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Abstract

We consider the problem of distributed multi-
task learning, where each machine learns a sepa-
rate, but related, task. Specifically, each machine
learns a linear predictor in high-dimensional
space, where all tasks share the same small sup-
port. We present a communication-efficient es-
timator based on the debiased lasso and show
that it is comparable with the optimal centralized
method.

1 Introduction

Learning multiple tasks simultaneously allows transferring
information between related tasks and for improved perfor-
mance compared to learning each tasks separately [1]. It
has been successfully exploited in, for example, spam fil-
tering [2], web search [3], disease prediction [4] and eQTL
mapping [5].

Tasks could be related to each other in a number of ways. In
this paper, we focus on the high-dimensional multi-task set-
ting with joint support where a few variables are related to
all tasks, while others are not predictive [6, 7, 8]. The stan-
dard approach is to use the mixed `1/`2 or `1/`∞ penalty,
as such penalties encourage selection of variables that af-
fect all tasks. Using a mixed norm penalty leads to better
performance in terms of prediction, estimation and model
selection compared to using the `1 norm penalty, which is
equivalent to considering each task separately.

Shared support multi-task learning is generally considered
in a centralized setting where data from all tasks are avail-
able on a single machine, and the estimator is computed
using a standard single-thread algorithm. With the growth
of modern massive data sets, there is a need to revisit multi-
task learning in a distributed setting, where tasks and data
are distributed across machines and communication is ex-
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pensive. In particular, we consider a setting where each
machine holds one “task” and its related data.

We develop an efficient distributed algorithm for multi-task
learning that exploits shared sparsity between tasks. Our
algorithm (DSML) requires only one round of communi-
cation between the workers and the central node, involving
each machine sending a vector to the central node and re-
ceiving back a support set. Despite the limited communica-
tion, our algorithm enjoys the same theoretical guarantees
as the centralized approach under mild conditions. This is
summarized in Table 1, which compares the prediction and
parameter error guarantees of the Lasso run locally on each
machine, the communication-intensive group Lasso proce-
dure, and our communication-efficient DSML.

2 Distributed Learning and Optimization

With the increase in the volume of data used for machine
learning, and the availability of distributed computing re-
sources, distributed learning and the use of distributed opti-
mization for machine learning has received much attention.

Most of work on distributed optimization focuses on “con-
sensus problems”, where each machine holds a different
objective fi(β) and the goal is to communicate between
the machines to jointly optimize the average objective
1/m∑i fi(β), that is, to find a single vector β that is good for
all local objectives [9]. The difficulty of consensus prob-
lems is that the local objectives might be rather different,
and, as a result, one can obtain lower bounds on the amount
of communication that must be exchanged in order to reach
a joint optimum. In particular, the problem becomes harder
as more machines are involved.

The consensus problem has also been studied in the
stochastic setting [10], in which each machine receives
stochastic estimates of its local objective. Thinking of each
local objective as a generalization error w.r.t. a local dis-
tribution, we obtain the following distributed learning for-
mulation [11]: each machine holds a different source dis-
tribution Di from which it can sample, and this distribu-
tion corresponds to a different local generalization error
fi = E(X ,y)∼Di [loss(β,X ,y)]. The goal is to find a single
predictor β that minimizes the average generalization er-
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Approach Communication `1/`2 estimation error Prediction error

Local lasso 0
√
|S|2 log p

n
|S| log p

n

Group lasso O(np) |S|√
n

√
1+ log p

m
|S|
n

(
1+ log p

m

)

DSML O(p) |S|√
n

√
1+ log p

m + |S|
2 log p
n

|S|
n

(
1+ log p

m

)
+ |S|

3(log p)2

n2

Table 1: Comparison of scaling of parameter estimation errors and prediction errors, for well-conditioned subgaussian feature vectors,
with m tasks, n samples per task, p features of which |S| are relevant—see Section 5 for dependence on other parameters. DSML
improves over Lasso and has the same leading term as the Group lasso as long as m . n/(|S|2 log p).

ror, based on samples sampled at the local nodes. Again,
the problem becomes harder when more machines are in-
volved and one can obtain lower bounds on the amount of
communication required—Balcan et al. [11] carry out such
an analysis for several hypothesis classes.

