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1 Sparse Online Gaussian Process

In this section we briefly review sparse online GPs
(GPso) [1, 2]. The key idea is to learn GPs recursively
by updating the posterior mean and covariance of the
training set {(xn, yn)}Nn=1 in a sequential fashion. This
online procedure is coupled with a sparsification mech-
anism in which a fixed-size subset of the training set
(called the active set) is iteratively selected to avoid
the unbounded computation growth of updating.

Specifically, the model parameters at the (n − 1)-th
step of GPso are [1, 2]

Mn−1 = {X̃n−1, µn−1,Σn−1, Qn−1},

where X̃n−1 is the active set which is a training
subset selected from the first (n − 1) training pairs,
N (µn−1,Σn−1) is the posterior over X̃n−1, and Qn−1

is the inverse covariance matrix of X̃n−1.

Once the n-th training pair (xn, yn) is available, the
model parameters is updated fromMn−1 toMn, based
on the following strategy.

1.1 Update at the n-th step

Firstly, the following update is performed to take the
information of (xn, yn) into account [2],

γ2n = k(xn,xn)− kT
n−1(xn)qn, (1)

µn =

[
µn−1

qT
nµ

n−1

]
+
yn − qT

nµ
n−1

η2n
ψn, (2)

Σn =

[
Σn−1 Σn−1qn

qT
nΣn−1 γ2n + qT

nΣn−1qn

]
− ψnψ

T
n

η2n
, (3)

where the relevant computation quantities are

qn = Qn−1kn−1(xn),

ψn =

[
Σn−1qn

γ2n + qT
nΣn−1qn

]
,

and the i-th entry of the vector kn−1(xn) is computed
by k(xn,xi) and xi is the i-th input in X̃n−1.

Next, depending on the value of γ2n in Eq.(1), we decide
if the n-th training point is added to the active set and
how to further refine the model parameters Mn.

• When γ2n < δ (δ = 10−6 in this work), the training
pair (xn, yn) is not added to the active set. As a result,
µn and Σn in Eq.(2-3) are reduced to

µn ← [µn]−n, Σn ← [Σn]−n,−n, (4)

where [·]−n deletes the n-th entry of a vector; [·]−n,−n
deletes the n-th row and column of a matrix. Addition-
ally, since the active set does not change X̃n = X̃n−1,
the inverse covariance matrix is Qn = Qn−1.

• When γ2n ≥ δ, the training pair (xn, yn) is added
to the active set, i.e., X̃n = X̃n−1 ∪ (xn, yn). The
µn and Σn are computed using Eq.(2-3). The inverse
covariance matrix is then updated as follows

Qn =

[
Qn−1 0

0 0

]
+

1

γ2n

[
qn

−1

] [
qn

−1

]T
. (5)

In this case, we have to make sure that the size of the
active set does not exceed our budget. If the size of
X̃n exceeds NAC , we remove the data pair that has
the lowest squared prediction error

k = arg min
k

(
[Qnµn]k
[Qn]k,k

)2,

where [·]k is the k-th entry of a vector, [·]k,k is the k-th
diagonal entry of a matrix. Consequentially, the active
set X̃n is reduced to X̃n ← X̃n \ (xk, yk) and µn, Σn,
Qn in Eq.(2),(3),(5) are updated to be

µn ← [µn]−k,

Σn ← [Σn]−k,−k,

Qn ← [Qn]−k,−k −
[Qn]−k,k[Qn]T−k,k

[Qn]k,k
,

where [·]−k,k is the k-th column of a matrix without
the entry in the k-th row.
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1.2 Prediction at the n-th step

Based on the model parameters Mn at the n-th step,
the predictive distribution at a given test input x? is
Gaussian [1, 2]

p(y?|x?,Mn) = N (µsogp?, σ
2
sogp?) (6)

with mean

µsogp? = qT
? µ

n, q? = Qnkn(x?)

and variance

σ2
sogp? =σ2 + k(x?,x?) + qT

? Σnq?

