and empirical evidence suggests that using iterative re-weighted
{1 scheme to approximate £y solutions often improves the quality of signal recovery. On the other hand, a
statistician is most likely to answer just the opposite because ¢; shrinkage would often significantly reduce
the variance at the cost of a small amount of bias. A formal treatment of the latter intuition suggests that
{1 regularized regression has strictly less “effective-degree-of-freedom” than the “fy best-subset selection” [22],
therefore generalizes better.

How about subspace clustering? Unlike ¢; solution that is unique almost everywhere, ¢y solutions will not be
unique and it is easy to construct a largely disconnected graph based on optimal ¢y solutions. Using the new
observation that we do not actually need graph connectivity, we are able to establish that £y minimization for
SSC is indeed the ultimate answer for noiseless subspace clustering.

Theorem B.2. Given any N points in R?, any solutions to the ly-variant of Algorithm 1 will partition the
points into a minimal union-of-subspace structure.

Proof. Define a minimal subspace with respect to point x; in a set {x; iil to be the span of any points that
minimizes (B.1) for 4. Since the ordering of how data points are used does not matter in Algorithm 1, we can
sort the points into an ascending order with respect to the dimensionality. Now the merging procedure of these
subspaces into a unique set of subspaces is exactly the same as the construction in the proof of Theorem B.1.
Therefore, all solutions of the £y SSC are going to be the correct partition. O

With slightly more effort, it can be shown that the converse is also true. Therefore, the set of solutions of
£5-SSC completely characterizes the set of minimal union-of-subspace structure for any set of points in R%. In
contrast, £1-SSC requires additional separation condition to work. That said, it may well be the case in practice
that ¢1-SSC works better for the noisy subspace clustering in the low signal-to-noise ratio regime. It will be
an interesting direction to explore how iterative reweighted ¢; minimizations and local optimization for £,-norm
(0 < p < 1) work in subspace clustering applications.

Appendix C PROOFS OF THEOREMS FOR NOISY SSC

The purpose of this section is to present a complete proof to Theorem 3.2, our main result concerning clustering
consistent Lasso SSC on noisy data. We first present and prove two technical propositions that will be used
later.

Proposition C.1. Let u be an arbitrary vector in S with ||u|ly = 1. Then max<;<n, it \(u,mﬁ€)>| > p[i*

for every i* =1,--- | Np.

Proof. For notational simplicity let X(i)-* = (:cgg), . ,wgfll,wgfll, e ,w%Z) and Q(fz* = conv(iX(i)-*). The
objective of Proposition C.1 is to lower bound HX(_?TUHOO for any u € S with ||u|ly = 1. By definition of the

-
dual norm, ||X(_£2-* U] is equal to the objective of the following optimization problem

max (u,X“)c) st |e|; =1. (C.1)

ceRNe—1

To obtain a lower bound on the objective of Eq. (C.1), note that pzi* is the radius of the largest ball inscribed in
Q(_ez* and hence p[i*u S Q(_eg*. Consequently, pzi*u can be written as a convex combination of (signed) columns
: (0)
in X

g%

Eq. (C.1) we obtain

that is, there exists ¢ € RN~1 with ||¢||; = 1 such that X e = p; u. Plugging the expression into

X(Z)T > _i* o _i*
X5 vl > <u,p£ u) = Pe -
O

Proposition C.2. Let A = (a1, - ,a,) be an arbitrary matriz with at least m rows. Then |la; —
Prange(a_;)(@i)ll2 > 0m(A), where a_; denotes all columns in A except a;.



Graph Connectivity in Noisy Sparse Subspace Clustering

Proof. Denote aj as ai* = a; — Prange(a_;)(@i). By definition, ai € Range(A) and (a;-,a;/) = 0 for all i’ # i.
Consequently,

Al _ JAatls _ (enad) _ llefll .
om(A) < inf < i — = llat]f,.
m u€Range(A) ||u|2 HQZJ-||2 ||aJ_|| ”aj_” H i ”

O

We next present two key lemmas. The first lemma, Lemma C.1, shows that the estimated subspace S from noisy
inputs is a good approximation the underlying subspace S® as long as the restricted eigenvalue assumption
holds and exactly d points from the same subspace are used to construct S.

Lemma C.1. Fiz ¢ € {1,--- ,L}. Suppose S is the range of a subset of points Yq C YO containing exactly d

noisy data points belonging to the (th subspace. Let SU) be the ground-truth subspace; i.e., :cge), SRR %@ eS®,
Under Assumption 3.1 we have
s g0y < 20€
a8, sy < 2% (C.2)
Oy

Proof. Suppose Y, = (ygf),-u ,ygs)) and X; = (x Ef),~-- ,xgs)). By the noise model [|[Yy — Xy4||% =

25:1 lei, |13 < d&?. On the other hand, by Assumption 3.1 we have 04(X4) > o4. Wedin’s theorem (Lemma
D.1 in Appendix D) then yields the lemma. O

In Lemma C.2 we show that if the restricted eigenvalue assumption holds and the regularization parameter A
is in a certain range, the optimal solution to the Lasso problem in Eq. (3.2) has at least d nonzero coefficients,
which lead to |V,.| > d+ 1 for every connected component V,. in the similarity graph constructed in Algorithm 2.
Lemma C.2 is a natural extension to the fact that at least d points should be used to reconstruct a certain data
point for noiseless inputs, if the data matrix X is in general position.