A more typical situation in machine learning is one in
which there is only a single source distribution D , and data
from this single source is distributed randomly across the
machines (or equivalently, each machine has access to the
same source distribution Di = D). Such a problem can
be reduced to a consensus problem by performing consen-
sus optimization of the empirical errors at each machine.
However, such an approach ignores several issues: first,
the local empirical objectives are not arbitrarily different,
but rather quite similar, which can and should be taken ad-
vantage of in optimization [12]. Second, since each ma-
chine has access to the source distribution, there is no lower
bound on communication—an entirely “local” approach is
possible, were each machine completely ignores other ma-
chines and just uses its own data. In fact, increasing the
number of machines only makes the problem easier (in that
it can reduce the runtime or number of samples per machine
required to achieve target performance), as additional ma-
chines can always be ignored. In such a setting, the other
relevant baseline is the “centralized” approach, where all
data is communicated to a central machine which computes
a predictor centrally. The goal here is then to obtain per-
formance close to that of the “centralized” approach (and
much better than the “local” approach), using roughly the
same number of samples, but with low communication and
computation costs. Such single-source distributed prob-
lems have been studied both in terms of predictive perfor-
mance [13, 14] and parameter estimation [15, 16, 17].

In this paper we suggest a novel setting that combines as-
pects of the above two settings. On one hand, we as-
sume that each machine has a different source distributions
Di(X ,y), corresponding to a different task, as in consensus
problems and in [11]. For example, each machine serves a
different geographical location, or each is at a different hos-
pital or school with different characteristics. But if indeed
there are differences between the source distributions, it is
natural to learn different predictors βi for each machine, so
that βi is good for the distribution typical to that machine.

In this regard, our distributed multi-task learning problem
is more similar to single-source problems, in that machines
could potentially learn on their own given enough samples
and enough time. Furthermore, availability of other ma-
chines just makes the problem easier by allowing transfer
between the machine, thus reducing the sample complexity
and runtime. The goal, then, is to leverage as much trans-
fer as possible, while limiting communication and runtime.
As with single-source problems, we compare our method to
the two baselines, where we would like to be much better
than the “local” approach, achieving performance nearly as
good as the “centralized” approach, but with minimal com-
munication and efficient runtime.

Related Work To the best of our knowledge, the only
previous discussion of distributed multi-task learning is
[18], which considered a different setting with an almost or-
thogonal goal: a client-server architecture, where the server
collects data from different clients, and sends sufficient in-
formation that might be helpful for each client to solve its
own task. Their emphasis is on preserving privacy, but their
architecture is communication-heavy as the entire data set
is communicated to the central server, as in the “central-
ized” base line. On the other hand, we are mostly con-
cerned with communication costs, but, for the time being,
do not address privacy concerns.

In terms of distributed methods for uncovering shared spar-
sity, Baron et al. [19] propose a “group orthogonal match-
ing pursuit”-type algorithm. Their algorithm (DCS-SOMP)
can be naturally implemented in a distributed way. How-
ever, (i) they consider only a noiseless setting, whereas we
allow for noise; (ii) they do not establish any guarantees
for DCS-SOMP, presenting only empirical results; and (iii)
they require O(|S|) rounds of communication, with overall
communication O(|S|p) per machine, whereas our DSML
procedure requires only a single round and O(p) commu-
nication.

3 Preliminaries

We consider the following multi-task linear regression
model with m tasks:

yt = Xtβ∗t + εt , t = 1, . . . ,m, (1)
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where Xt ∈ Rnt×p, yt ∈ Rnt , and εt ∼ N(0,σ2
t I) ∈ Rnt is a

noise vector, and β∗t is the unknown vector of coefficients
for the task t. For notation simplicity we assume each task
has equal sample size and the same noise level, that is, we
assume, n1 = n2 = . . . = n and σ1 = σ2 = . . . = σ. We
will be working in a high-dimensional regime with p pos-
sibly larger than n, however, we will assume that each β∗t
is sparse, that is, few components of β∗t are different from
zero. Furthermore, we assume that the support between
the tasks is shared. In particular, that support(β∗t ) = { j ∈
[p] : βt j 6= 0} ⊂ S, with s = |S| � n. Suppose the data sets
(X1,y1), . . . ,(Xm,ym) are distributed across machines, our
goal is to estimate {β∗t }m

t=1 as accurately as possible, while
maintaining low communication cost.