− kT
n (x?)Qnkn(x?)

where σ2 is the noise variance, the i-th entry of the
vector kn(x?) is computed by k(x?,xi) and xi is the
i-th input in X̃n.

2 Experiments

In this section, we describe the full set of experiments
we did to validate our approach. We mainly perform
our sequential inference for Deep GP (our DGPseq)
and compare it to variational inference for Deep GP
(DGPvar) [3] and sparse online GP (GPso) [1]. Un-
less otherwise stated we keep the experimental settings
(which we now describe) consistent. We normalize the
output y of all the data sets to [0, 1] and then subtract
the mean. We use five random train/test partitions
for all the data sets. Based on these five partitions, we
report average root mean squared error (RMSE) and
mean negative log probability (MNLP) as a measure
of predictive error, and report average training time
(second) as a measure of computational complexity.
We use PCA to initialize the latent layers of DGP, and
choose an Automatic Relevance Determination (ARD)
squared exponential kernel for all relevant approaches,

k(x,x′) = σ2
ker exp[−0.5

∑d

i=1
ci(xi − x′i)

2]

where σ2
ker is the amplitude and c1, · · · , cd are the

ARD weights.

In the following we demonstrate the effectiveness of our
approach for a number of important learning tasks in
the GP community.

2.1 DGP for Unsupervised Learning

We start our experimental evaluation with two unsu-
pervised learning applications: learning a deep dynam-
ical prior for time series data and dimensionality re-
duction for image reconstruction.

2.1.1 DGP as Deep Dynamical Prior

DGP can be used as a flexible deep dynamical prior,
where the input is the time step and the output is the
multi-dimensional observation [4, 3]. We use three dif-
ferent datasets to illustrate the robustness of DGP: the
motion, flu and stock datasets. The motion dataset1

consists of 2465 time/pose pairs of five physical exer-
cise activities (jumping jacks, two types of side twists,
squats and jogging) from CMU Mocap database. Each
pose is parameterized with a 62 dimensional vector
containing the 3D rotations of all joints. The flu
dataset2 consists of 543 time/flu-activity-rate pairs
from 2003-11-09 to 2014-03-30. Each flu-activity-rate
is a 9 dimensional vector containing the flu rates of
AB / BC / MB / NB / NL / NS / ON / SK /
QC in Canada. The stock dataset3 consists of 1500
time/Nasdaq index pairs collected from 1997-01-02 to
2014-11-18 (sampled every three working days). Each
index is a 5 dimensional vector containing Nasdaq log-
returns of Biotechnology, Composite, Industrial, Nas-
daq100 and Telecommunications.

We randomly create five partitions of the data with
training set sizes 1500/300/1000 for motion/flu/stock
datasets respectively. We use L = 2, D = 5, Np = 100
and NAC = 100/100/200 as the basic settings for our
DGPseq. We run our sequential inference and hyper-
parameter learning twice (called two episodes) to get
the hyperparameters into a reasonable region. Addi-
tionally, we run our sequential inference for both het-
eroscedastic GP and DGP, and denote them as our
HGPseq and our HDGPseq. We employ the same pa-
rameters of our DGPseq (whenever applicable) to our
HGPseq, our HDGPseq, GPso [1] and DGPvar [3].

Complexity of the Deep Model: We evaluate
DGPvar [3] and our DGPseq when varying the num-
ber of latent layers L and dimensionality of each layer
D. The results are shown in Figure 1 and 2. For the
motion and flu datasets, our DGPseq outperforms the
basic DGPvar[3] in terms of both prediction error and
training efficiency. This illustrates that our sequential
inference is more effective than the variational infer-
ence of [3]. For the stock dataset, our DGPseq (when
changing L) and DGPvar[3] (when changing D) tend
to achieve a poor performance because of the strong
heteroscedasticity in this data. Additionally, in this
data, the RMSE is similar for all approaches and set-
tings. This might be because the stock observations
are log-returns in which the fluctuation of the under-
lying function is flat. All the deep GP models can cap-
ture this fluctuation, and thus produce similar RMSEs.

