
Scalable multiscale density estimation

Supplementary Material

Contents

1 Proof of Theorem 1 1

2 Likelihood of GEODE 5

3 Posterior Conditional Derivation 6

4 Proof of Proposition 1 and Corollary 1 6

5 Missing Data Imputation for mGEODE 8

6 METIS 8

7 Convergence and Mixing of Gibbs Sampler 8

1 Proof of Theorem 1

The log-posterior of GEODE, up to a additive constant, is as follows

L “´ N

2

 

ln |C| ` trpC´1Sq´

ã lnpσ2q ` b̃σ´2
(

,

where ã “ 2aσ`2
N and b̃ “ 2bσ

N . Consider the empirical Bayes problem:

pµ̂, Ŵ q “ arg max
µ,W

“

max
σ2,Σ

Lpµ,W , σ2,Σq
‰

. (1)

Theorem 1. Let λ1, . . . , λD be the eigenvalues of S ordered descendingly, define
ek “ pD ´ dqλk ´

řk`D´d´1
j“k λj for all k ď d ` 1 and define q “

řD
j“d`1 λj ´

pD ´ dqλD. Suppose
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Condition 1: d ă rankpSq

Condition 2: paσ ` 1qλD ď
N

2
q

Condition 3: For all ek ą 0, bσ ă
N

2
ek.

Then

µ̂ “ ȳ, Ŵ “ Ud

solves (1), where the d column vectors in the Dˆ d matrix Ud are the d leading
eigenvectors of S.

Proof. The proof can be split into two parts.
Part 1: µ̂ “ ȳ and Ŵ “ Up is the stationary point of L.
From standard matrix differentiation results:

BL
Bµ

“´N

" N
ÿ

i“1

C´1pµ´ yiq

*

BL
BW

“´
N

2

"

2C´1WΣ´ 2C´1SC´1WΣ

*

Solving for BL
Bµ “ 0 gives µ “ ȳ. Solving for BL

BW “ 0 gives

C´1SC´1WΣ “ C´1WΣ

ôSC´1W “W (2)

Neither of the two trivial solutions to (2), W “ 0 and C “ S maximizes L and
hence will not be discussed. The left solution corresponds to a W such that
W ‰ 0 and C ‰ S. With the fact that column vectors of W are orthonormal,
and using the result from Henderson and Searle (1981), we have

SC´1W “W

ôS
“

σ´2I ´ σ´2W pσ2I `Σq´1ΣWJ
‰

W “W

ôS
“

pσ2I `Σq ´WΣWJ
‰

W “ σ2pσ2I `ΣqW

ôSW “ pσ2I `ΣqW (3)

Equation (3) implies that each column of W must be an eigenvector of S,
with corresponding eigenvalues γj “ σ2 ` α2

j . Note that this also implies that

σ2 ď γj for j “ 1, . . . , d.
Now we check if BL

Bα2
j
|α2
j“γj´σ

2 “ 0, which will complete the proof that µ̂ “ ȳ

and Ŵ “ Up is the stationary point of L.
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We substitute stationary point of W into L to give

L “ ´N
2

"

pD ´ dq lnpσ2q `

d
ÿ

j“1

lnpσ2 ` α2
j q `

1

σ2

D
ÿ

j“1

γj

´
1

σ2

d
ÿ

j“1

γjα
2
j

σ2 ` α2
j

` ã lnpσ2q ` b̃σ´2

*

.

(4)

From (4) one can easily check BL
Bα2
j
|α2
j“γj´σ

2 “ 0, for j “ 1, . . . , d.

Part 2: Show µ̂ “ ȳ and Ŵ “ Up maximizes L.
Matrix W may contain any of the eigenvectors of S. To figure out when is

L maximized, we substitute stationary point of W and Σ into L to give

L “´ N

2

" d
ÿ

j“1

lnpγjq `
1

σ2

D
ÿ

j“d`1

γj ` pD ´ dq lnσ2 ` d

` ã lnσ2 ` b̃
1

σ2

*

,

(5)

where γ1, . . . , γd are the eigenvalues corresponding to the eigenvectors ‘retained’
in W and γd`1, . . . , γD are those ‘discarded’. Here we slightly abuse nota-
tions: we use λ1, . . . , λD as the eigenvalues of S ordered descendingly. We use
γ1, . . . , γD also as the eigenvalues of S but with the first d corresponding to the
stationary point W . Note that γj ’s are not necessarily ordered.

Maximizing (5) w.r.t. σ2 gives

σ2 “
1

D ´ d` ã

ˆ D
ÿ

j“d`1

γj ` b̃

˙

ą 0. (6)

When λD ą 0, with condition 2, it is easy to check that

1

D ´ d` ã

ˆD´1
ÿ

j“d

λj ` b̃

˙

ą λD

Since σ2 ď γj , for j “ 1, . . . , d, we know immediately that λD has to be dis-
carded. If λD “ 0, it is obvious that it also has to be discarded since σ2 ą 0.
Note that Condition 1 ensures the existence of bσ that satisfies condition 3.
Condition 3 ensures the existence of the stationary point to L since

1

D ´ d` ã

ˆ D
ÿ

j“d`1

λj ` b̃

˙

ă λd,

which means that we at least have one stationary point solution.
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Substituting σ2 w.r.t. (6) gives

L “´ N

2

" d
ÿ

j“1

lnpγjq `D ` ã`

pD ´ d` ãq ln

„

1

D ´ d` ã

ˆ D
ÿ

j“d`1

γj ` b̃

˙*

.