The lasso estimate for each task t is given by:

β̂t = argmin
βt

1
n
‖yt −Xtβt‖2

2 +λt‖βt‖1. (2)

The multi-task estimates are given by the joint optimiza-
tion:

{β̂t}m
t=1 = arg min

{βt}mt=1

1
mn ∑

t=1
‖yt −Xtβt‖2

2

+λpen({βt}m
t=1), (3)

where pen({βt}m
t=1) is the regularizaton that promote group

sparse solutions. For example, the group lasso penalty uses
pen({βt}m

t=1) = ∑ j∈[p]
√

∑t∈m β2
t j [20], while the iCAP

uses pen({βt}m
t=1) = ∑ j∈[p] maxt=1,...,m |βt j| [21, 22]. In a

distributed setting, one could potentially minimize (3) us-
ing a distributed consensus procedure (see Section 2), but
such an approach would generally require multiple rounds
of communication. Our procedure, described in the next
section, lies in between the local lasso (2) and centralized
estimate (3), requiring only one round of communication to
compute, while still ensuring much of the statistical bene-
fits of using group regularization.

4 Methodology

In this section, we detail our procedure for performing esti-
mation under model in (1). Algorithm 1 provides an outline
of the steps executed by the worker nodes and the master
node, which are explained in details below.

Recall that each worker node contains data for one task.
That is, a node t contains data (Xt ,yt). In the first step,
each worker node solves a lasso problem locally, that is, a
node t minimizes the program in (2) and obtains β̂t . Next,
a worker node constructs a debiased lasso estimator β̂u

t by
performing one Newton step update on the loss function,
starting at the estimated value β̂t :

β̂u
t = β̂t +n−1MtXT

t (yt −Xt β̂t), (4)

Algorithm 1: DSML:Distributed debiased Sparse Multi-
task Lasso.
Workers:
for t = 1,2, . . . ,m do

Each worker obtains β̂t as a solution to a local lasso in
(2);
Each worker obtains β̂u

t the debiased lasso estimate in
(4) and sends it to the master;
if Receive Ŝ(Λ) from the master then

Calculate final estimate β̃t in (6).
end

end
Master:
if Receive {β̂u

t }m
t=1 from all workers then

Compute Ŝ(Λ) by group hard thresholding in(5) and
send the result back to every worker.

end

where n−1XT
t (yt−Xt β̂t) is a subgradient of the loss and the

matrix Mt ∈ Rp×p serves as an approximate inverse of the
Hessian. The idea of debiasing the lasso estimator was in-
troduced in the recent literature on statistical inference in
high-dimensions [23, 24, 25]. By removing the bias intro-
duced through the `1 penalty, one can estimate the sam-
pling distribution of a component of β̂u

t and make inference
about the unknown parameter of interest. In our paper,
we will also utilize the sampling distribution of the debi-
ased estimator, however, with a different goal in mind. The
above mentioned papers proposed different techniques to
construct the matrix M. Here, we adopt the approach pro-
posed in [25], as it leads to the weakest assumption on the
model in (1): each machine uses a matrix Mt = (m̂t j)

p
j=1

with rows:

m̂t j = arg min
m j∈Rp

mT
j Σ̂tm j

s.t. ‖Σ̂tm j− e j‖∞ ≤ µ.

where e j is the vector with j-th component equal to 1 and
0 otherwise and Σ̂t = n−1XT

t Xt .

After each worker obtains the debiased estimator β̂u
t , it

sends it to the central machine. After debiasing, the esti-
mator is no longer sparse and as a result each worker com-
municates p numbers to the master node. It is at the mas-
ter where shared sparsity between the task coefficients gets
utilized. The master node concatenates the received esti-
mators into a matrix B̂ = (β̂u

1, β̂
u
2, ..., β̂

u
m). Let B̂ j be the j-th

row of B̂. The master performs the hard group thresholding
to obtain an estimate of S as

Ŝ(Λ) = { j | ‖B̂ j‖2 > Λ}. (5)

The estimated support Ŝ(Λ) is communicated back to each
worker, which then use the estimate of the support to filter
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their local estimate. In particular, each worker produces the
final estimate:

β̃t j =

{
β̂u

t j if j ∈ Ŝ(Λ)
0 otherwise.

