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8 Appendix

A Proof of Theorem 1

We first introduce the following lemma.

Lemma 3. When the rows of X1, . . . ,Xt are independent subgaussian random vectors, with mean zero, covariance Σ1, ...,Σt ,
respectively. Let

CM = max
t∈[m]

max
j∈[p]

(
MT

t

(
XT

t Xt

n

)
Mt

)

j j
.

Then with probability at least 1−2mpexp(−cn)−2mp−2 for some constant c, we have

CM ≤ 2max
t∈[m]

max
j∈[p]

(Σ−1
t ) j j.

Proof. As shown in Theorem 2.4 of [25], Σ−1
t will be a feasible solution for the problem of estimating Mt . Since we’re

minimizing (MT
t Σ̂tMt) j j, we must have

max
j∈[p]

(MT
t Σ̂tMt) j j ≤max

j∈[p]
(Σ−1

t Σ̂tΣ−1
t ) j j.

Based on the concentration results of sub-exponential random variable [26], also Lemma 3.3 of [17], we know with
probability at least 1−2pexp(−cn) for some constant c, we have

max
j∈[p]

(Σ−1
t Σ̂tΣ−1

t ) j j ≤ 2max
j∈[p]

(Σ−1
t ) j j.

Take an union bound over t ∈ [m], we obtain with probability at least 1−2mpexp(−cn),

CM ≤max
t∈[m]

max
j∈[p]

(MT
t Σ̂tMt) j j ≤max

t∈[m]
max
j∈[p]

(Σ−1
t Σ̂tΣ−1

t ) j j ≤ 2max
t∈[m]

max
j∈[p]

(Σ−1
t ) j j.

Now we are ready to prove Theorem 1, recall the model assumption

yt = Xtβ∗t + εt , t = 1, . . . ,m, (17)

and the debiased estimation

β̂u
t = β̂t +n−1MtXT

t (yt −Xt β̂t), (18)

we have

β̂u
t =β̂t +

1
n

MtXT
t (Xtβ∗t −Xt β̂t)+

1
n

MtXT
t εt

=β∗t +(Mt Σ̂t − I)(β∗t − β̂t)+
1
n

MtXT
t εt .

For the term (Mt Σ̂t − I)(β∗t − β̂t), define

Cµ = 10eσ4
X

√
λmax

λmin
,

we have the following bound

‖(Mt Σ̂t − I)(β∗t − β̂t)‖∞ ≤max
j
‖Σ̂tmt j− e j‖∞‖β∗t − β̂t‖1

≤PCµ

√
log p

n
· 16A

κ
σ|S|

√
log p

n

=
16ACµσ|S| log p

κn
.

(19)
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Noticed that

n−1MtXT
t εt ∼N

(
0,

σ2Mt Σ̂tMt
T

n

)
.

Our next step uses a result on the concentration of χ2 random variables. For any coordinate j, we have

m

∑
i=1

(
n−1eT

j MtXT εt
)2 ≤ C2

Mσ2

n

m

∑
i=1

ξ2
i ,

where (ξi)i∈[m] are standard normal random variables. Using Lemma 9 with a weight vector

v =
(

C2
Mσ2

n
,
C2

Mσ2

n
, . . . ,

C2
Mσ2

n

)

and choosing t =
√

m+ log p√
m , we have

P





(
C2

Mσ2

n

)
∑m

i=1 ξ2
i

√
2m
(

C2
Mσ2

n

) −
√

m
2
>
√

m+
log p√

m




≤ 2exp


−

(√
m+ log p√

m

)2

2+2
√

2(1+ log p
m )


 .

A union bound over all j ∈ [p] gives us that with probability at least 1− p−1

∑
i∈[m]

(
n−1eT

j MtXT εt
)2 ≤ 3m

(
C2

Mσ2

n

)
+
√

2log p
(

C2
Mσ2

n

)
, ∀ j ∈ [p]. (20)

Combining (19) and (20), we get the following estimation error bound:

‖B̂ j−B j‖2 =

√
∑

i∈[m]

(
[Mt Σ̂t − I)(β∗t − β̂t)] j +

[
n−1MtXT

t εt
]

j

)2

≤
√

∑
i∈[m]

2
(
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2
j +
[
n−1MtXT

t εt
]2

j

)

≤

√√√√ ∑
i∈[m]

(
512A2C2

µσ2|S|2(log p)2

κ2n2

)
+6m

(
C2

Mσ2

n

)
+2
√

2log p
(

C2
Mσ2

n

)

=
σ√
n

√
512A2C2

µm|S|2(log p)2

κ2n
+6C2

Mm+2
√

2C2
M log p

≤91Cµσ|S|√m log p
κn

+3CMσ
√

m+ log p
n

,

(21)

where the first inequality uses the fact (a+b)2≤ 2a2+2b2, and the second inequality uses (19) and (20)), the last inequality
uses the fact that

√
a+b≤√a+

√
b. For every variable j 6∈ S, we have

‖B̂ j‖2 ≤
91Cµσ|S|√m log p

κn
+3CMσ

√
m+ log p

n
.

plug in κ≥ 1
2 λmin, Cµ = 10eσ4

X

√
λmax
λmin

,CM ≤ 2K, we obtain

‖B̂ j‖2 ≤
1820eσ4

X λ1/2
maxσ|S|√m log p

λ3/2
minn

+6Kσ
√

m+ log p
n

.