1http://mocap.cs.cmu.edu/
2http://www.google.org/flutrends/ca/
3http://finance.yahoo.com/
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Figure 1: DGP as Deep Dynamical Prior (Robustness to Complexity of the Deep Model):
RMSE/MNLP/Training Time (Column 1/2/3) as a function of the number of latent layers L. Row1/2/3:
motion/flu/stock. The error bar is mean±standard deviation.

Properties of Our Inference Framework: We
next evaluate the influence of the number of particles,
Np, and the size of the active set, NAC in our sequen-
tial inference framework. The results are shown in Fig-
ure 3 and 4. As expected, the performance of all our
approaches tend to improve when Np and/or NAC in-
creases. Additionally, our DGPseq outperforms GPso

[1]. This illustrates that the predictive performance of
deep GP models is generally better than shallow GP
models.

Heteroscedastic Learning: We now evaluate the
sequential inference procedure for the heteroscedastic
DGP extension. As shown in Figure 1, 2, 3 and 4, our
HDGPseq generally outperforms our DGPseq with a
competitive RMSE but a lower MNLP. This is due to
the fact that the heteroscedastic observation layer in
our HDGPseq is able to achieve a lower prediction un-
certainty in regions of the space which have less noise.
Hence, compared to our DGPseq, our HDGPseq can

further improve the prediction performance without
significantly increasing computation.

Missing Data in Multi-task Learning: Since DGP
can be used as a multi-output GP model, we assess the
performance of our approaches for missing data cases.
For motion, the observations of dimensions 27-33/49-
55 (right arm / left leg) are missing during the time
steps 700-720/1200-1220. For flu, the observations of
provinces 1-5/6-9 are missing during the time steps
80-100/30-50. For stock, the observations of Nasdaq
Biotechnology / Nasdaq Composite / Nasdaq Indus-
trial / Nasdaq100 / Nasdaq Telecommunications are
missing during the time steps 150-200/350-400/550-
600/750-800/950-1000. We compare our DGPseq and
HDGPseq to the baseline GPso [1]. Table 1 shows
that our DGPseq and HDGPseq outperform GPso with
a lower reconstruction error of missing dimensions.
This is primarily due to the fact that deep structures
can capture correlations between different outputs via
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Figure 2: DGP as Deep Dynamical Prior (Robustness to Complexity of the Deep Model):
RMSE/MNLP/Training Time (Column 1/2/3) as a function of the dimensionality of latent layers D. Row1/2/3:
motion/flu/stock. The error bar is mean±standard deviation.

sharing a number of latent layers.

Qualitative Results: (i) For the motion dataset, we
show that our particles are effective and efficient to
estimate y in Fig. 5. The settings of our DGPseq in
this figure are the number of latent layers L = 2, the
dimensionality of latent layers D = 10, the number of
particles Np = 100, the size of active set NAC = 100.
(ii) For the flu dataset, we estimate its posterior using
our HDGPseq with the number of latent layers L = 2,
the dimensionality of latent layers D = 5, the number
of particles Np = 100, the size of active set NAC =
100. As shown in Fig. 6, our HDGPseq successfully
captures non-stationarity and heteroscedasticity of flu-
activity-rate observations. (iii) For the stock dataset,
we estimate its posterior using our HDGPseq with the
number of latent layers L = 2, the dimensionality of
latent layers D = 10, the number of particles Np =
100, the size of active set NAC = 200. As shown in
Fig. 7, our HDGPseq successfully captures the strong
heteroscedasticity of this data.

2.1.2 Dimensionality Reduction for Image
Reconstruction

Low-dimensional latent representations provide a
means to avoid the so-called ”curse of dimensional-
ity” and the low-dimensional latent layers of a DGP
can be understood as a form of dimensionality reduc-
tion. Inspired by [5], we use DGP for dimensionality
reduction to reconstruct images from noisy observa-
tions. Towards this goal we use the Frey face dataset4

which is composed of 1900 images of size 20×28 = 560.
We add Gaussian noise (std dev 0.1) to the images, and
use these noisy images as both the input and output
of the DGP model.