(7)

When all eigenvalues are non-zero, with the fact that
řD
j“1 lnpγjq is a constant,

maximizing (7) is equivalent to minimizing the following quantity

E “ ln

„

1

D ´ d` ã

ˆ D
ÿ

j“d`1

γj ` b̃

˙

´
1

D ´ d` ã

ˆ D
ÿ

j“d`1

lnpγjq ` b̃

˙

. (8)

When there are zero eigenvalues, we simply ignore these zero eigenvalues and
consider only the non-zeros ones and every statement in this proof holds.

It turns out that all is required for (8) to be minimized is that γd`1, . . . , γD
are adjacent within the spectrum of the ordered eigenvalues of S. To see this,
the first order derivative of E is given by

BE

Bγj
“

1
řD
j“d`1 γj ` b̃

´
1

pD ´ d` ãqγj
. (9)

Suppose γd`1, . . . , γD minimizes (8). Without loss of generality, we assume
γd`1 ě . . . ě γD. From the previous discussion we know that γD “ λD. Define

c “
řD´1
j“d`2 γj when D ´ d ě 2 We don’t need to discuss the case D ´ d “ 1.

Since if that is the case then γ1, . . . , γd must be the d leading eigenvalues because
λD has to be discarded.

From (9) we immediately have

BE

Bγd`1
“

1

γd`1 ` γD ` c` b̃
´

1

pD ´ d` ãqγd`1
.

BE

BγD
“

1

γD ` γd`1 ` c` b̃
´

1

pD ´ d` ãqγD
.

From Condition 3 it is easy to check that

γD ` γd`1 ` c` b̃ ă pD ´ dqλd`1.

hence BE
Bγd`1

ą 0. Similarly, with condition 2 one can also check that BE
BγD

ă 0.

It can also be checked that for any λd`1 such that λd`1 ą
λD`c`b̃
D´d`ã´1 , BE

Bγd`1
ą 0

holds. And for any λD such that λD ă
λd`1`c`b̃
D´d`ã´1 , BE

BγD
ă 0 holds. Moreover,

λd`1`c`b̃
D´d`ã´1 ą

λD`c`b̃
D´d`ã´1 . Hence γd`1, . . . , γD have to be adjacent within the spec-

trum of the ordered eigenvalues of S. Otherwise, if there is a γ in between such
that γD ă γ ă γd`1 then either BE

BγD
|γD“γ ă 0 or BE

Bγd`1
|γd`1“γ ą 0 must be
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true. Hence either replacing γD or γd`1 with γ will further decrease L, which
contradicts the assumption that γd`1, . . . , γD minimizes L.

Coupled with the fact that γD “ λD, we have shown that the D´d smallest
eigenvalues minimizes (8) hence L is maximized if γ1, . . . , γd are the d leading
eigenvalues of S. Hence we have

µ̂ “ ȳ

and substituting µ “ ȳ into S we have S “ Y Y J hence we have

Ŵ “ Ud

2 Likelihood of GEODE

Let introduce sufficient statistics Ai “ pyi´ µ̂q
Jpyi´ µ̂q and Zi “ Ŵ

Jpyi´ µ̂q,

with Z
pjq
i denoting the jth element of Zi. We then apply a random variable

transformation uj “ p1`σ
´2α2

j q
´1, for j “ 1, . . . , d. The likelihood of GEODE

is then

fpyiq9pσ
2q´D{2

d
ź

j“1

u
1{2
j exp

"

´
1

2
σ´2 ˆ

“

Ai ´
d
ÿ

j“1

p1´ ujqpZ
pjq
i q2

‰

*

. (10)

which can be derived using the following two facts.

Fact 1. Σ “ diagpα2
1, . . . , α

2
dq is a dˆ d matrix with all diagonal entries larger

than 0, W is a D ˆ d matrix with orthonormal column vectors, we have,

pσ2I `WΣWJq´1 “ σ´2I ´ σ´4W Σ̃WJ,

where Σ̃ “ diagp
α2

1

1`σ´2α2
1
,

α2
2

1`σ´2α2
2
, . . . ,

α2
d

1`σ´2α2
d
q.