(6)

Extension to multitask classification. DSML can be
generalized to estimate multi-task generalized linear mod-
els. We be briefly outline how to extend DSML to a multi-
task logistic regression model, where ytk ∈ {−1,1} and
∀k = 1, . . . ,n, t = 1, . . . ,m:

P(ytk|Xtk) =
exp
( 1

2 ytkXtkβ∗t
)

exp
(
− 1

2 ytkXtkβ∗t
)
+ exp

( 1
2 ytkXtkβ∗t

) . (7)

First, each worker solves the `1-regularized logistic regres-
sion problem

β̂t = argmin
βt

1
n ∑

k∈[n]
log(1+ exp(−ytkXtkβt))+λt‖βt‖1.

Let Wt ∈ Rn×n be a diagonal weighting matrix, with a k-th
diagonal element

Wt(kk) =
1

1+ exp(−Xtkβ̂t)
· exp(−Xtkβ̂t)

1+ exp(−Xtkβ̂t)
,

which will be used to approximately invert the Hessian ma-
trix of the logistic loss. The matrix Mt = (m̂t j)

p
j=1, which

serves as an approximate inverse of the Hessian, in the case
of logistic regression can be obtained as a solution to the
following optimization problem:

m̂t j = arg min
mt j∈Rp

mT
t jXt

TWtXtmt j

s.t. ‖n−1XT
t WtXtmt j− e j‖∞ ≤ µ.

Finally, the debiased estimator is obtained as

β̂u
t = β̂t +

1
n

MtXt
T
(

1
2
(yt +1)−

(
1+ exp(−Xt β̂t)

)−1
)
,

and then communicated to the master node. The rest of
procedure is as described before.

5 Theoretical Analysis

In this section, we present our main theoretical results for
the DSML procedure described in the previous section. We
start by describing assumptions that we make on the model
in (1). We analyze here the well-specified random model,
i.e. when samples are generated by the model (1), with rows
of Xt drawn from some sub-Gaussian distribution (possi-
bly a different distribution for each task). In the Appendix
we also analyze the “fixed-design” setting, i.e. in terms of
properties of the sample matrices Xt .

We assume rows of Xt are drawn from a subgaussian distri-
bution with covariance matrix E[n−1XT

t Xt ] = Σt .

We assume the distribution of rows of Xt for each task have
bounded subgaussian norm maxt maxk ‖Xtk‖ψ2 ≤ σX [26].
Let Σt be the covariance for task t. We rely on upper and
lower bounds on the eigenvalues of the covariances Σt of
the data for each task t: ∀tλminI � Σt � λmaxI. Our analysis
is based on assuming λmin > 0. We also rely on a bound on
the elements of precision matrices, ∀t

∣∣Σ−1
t
∣∣
∞ ≤ K. We can

always take K = 1/λmin, but we often have a much tighter
bound.

The following theorem is our main result, which is proved
in appendix.

Theorem 1. With the assumptions and notation above, if

λ in (2) is chosen as λt = 4σ
√

log p
n , and the coefficients in

(1) satisfy

min
j∈S

√
∑

t∈[m]

(β∗t j)
2 ≥6Kσ

√
m+ log p

n

+
Cσ4

X λ1/2
maxσ|S|√m log p

λ3/2
minn

:= 2Λ∗,

(8)

where C < 5000 is some numeric constant, then the sup-
port estimated by the master node satisfies Ŝ(Λ∗) = S with
probability at least 1−mp−1.

Based on Theorem 1, we have the following corollary that
characterizes the parameter and prediction errors of DSML,
with the proof given in the appendix:

Corollary 2. With the same choice of λt , with probability
at least 1−mp−1, we have

p

∑
j=1
‖B̃ j−B j‖2 ≤6K|S|σ

√
m+ log p

n

+
Cσ4

X λ1/2
maxσ|S|2√m log p

λ3/2
minn

,

∑m
t=1(EXt (Xt β̃t −Xtβ∗t ))2

nm
≤36K2|S|σ2

n

(
1+

log p
m

)

+
C2σ8

X λmaxσ2|S|3(log p)2

λ3
minn2

.