Lemma C.2. Assume Assumption 3.1 and the self-expressiveness property hold. For each i € {1,--- N},
lleillo > d if the regularization parameter \ satisfies
25(1+§)2(1+1/p£)<A<@ ¢=1,--,L. (C.3)

Proof. Because the self-expressiveness property holds, we assume without loss of generality that the support

set of ¢; with |le;ljo = ¢ is {y @ ... ,yg)}. Assume by way of contradiction that |c;|lo < d and define y*+ =
yy) —Zj 11 ¢ ]yg ), where ¢; 1, -+, ¢; 4—1 contain all nonzero coefficients 4in ¢;. Since ¢; is optimal, the following

must hold for every y( ) with 4/ #1:

argmin, ez, {|ly* — eyl I3 +2\|el } = 0. (C.4)
To see the necessity of Eq. (C.4), note that the optimal solution to Eq. (C.4) ¢* # 0 implies
ly:” =Y &3 + 2@l < lly* =i 13427 |+ 20 leilly < lly™ 13 +2Alleill = lly” = Y eill3 + 2M el
where &; = ¢; + ¢* - e;s. This contradicts the optimality of ¢; with respect to Eq. (3.2).

By optimality conditions, Eq. (C.4) implies |(y* ,yz >\ < A. In the remainder of the proof we will show that
(0

under the assumptions made in Lemma C.2, [(y*, y;,’)| > A, which results in a contradiction.

In order to lower bound |{y* ,y p )\ we first bound the noiseless version of the inner product |(z*, ! i >|, where

xt = iL'(-Z) — Z? ;cznge). A key observation is that ' € S and hence by Proposition C.1 and C.2 the

following chain of inequality holds for any :c( with i # i

(@) (ZI}ZM))HQ Z pProy. (05)

1:d—1

(@ 2| = pellet 2 > pe |27 — P

span(x

4Some coefficients in Ciyy: '+, Ci,d—1 might be zero because ||¢;||1 could be smaller than d — 1.
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Our next objective is to upper bound the inner product perturbation |{y=, yE@) (xt, z! W >| and subsequently

obtain a lower bound on |{y*, y(,z)>| Note that

) €

') = @2y + (yt — a2y + (@t yP - 2P)

! 0 _ (2)>;

+(yt -zt y;,

therefore,
¢ Z Y4 ¢ ¢
[y, ) — (@t 2| <yt — 2 120+ lly vl — 20 < |yt — a2t +Elly . (C.6)

In order to upper bound ||y*||z and |[y* — x*||2, note that by definition ||y*|]> = ||y§£) - Z?:z cijy;e)Hg <

(1 +]leill)(1+€) and ||yt —xt|2 = ||€§Z) - 2522 cijyg.e)Hg < &(14||€;]]1)- Hence we only need to upper bound
lleill1, which can be done by the following argument due to the optimality of ¢;: By arguments on page 21 in
[24], the following upper bound on ||¢;||; is proven:

¢ ?
lleilly < — + = (1 + ) . (C.7)
Pe

The lower bound on A in Eq. (C.3) implies that f < A1+ 1/p;). Plugging this upper bound into Eq. (C.7) we
obtain

leills <1/pe+&E(1+1/pe) < (1+E)(L+1/pe), (C.8)
which eliminates the dependency on A. We now substitute the simplified upper bound on ||¢;||; into the upper
bound for ||y*||2, |yt — x*|2 and get

ly=llz < L+ €2 +1/pe); lly™ — [l < EQ+E)(L+1/pg). (C.9)

Combining Eq. (C.5), (C.6) and (C.9) we obtain the following lower bound on |{y+ y(z)>|

7

1
()] = proe =261+ (L + 1/pe) > 5 prov, (C.10)

where the last inequality is due to the assumption that 25(1 —|—£) (14+1/p¢) < 3peoe implied by Eq. (C.3). Finally,
since £ppoy > A as assumed in Eq. (C.3), we have |(y* yl >| > A, which results in the desired contradiction. [

Finally, Theorem 3.2 is a simple consequence of Lemma C.1 and C.2 because under the conditions of Lemma
C.2, every component V. will have at least d data points. Define y = 1/2d¢?/ ming 0. Lemma C.1 implies that
d(S(ry, S¢vy) < pe if V. and Vs belong to the same cluster. On the other hand, by the separation condition in

Eq. (3.6) and Lemma C.1, if V;. and V,» belong to different clusters we would have d(S(T)7 S(T/)) > fte. Therefore,
the single-linkage clustering procedure in Algorithm 2 will eventually merge estimated subspaces correectly.

Appendix D MATRIX PERTURBATION THEOREMS

Lemma D.1 (Wedin’s theorem; Theorem 4.1, pp. 260 in [21]). Let A, E € R™*™ be given matrices with m > n.
Let A have the following singular value decomposition

U/ 2 0
U] [A[VE Vo]=| 0 3|,
u; 0 o0

where U1, Uz, U3z, V1, Va have orthonormal columns and X, and s are diagonal matrices. Let A=A +E be
a perturbed version of A and (U1, Us, U3z, V1, Va,31,35) be analogous singular value decomposition of A. Let
® be the matriz of canonical angles between Range(U1) and Range(ﬁl) and © be the matrix of canonical angles
between Range(V1) and Range(Vy). If there exists § > 0 such that

mln |[21]z,z — [22}j7j| > 6 and m1n|[21]m| > 5,
%] 1

then )
2B

| sin ®||% 4+ || sin ©||% < 5