Figure 8 shows the RMSE between the noiseless image
and the reconstruction as a function of the number of
training episodes in our learning framework. Hyperpa-
rameter learning was performed after the first episode
and the hyperparameters were fixed for the remaining

4http://www.cs.nyu.edu/∼roweis/data.html



Yali Wang, Marcus Brubaker, Brahim Chaib-draa, Raquel Urtasun

50 100 150 200

0.01

0.02

0.03

0.04

Number of Particles

RMSE
50 100 150 200

−14

−12

−6

−4

0

Number of Particles

MNLP
50 100 150 200

10
1

10
2

10
3

Number of Particles

TrainT(s)

50 75 100 125
0.02

0.05

0.08

0.11

Number of Particles

RMSE
50 75 100 125

−4

−3

−2

−1

0

Number of Particles

MNLP
50 75 100 125

10
0

10
1

10
2

Number of Particles

TrainT(s)

50 100 150 200
0.055

0.06

0.067

Number of Particles

RMSE
50 100 150 200

−3

−2.5

−2

Number of Particles

MNLP
50 100 150 200

10
1

10
2

10
3

Number of Particles

TrainT(s)

GPso Our HDGPseqOur HGPseq Our DGPseq

Figure 3: DGP as Deep Dynamical Prior (Properties of Our Inference Framework): RMSE/MNLP/Training
Time (Column 1/2/3) as a function of the number of particles Np. Row1/2/3: motion/flu/stock. The error bar
is mean±standard deviation. Note that there is no Np in GPso, hence GPso is a straight line for the plot of Np.

episodes. We chose the number of particles Np and the
size of active set NAC to be 100 in our DGPseq. To re-
duce the randomness of sampling, we run our DGPseq

five times for each episode and report the average re-
construction RMSE. As shown in Fig. 8, our DGPseq

outperforms DGPvar. Furthermore, as expected, our
DGPseq performs better when the number of training
episodes increases, or the width and the depth of the
deep structure also increases. Finally, Fig. 9 shows
qualitatively that our DGPseq achieves better recon-
struction than DGPvar.

2.2 DGP for Supervised Learning

In this section, we focus our evaluation in the su-
pervised setting for large training sets and/or high-
dimensional data sets.

2.2.1 Regression

We employ the Parkinsons telemonitoring dataset5,
which is a six-month biomedical voice recording from
42 people with early-stage Parkinson’s disease for a
total of 5875 input/output pairs. The input is a 16-
dimensional biomedical voice feature vector and the
output is a 2-dimensional score vector (motor UPDRS
score and total UPDRS score). We randomly partition
the data five times and choose each time training/test
sets to be of size 5000/875. The basic setting of our
DGPseq is L = 2, D = 2, Np = 500, NAC = 100. We
run our DGPseq for one training episode with sequen-
tial inference and hyperparameter learning. We em-
ploy the same parameters of our DGPseq to GPso and
DGPvar whenever applicable. As shown in Table 2,
our DGPseq outperforms GPso and DGPvar. Further-
more, compared to DGPvar, our DGPseq significantly
reduces the computation.

5http://archive.ics.uci.edu/ml/index.html
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Figure 4: DGP as Deep Dynamical Prior (Properties of Our Inference Framework): RMSE/MNLP/Training
Time (Column 1/2/3) as a function of the size of active set NAC . Row1/2/3: motion/flu/stock. The error bar
is mean±standard deviation.

2.2.2 Classification

We evaluate our approach for classification on the Tu-
mor gene expression dataset6 and the MNIST Dig-
its dataset7. The tumor data consists of a predefined
training and test sets of sizes 144 and 46 respectively.
The input contains 16,063 tumor genes (16,063 dimen-
sional input vector) and the output contains 14 can-
cer classes (14 dimensional binary output vector). For
the tumor data, the basic settings of our DGPseq are
L = 3, D = 12, Np = 200. NAC is the size of the data
as we did not employ sparsification. We use a lin-
ear kernel to reduce computation as the data is very
high-dimensional. We run our DGPseq for five training
episodes with sequential inference and hyperparame-
ter learning. We employ the same parameters for our
DGPseq, GPso [1] and DGPvar [3] whenever applica-
ble. As shown in Table 3, our DGPseq achieves the
best classification accuracy and also significantly out-

6http://www.genome.wi.mit.edu/
7http://yann.lecun.com/exdb/mnist/

performs DGPvar [3] in terms of computation.