Let us compare these guarantees to the group lasso. For
DSML Corollary 2 yields:

1√
m

p

∑
j=1
‖B̃ j−B j‖2 .

|S|√
n

√
1+

log p
m

+
|S|2 log p

n
, (9)

where a(n) & b(n) means that for some c,N, a(n) >
c · b(n),∀n > N. When using the group lasso, the re-
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Approach Min signal strength Strength type

Lasso
√

log p
n Element-wise

Group lasso
√

1
n

(
1+ log p

m

)
Row-wise

DSML
√

1
n

(
1+ log p

m

)
+
|S| log p

n Row-wise

Table 2: Lower bound on coefficients required to ensure support
recovery with p variables, m tasks, n samples per task and a true
support of size |S|.

stricted eigenvalue condition is sufficient for obtaining er-
ror bounds and following holds for the group lasso [Corol-
lary 4.1 of 8]:

1√
m

p

∑
j=1
‖B̃ j−B j‖2 ≤

32
√

2σ|S|
κ
√

n

√(
1+

2.5log p
m

)

. |S|√
n

√
1+

log p
m

, (10)

which is min-max optimal (up to a logarithmic factor).
DSML matches this bound when n & m|S|2(log p)2

(m+log p) . Similarly
for prediction DSML attains:

1
nm

m

∑
t=1

(EXt (Xt β̃t −Xtβ∗t ))
2 . |S|σ

2

n

(
1+

log p
m

)
(11)

+
σ2|S|3(log p)2

n2 , (12)

which in the same regime matches the group lasso minimax
optimal rate:

1
nm

m

∑
t=1

(EXt (Xt β̃t −Xtβ∗t ))
2

≤ 128|S|σ2

κn

(
1+

2.5log p
m

)

. |S|σ
2

n

(
1+

log p
m

)
. (13)

In both cases, as long as m is not too large, we have a linear
improvement over Lasso, which corresponds to (10) and
(13) with m = 1.

The discussion of support recovery is more complex as
typically more stringent conditions (for example, mutual
incoherence or irrepresentable condition) are imposed on
Xt for lasso and group lasso to achieve sparsistency. See
van de Geer and Bühlmann [27] for an extensive discus-
sion of different conditions used in the literature. In any
case, we can also compare the minimal signal strength re-
quired for DSML to that required by lasso and group lasso.
Let B= [β1,β2, . . . ,βm]∈Rp×m be the matrix of true coeffi-
cients. Simplifying (8), we have that our procedure requires

the minimum signal strength to satisfy

min
j∈S

1√
m
‖B j‖2 &

√
1
n

(
1+

log p
m

)
+
|S| log p

n
. (14)

For the centralized group lasso, the standard analysis as-
sumes a stronger condition on the data, namely that Xt satis-
fies mutual incoherence with parameter α and sparse eigen-
value condition [8] (see van de Geer and Bühlmann [27] for
an extensive discussion of different conditions used in the
literature to guarantee support recovery). Under this con-
dition, group lasso recovers the support if [Corollary 5.2 of
8]:

min
j∈S

1√
m
‖B j‖2 ≥

4
√

2Cα,κσ√
n

√
1+

2.5log p
m

&
√

1
n

(
1+

log p
m

)
. (15)

where Cα,κ depends only on the mutual incoherence and
sparse eigenvalue of Xt . Under the irrepresentable condi-
tion on Xt , which is weaker than the mutual incoherence
[27], the lasso requires the signal to satisfy [28, 29]:

min
t∈[m]

min
j∈S
|β∗t j| ≥Cγ,κσ

√
log p

n
&
√

log p
n

(16)

for some Cγ,κ, which depends only on the irrepresentable
condition and the sparse eigenvalue. Ignoring for the mo-
ment the differences in the conditions on the design ma-
trix, there are two advantages of the multitask group lasso
over the local lasso: (1) relaxing the signal strength require-
ment to a requirement on the average strength across tasks
(i.e. any single coefficient can be arbitrarily small, even
zero); and (2) a reduction by a factor of m on the log p
term. Similarly to the group lasso, DSML requires a lower
bound only on the average signal strength, not on any indi-
vidual coefficient. And as long as m� n, or more precisely
n & m|S|2(log p)2

κ2(m+log p) , DSML enjoys the same linear reduction in
the dominant term of the required signal strength, matching
the leading term of the group lasso bound. This is summa-
rized in Table 2.