From (21) and the choice of Λ∗, we see that all variables not in S will be excluded from Ŝ as well. For every variable j ∈ S,
we have

‖B̂ j‖2 ≥ ‖B j‖2−‖B̃ j−B j‖2 ≥ 2Λ∗−Λ∗ = Λ∗.

Therefore, all variables in S will correctly stay in Ŝ after the group hard thresholding.
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B Proof of Corollary 2

From Theorem 2 we have that Ŝ(Λ∗)⊆ S and

‖B̃ j−B j‖2 ≤
1820eσ4

X λ1/2
maxσ|S|√m log p

λ3/2
minn

+6Kσ
√

m+ log p
n

, (22)

with high probability. Summing over j ∈ S, we obtain the `1/`2 estimation error bound. For the prediction risk bound, we
have

1
nm

m

∑
t=1
‖Xt(β̃t −β∗t )‖2

2 ≤
λmax

m

m

∑
i=1
‖β̃t −β∗t ‖2

2

=
λmax

m

p

∑
j=1
‖B̃ j−B j‖2

2.

Using (22) and the fact that B̃−B is row-wise |S|-sparse, we obtain the prediction risk bound.

C Fixed design analysis

In this section, we present our theoretical results for the DSML procedure for fixed design, we will state the results without
proof since the process is essentially the same as the case for random design. The results and comparisons are summarized
in Table 3 and 4. We start by describing assumptions that we make on the model in (1). We assume the following condition
on the design matrices {Xt}m

t=1.

Approach Communication Assumptions Min signal strength Strength type

Lasso 0
Mutual Incoherence
Sparse Eigenvalue

√
log p

n Element-wise

Group lasso O(np)
Mutual Incoherence
Sparse Eigenvalue

√
1
n

(
1+ log p

m

)
Row-wise

DSML O(p)
Generalized Coherence
Restricted Eigenvalue

√
1
n

(
1+ log p

m

)
+ |S| log p

n Row-wise

Table 3: Conditions on the design matrix, and corresponding lower bound on coefficients required to ensure support recovery with p
variables, m tasks, n samples per task and a true support of size |S|.

Approach Assumptions `1/`2 estimation error Prediction error

Lasso Restricted Eigenvalue
√
|S|2 log p

n
|S| log p

n

Group lasso Restricted Eigenvalue |S|√
n

√
1+ log p

m
|S|
n

(
1+ log p

m

)

DSML
Generalized Coherence
Restricted Eigenvalue

|S|√
n

√
1+ log p

m + |S|
2 log p
n

|S|
n

(
1+ log p

m

)
+ |S|

3(log p)2

n2

Table 4: Conditions on the design matrix, and comparison of parameter estimation errors and prediction errors. The DSML guarantees
improve over Lasso and have the same leading term as the Group lasso as long as m < n/(|S|2 log p).

A1 (Restricted Eigenvalues): Let C (s,L) = {∆ ∈ Rp | ‖∆Uc‖1 ≤ L‖∆U‖1,U ⊆ [p], |U | ≤ s}. There exists a constant κ > 0
such that

min
∆∈C (|S|,L)

∆T Σ̂t∆≥ κ‖∆U‖2
2, t = 1, . . . ,m.

There exists a constant φmax < ∞ such that

max
∆∈Rp

∆T
S Σ̂t∆S < φmax‖∆S‖2

2.

The above assumption is commonly assumed in the literature in order to establish consistent estimation in high-dimensions
[36]. A1 imposes restrictions directly on the sample covariances Σ̂t , however, it is well known that the assumption will
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hold with high-probability when rows of Xt are i.i.d. sub-gaussian or sub-exponential random vectors with population
covariance satisfying A1 [37, 38].

We will also need the following notion of coherence of the design matrices.

Definition 4 (Generalized Coherence). For matrices X ∈ Rn×p and M = (m1, . . . ,mp) ∈ Rp×p, let

µ(X ,M) = max
j∈[p]
‖Σm j− e j‖∞

be the generalized coherence parameter between X and M, where Σ = n−1XT X. Furthermore, let µ∗ =
mint∈[m] minM∈Rp×p µ(Xt ,M) be the minimum generalized coherence.

This assumption is more relaxed than the mutual coherence parameter [39]. As shown in Theorem 2.4 of [25], µ(Xt ,Σ−1)≤
2
√

log(p)/n with high-probability when the rows of Xt are i.i.d. sub-gaussian vectors with covariance matrix Σ.