For the MNIST data, there are 60,000 training im-
ages and 10,000 test images. The input is a 28 × 28
image (784 dimensional input vector) and the output
contains 0-9 digits (10 dimensional binary output vec-
tor). Classification accuracy on the test set (i.e., the
percentage of correctly classified examples) is evalu-
ation metric. The basic settings of our DGPseq are
L = 1, D = 400, Np = 100 and NAC = 1000. The
covariance function of GP is chosen as the 1st-order
arc-cosine kernel [6]. Additionally, instead of using
the latent state h as the output of each layer, we use
the logistic activation function of h, i.e., (1 + e−h)−1

as the output of each layer, which mimics neural net-
works for classification. Note that this modification
is simple to accommodate in our inference algorithm
by simply propagating the particles through the acti-
vation function when sampling. We run our DGPseq

for one training episode. We employ the same param-
eters for GPso [1] whenever applicable. As this data
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Data Methods RMSE(%) MNLP Train T(s)

Motion
GPso 1.45 -4.81 20

our DGPseq 1.0±0.1 -4.95±0.75 202±2
our HDGPseq 1.1±0.3 -5.15±0.20 236±8

Flu
GPso 5.3 -2.42 8

our DGPseq 4.0±0.6 -3.09±0.32 50±2
our HDGPseq 3.0±0.7 -3.16±0.11 108±6

Stock
GPso 6.4 -1.95 28

our DGPseq 6.4±0.1 -2.18±0.07 305±2
our HDGPseq 6.6±0.3 -2.41±0.04 413±4

Table 1: Missing Data in Multi-Task Learning (Motion/Flu/Stock).

Data Methods Acc Train T(s)

Tumor
GPso 0.65 1

DGPvar 0.50 2256
our DGPseq 0.73 53

MNIST

GPso 0.9500 60mins
DGPvar - -

DVI-GPLVM 0.9405 20mins*
our DGPseq 0.9424 180mins

Table 3: Classification. For MNIST, the results of
DVI-GPLVM are from [7]. (*) Distributed implemen-
tation using an unreported number of cores.

set is large-size, DGPvar [3] is infeasible. Instead, we
compare our DGPseq to the state-of-the-art scalable
GPLVM with distributed variational Inference (DVI-
GPLVM) [7]. As shown in Table 3, our DGPseq out-
performs DVI-GPLVM in terms of accuracy with a
comparable amount of training time (considering that
their reported timing was parallelized while our imple-
mentation is currently serial). GPso outperforms both
DVI-GPLVM and our DGPseq on this dataset, how-
ever as noted in [7], the primary purpose here is to
demonstrate the scalability of the approach. These re-
sults demonstrate the ability of our approach to scale
to both large and high dimensional datasets.

2.3 Further Comparison for Extensions

The heteroscedastic GPs and multi-task GPs have
been well studied in the GP community [8, 9, 10,
11, 12]. Hence, we use the benchmark heteroscedas-
tic motorcycle dataset [13] and the multi-output Jura
dataset [12] in order to compare with state-of-the-art
approaches in these two domains.

2.3.1 Comparison with State-of-the-art
Heteroscedastic GP Approaches

We use a benchmark motorcycle dataset [13] to eval-
uate heteroscedasticity. This data consists of 94
time/acceleration pairs, where there are three noise re-
gions including a flat low noise region, a curved region

Methods RMSE MNLP Train T(s)
GP 22.81±3.96 9.22±0.34 0.24±0.07

NGP 22.80±3.95 9.22±0.33 0.45±0.09
WGP 22.88±4.18 8.73±0.90 1.79±0.19

MLHGP 22.89±3.60 8.44±1.07 1.03±0.22
VHGP 22.88±3.76 8.45±0.41 1.95±0.28

our HGPseq 22.79±3.98 8.25±0.52 0.93±0.05

Table 4: Comparison with State-of-the-art Het-
eroscedastic GP Approaches (Motorcycle Data).

and a flat high noise region [14].