To better elucidate the differences in conditions, in the Ap-
pendix, we carry out an analysis of DSML in a “fixed de-
sign” setting. We show that Theorem 1 and Corollary 2 for
fixed Xt , as long two conditions hold: generalized coher-
ence (a weakening of the mutual incoherence condition)
and restricted eigenvalue. These conditions are stronger
than what is required for only small parameter and pre-
diction error using the Lasso and Group Lasso (restricted
eigenvalue on its own is sufficient, not need for generalized
coherence), but similar and in a sense weaker than what is
required for support recovery. See the Appendix for precise
definitions and statements of the results.
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Figure 1: Hamming distance, estimation error, and prediction error for multi-task regression with p = 200. Top row: the
number of tasks m = 10. Sample size per tasks is varied. Bottom row: Sample size n = 50. Number of tasks m varied.

It might be interesting to ask why debiasing is needed,
and simple “local lasso” plus “group thresholding” will not
work. To see this, let us consider a simple case of “weak
signals group”: suppose there is a coordinate in the sup-
port S where signals for all models are weak, on the order

of O
(√

1
n

(
1+ log p

m

)
+ |S| log p

n

)
. The local lasso cannot

distinguish this weak signal from zeros, making it always
remove the coordinate from the support, if the estimator
wants to ensure removing all zero coordinates from the es-
timated support. In contrast, DSML will save this weak
signal, making the estimated support consistent. A con-
crete example illustrating the situation will be presented in
the experiments section.

6 Experimental results

Our first set of experiments is on simulated data. We gen-
erated synthetic data according to the model in (1) and
in (7). Rows of Xt are sampled from a mean zero multi-
variate normal with the covariance matrix Σ = (Σab)a,b∈[p],
Σab = 2−|a−b|. The data dimension p is set to 200, while
the number of true relevant variables s is set to 10. Non-
zero coefficients of β are generated uniformly from [0,1].
Variance σ2 is set to 1. Our simulation results are averaged
over 200 independent runs.

We investigate how performance of various procedures
changes as a function of problem parameters (n, p,m,s).
We compare the following procedures: i) local lasso, ii)
group lasso, iii) refitted group lasso, where a worker node
performs ordinary least squares on the selected support, iv)
iCAP, and v) DSML. The parameters for local lasso, group

lasso and iCAP were tuned to achieve the minimal Ham-
ming error in variable selection. For DSML, to debias the
output of local lasso estimator, we use µ =

√
log p/n. The

thresholding parameter Λ is also optimized to achive the
best variable selection performance. The simulation results
for regression are shown in Figure 1. In terms of support
recovery (measured by Hamming distance), Group lasso,
iCAP, and DSML all perform similarly and significantly
better than the local lasso. In terms of estimation error,
lasso perform the worst, while DSML and refitted group
lasso perform the best. This might be a result of bias re-
moval introduced by regularization. Since the group lasso
recovers the true support in most cases, refitting on it yields
the maximum likelihood estimator on the true support. It
is remarkable that DSML performs almost as well as this
oracle estimator.

Figure 2 shows the simulation results for classification.
Similar with the regression case, we make the following ob-
servations: i) The group sparsity based approaches, includ-
ing DSML, significantly outperform the individual lasso;
ii) In terms of Hamming variable selection error, DSML
performs slightly worse than group lasso and iCAP. While
in terms of estimation error and prediction error, DSML
performs much better than group lasso and icap. Given the
fact that group lasso recovers the true support in most cases,
refitted group lasso is equivalent to oracle maximum likeli-
hood estimator. It is remarkable that DSML only performs
slightly worse than refitted group lasso; iii) The advantage
of DSML, as well as group lasso over individual lasso, be-
comes more and more significant with the increase in num-
ber of tasks.
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Figure 2: Hamming distance, estimation error, and prediction error for multi-task classification with p = 200. Top row:
the number of tasks m = 10. Sample size per tasks is varied. Bottom row: Sample size n = 150. Number of tasks m varied.
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Figure 3: Comparison of DSML with “Local lasso +
thresholding” on a synthetic example.

To illustrate why debasing is necessary, and a naive “local
lasso + centralized thresholding” approach will not work,
we also performed a simple simulation with the following
setup: we divide support set S into a strong signal group
Ss⊂ S and a weak signal group Sw⊂ S, with the coefficients
of β in Ss generated uniformly from [0,1], while the ones
in Sw generated uniformly from [0,0.4]. We test this setting
on a multi-task regression problem with p = 100, the ham-
ming selection error was shown in Figure 3, selecting the
best regularization and thresholding parameter. We can see
that the “Local lasso + thresholding” approach only works
slightly better than lasso, while DSML improved signifi-
cantly on both.