The following theorem is our main result, which is proved in appendix.

Theorem 5. Assume that A1 holds and that the generalized coherence condition satisfies µ∗ ≤Cµ

√
log p

n for some constant

Cµ. Suppose λ in (2) was chosen as λt = Aσ
√

log p
n with constant A >

√
2. Furthermore, suppose that the multi-task

coefficients in (1) satisfy the following bound on the signal strength

min
j∈S

√
∑

t∈[m]

(β∗t j)
2 ≥ 2σ√

n

√
512A2C2

µm|S|2(log p)2

κ2n
+6C2

Mm+2
√

2C2
M log p := 2Λ∗, (23)

where CM is a constant that only depends on {Mt}m
t=1. Then the support estimated by the master node satisfies Ŝ(Λ∗) = S

with probability at least 1−mp1−A2/2− p−1.

Based on Theorem 1, we have the following corollary that characterizes estimation error and prediction risk of DSML,
with the proof given in the appendix.

Corollary 6. Suppose the conditions of Theorem 5 hold. With probability at least 1−mp1−A2/2− p−1, we have

p

∑
j=1
‖B̃ j−B j‖2 ≤

|S|σ√
n

√
512A2C2

µ |S|2(log p)2

κ2n
+6C2

Mm+2
√

2C2
M log p

and

1
nm

m

∑
t=1
‖Xt(β̃t −β∗t )‖2

2 ≤
φmax|S|σ2

n

(
512A2C2

µm|S|2(log p)2

κ2n
+6C2

M +
2
√

2C2
M log p
m

)
.

D Collection of known results

For completeness, we first give the definition of subgaussian norm, details could be found at [26].

Definition 7 (Subgaussian norm). The subgaussian norm ‖X‖ψ2 of a subgaussian p-dimensional random vector X, is
defined as

‖X‖ψ2 = sup
x∈Sp−1

sup
q>1

q−1/2(E|〈X ,x〉|q)1/q,

where Sp−1 is the p-dimensional unit sphere.

We then define the restricted set C (|S|,3) as

C (|S|,3) = {∆ ∈ Rp|‖∆Uc‖1 ≤ 3‖∆U‖1,U ⊂ [p], |U | ≤ |S|}.

The following proposition is a simple extension of Theorem 6.2 in [36].
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Proposition 8. Let

λt = Aσ
√

log p
n

with some constant A > 2
√

2 be the regularization parameter in lasso. With probability at least 1−mp1−A2/8,

‖β̂t −β∗t ‖1 ≤
16A
κ′

σ|S|
√

log p
n

,

where κ is the minimum restricted eigenvalue of design matrix X1, . . . ,Xm:

κ = min
t∈[m]

min
∆∈C (|S|,3)

∆T
(

XT
t Xt
n

)
∆

‖∆S‖2
2

.

Proof. Using Theorem 6.2 in [36] and take an union bound over 1, . . . ,m we obtain the result.

Lemma 9 (Equation (27) in [40]; Lemma B.1 in [8]). Let ξ1,ξ2, ...ξm be i.i.d. standard normal random variables, let
v = (v1, ...,vm) 6= 0, ηv =

1√
2‖v‖2 ∑m

i=1(ξ2
i −1)vi and m(v) = ‖v‖∞

‖v‖2 . We have, for all t > 0, that

P(|ηv|> t)≤ 2exp
(
− t2

2+2
√

2tm(v)

)
.

The next lemma relies on the generalized coherence parameter:

Definition 10 (Generalized Coherence). For matrices X ∈ Rn×p and M = (m1, . . . ,mp) ∈ Rp×p, let

µ(X ,M) = max
j∈[p]
‖Σm j− e j‖∞

be the generalized coherence parameter between X and M, where Σ = n−1XT X. Furthermore, let µ∗ =
mint∈[m] minM∈Rp×p µ(Xt ,M) be the minimum generalized coherence.

Lemma 11 (Theorem 2.4 in [25]). When Xt are drawn from subgaussian random vectors with covariance matrix Σt , and
XtΣ
−1/2
t has bounded subgaussian norm ‖XtΣ

−1/2
t ‖ψ2 ≤ σX . When n ≥ 24log p, then with probability at least 1− 2p−2,

we have

µ(Xt ,Σ−1
t )< 10eσ4

X

√
λmax

λmin

√
log p

n
.

For subgaussian design, we also have the following restricted eigenvalue condition [38, 17].

Lemma 12. When Xt are drawn from subguassian random vectors with covariance matrix Σt , and bounded subgaussian
norm σX . When n ≥ 4000s′σX log

(
60
√

2ep
s′

)
where s′ =

(
1+30000 λmax

λmin

)
|S|, and p > s′, then with probability at least

1−2exp(−n/4000C4
κ), for any vector ∆ ∈ C (|S|,3) where we have

∆T
(

XT
t Xt

n

)
∆≥ 1

2
λmin‖∆S‖2

2.