We compare our HGPseq with a number of state-of-
the-art heteroscedastic GP approaches. Namely, the
standard GP with ARD kernel (GP); the standard GP
with the non-stationary kernel (NGP) compounded by
ARD kernel, neural network kernel and linear kernel
[15]; warped GP (WGP) [16]; most likely heteroscedas-
tic GP (MLHGP) [8]; variational heteroscedastic GP
(VHGP) [9].

For each of five date partitions, 60/34 data pairs are
used for training/test. For our HGPseq, Np = 100 and
NAC is the size of training set (as we did not use sparsi-
fication). The number of training episodes is two. The
average results in Table 4 show that our HGPseq out-
performs other GP approaches with a better MNLP
and a competitive NMSE & training time. Addition-
ally, we evaluate the posterior of the motorcycle data
by using our HGPseq with the same setting before. As
shown in Fig. 10, our HGPseq outperforms the stan-
dard GP due to the heteroscedastic noise modelling.

2.3.2 Comparison with State-of-the-art
Multi-Task GP Approaches

We choose a benchmark Jura data8 to show our
comparison with state-of-the-art multi-task GP ap-
proaches. In the Jura dataset, the input is a 2D loca-
tion and the output is the measurement of cadmium,

8http://home.comcast.net/ pgoovaerts/book.html
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Data Methods RMSE MNLP Train T(s)

Parkinsons
GPso 9.33 ±0.15 7.45 ±0.02 37±2

DGPvar 9.26±0.41 8.51±1.35 33486±1370
our DGPseq 8.86±0.23 7.23±0.08 546±18

Table 2: DGP as Regressor (Parkinsons Data): Prediction Error & Training Efficiency.

Methods MAE Train T(s)
GP 0.5739±0.0003 74

CMOGP 0.4552±0.0013 784
SLFM 0.4578±0.0025 792
GPRN 0.4040±0.0006 1040

GPRN-NPV1 0.4147±0.0001 130
our DGPseq 0.4150±0.0061 21

Table 5: Comparison with State-of-the-art Multi-task
GPs (the Jura dataset). The results of GP, CMOGP,
SLFM, GPRN are from [12].

nickel and zinc concentrations. The total number of
data pairs is 359, where 100 measurements of cadmium
are missing. We follow the experimental settings of
[12] and use mean absolute error (MAE) for evalua-
tion, choose the number of latent layers L = 1, the
dimensionality of latent layers D = 2. Both the num-
ber of particles and the size of active set in our DGPseq

are 200. We run our DGPseq five times for one train-
ing episode and compare the results with the standard
GP, convolved multiple outputs GP (CMOGP)[11],
semiparametric latent factor model (SLFM)[10], GP
regression networks (GPRN)[12], and GPRN with
nonparametric variational inference (mode 1, GPRN-
NPV1) [17]. As shown in Table 5, our DGPseq achieves
a competitive MAE but with much less training time
indicating that our sequential inference is efficient and
able to capture the correlations between multiple out-
puts.
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Figure 5: DGP as Deep Dynamical Prior (the motion dataset). Particle Estimation of y at the time steps 140,
700, 1200, 1570, 2070 where the number of particles Np is 100.
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Figure 8: Dimensionality Reduction for Image Reconstruction (Face Data): the reconstruction error as a function
of the number of episodes. Note that there is no sequential inference & hyperparameter learning episode in
DGPvar. The results of DGPvar are lines. The error bar is mean±standard deviation.
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Figure 9: Dimensionality Reduction for Image Reconstruction (Face Data): the reconstruction image comparison
at the time step 50:50:1900.
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Figure 10: Heteroscedastic GP Modeling (Posterior of Motorcycle Data). In Plot10(a), the observations are
black crosses, the mean of our HGPseq / GP are pink / blue lines, 95% confidence interval of our HGPseq / GP
are pink / blue dashed lines.