We have also evaluated DSML on the following real world
data sets:

School. This is a widely used dataset for multi-task learn-
ing [30]. The goal is to predict the students’ performance
at London’s secondary schools. There are 27 attributes for
each student. The tasks are naturally divided according to
different schools. We only considered schools with at least
200 students, which results in 11 tasks.

Protein. The task is to predict the protein secondary struc-
ture [31]. We considered three binary classification tasks
here: coil vs helix, helix vs strand, strand vs coil. The
dataset consists of 24,387 instances in total, each with 357
features.

OCR. We consider the optical character recognition prob-
lem. Data were gathered by Rob Kassel at the MIT Spoken
Language Systems Group 1. Following [32], we consider
the following 9 binary classification task: c vs e, g vs y, g
vs s, m vs n, a vs g, i vs j, a vs o, f vs t, h vs n. Each image
is represented by 8×16 binary pixels.

MNIST. This is a handwritten digit recognition dataset 2.
Each image is represented by 784 pixels. We considered
the following 5 binary classification task: 2 vs 4, 0 vs 9, 3
vs 5, 1 vs 7, 6 vs 8.

USPS. This dataset consists handwritten images from en-
velopes by the U.S. Postal Service. We considere the fol-
lowing 5 binary classification task: 2 vs 4, 0 vs 9, 3 vs 5, 1
vs 7, 6 vs 8. Each image is represented by 256 pixels.

Vehicle. We considered the vehicle classification problem
in distributed sensor networks [33] with 3 binary classifica-

1http://www.seas.upenn.edu/˜taskar/ocr/
2http://yann.lecun.com/exdb/mnist/
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Figure 4: Comparison on real world datasets.

tion task: AAV vs DW, AAV vs noise, DW vs noise. There
are 98,528 instances in total, each instances is described by
50 acoustic features and 50 seismic features.

In addition to the procedures used in the previous section,
we also compare against the dirty model Jalali et al. [34],
as well as the centralized approach that first debias the
group lasso, then perform group hard thresholding. Tun-
ing parameters for these procedures were chosen based on
performance on held-out data set. All regularization or
thresholding parameters were tuned to be optimal using
a 20% held-out validation dataset. We vary the training
sample size as 10%, 30% and, 50% of the total data set
size and report the performance on the test set (normalized
Mean Squared Error for regression and classification error
for classification). Figure 4 shows the results. We have
the following general observations. Local lasso performs
the worst, which demonstrates that utilizing group sparsity
helps to improve the prediction performance. Our DSML
methods performs comparably with to the state-of-the-art
centralized approaches. Debiasing group lasso followed by
hard thresholding compares favorably to group lasso and
has similar performance to dirty model.

7 Discussion

We introduced and studied a shared-sparsity distributed
multi-task learning problem. We presented a novel
communication-efficient approach that required only one
round of communication and achieves provable guarantees
that compete with the centralized approach to leading or-
der up to a generous bound on the number of machines.

Main theoretical results were presented under the random
sub-Gaussian design, however, the proofs in the appendix
are based on fixed design assumptions, namely Restricted
Eigenvalue and Generalized Coherence conditions are im-
posed. These conditions are satisfied with high-probability
under the random design. Furthermore, such conditions,
or other similar conditions, are required for support recov-
ery, but much weaker conditions are sufficient for obtaining
low prediction error with the lasso or group lasso. An in-
teresting open question is whether there exists a communi-
cation efficient method for distributed multi-task learning
that requires sample complexity n = O(|S|+ (log p)/m),
like the group lasso, even without Restricted Eigenvalue
and Generalized Coherence conditions, or whether beating
the n = O(|S|+ log p) sample complexity of the lasso in
a more general setting inherently requires large amounts
of communication. Our methods, certainly, rely on these
stronger conditions.

DSML can be easily extended to other types of structured
sparsity, including sparse group lasso [35], tree-guided
group lasso [5] and the dirty model [34]. Going beyond
shared sparsity, shared subspace (i.e. low rank) and other
matrix-factorization and feature-learning methods are also
commonly and successfully used for multi-task learning,
and it would be extremely interesting to understand dis-
tributed multi-task learning in these models.
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