Proof. By the orthonormality of the W , we have WJW “ I. And by the
matrix inversion formula (Henderson and Searle, 1981),

pσ2I `WΣWJq´1 “ σ´2I ´ σ´4W pI ` σ´2ΣWJW q´1ΣWJ

“ σ´2I ´ σ´4W pI ` σ´2Σq´1ΣWJ

“ σ´2I ´ σ´4W Σ̃WJ

Fact 2. Under the same setting of Fact 1, we have

|σ2I `WΣWJ|´1{2 “ pσ2q´D{2
d
ź

j“1

p
1

1` σ´2α2
j

q1{2.
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Proof. By Schur’s formula,

|σ2I `WΣWJ|´1{2 “ pσ2q´D{2|ID ` σ
´2WΣWJ|´1{2

“ pσ2q´D{2|Id ` σ
´2Σ1{2WJWΣ1{2|´1{2

“ pσ2q´D{2|Id ` σ
´2Σ|

“ pσ2q´D{2
d
ź

j“1

p
1

1` σ´2α2
j

q1{2

3 Posterior Conditional Derivation

Based on the likelihood (10) of GEODE, the derivation details of the conditional
posterior distributions are given as follows:
For σ2,

ppσ´2|´q

9pσ´2qaσ´1 expp´bσσ
´2q

N
ź

i“1

pσ2q´D{2 exp

"

´
1

2
σ´2pAi ´

d
ÿ

j“1

p1´ ujqpZ
pjq
i q2q

*

9pσ´2qDN{2`aσ´1 exp

"

´ σ´2r
1

2

N
ÿ

i“1

pAi ´
d
ÿ

j“1

p1´ ujqpZ
pjq
i q2q ` bσs

*

.

For uj , for j “ 1, . . . , d,

ppuj |´q

9

N
ź

i“1

u
1{2
j exp

"

´
1

2
σ´2ujpZ

pjq
i q2

*

u
śj
k“1 τk´1

j expt´uju1p0,1q

9u
śj
k“1 τk`N{2´1

j exp

"

´ r1`
1

2
σ´2

N
ÿ

i“1

pZ
pjq
i q2suj

*

1p0,1q.

For τj , for j “ 1, . . . , d,

ppτj |´q

9p
ź

kąj´1

ukq
τk expt´aττju1r1,8q

9 exp

"

´ raτ ´ lnp
ź

kąj´1

ukqsτj

*

1r1,8q

4 Proof of Proposition 1 and Corollary 1

Notations yM and yO are introduced as the missing part and the observed part
of y respectively. Let µM and WM denote the parts of µ and W corresponding
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to yM , and let µO andWO denote the parts corresponding to yO. The following
proposition enables efficient sampling from the conditional posterior distribution
ppyM |yO,Θq, where Θ denotes all the unknown parameters in the model.

Proposition 1. Introduce augmented data η P <d such that py|η,Θq „ N pµ`
Wη, σ2Iq and pη|Θ „ N p0,Σq. Then we have the conditional distribution with
η marginalized out equal py|Θq „ N pµ`WΣWJ, σ2Iq. Furthermore, we have

η|yO,Θ „ N pµ̂η, Ĉηq,
yM |η,yO,Θ „ N pµM `WMηi, σ

2Iq,

where Ĉη “
`

ΣWJ
OWO{σ

2 ` I
˘´1

Σ and µ̂η “ ĈηW
J
O pyO ´ µOq{σ

2.

Proof. The proposition can be easily proved using Bayes rule. The joint density
of pyO,yM ,η|Θq is given by

ppyO,yM ,η|Θq

9 exp

"

´
}yi ´Wη ´ µ}2

2σ2
´
ηJΣ´1η

2

*

9 exp

"

´
}yM ´WMη ´ µM }2

2σ2
´
}yO ´WOη ´ µO}2

2σ2
´
ηJΣ´1η

2

*

.

Hence the conditional density pyM |η,yO,Θq is given by

ppyM |η,yO,Θq9 exp

"

´
}yM ´WMη ´ µM }2

2σ2

*

.

The marginal conditional density pη|yO,Θq is given by

ppη|yOi ,Θq

9

ż

ppyM ,η|yOqdyM

9 exp

"

}yO ´WOηi ´ µO}2
2σ2

´
ηJΣ´1η

2

*

.

Corollary 1. For any Θ, the following are true

yO|Θ,µO,WO „ N pµO,WOΣWJ
O ` σ

2Iq,

yM |yO,Θ,µO,WO „ N pµ̂M , ĈM q,

where µ̂M “ µM `WM µ̂η and ĈM “WM ĈηW
J
M ` σ2I.

Corollary 1 is a direct result from Proposition 1 and the multivariate Gaus-
sian theory.
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Table 1: Dataset 1
u1 u2 u3 u4 u5 σ2

R̂ 0.9998 0.9998 0.9998 0.9999 0.9999 0.9998
neff 675 658 626 671 637 651

5 Missing Data Imputation for mGEODE

Conditional on the membership
`

si, hi
˘

, the imputational strategies of nonlinear
GEODE are exactly the same as those of the linear GEODE. With a slight abuse
of notations, we denote the parts corresponding to yO of µsh and Wsh as µO
and WO. Hence we only discuss the conditional posterior distribution of the
membership variable given a partially observed yO, which is given as follows

ppsi “ s, hi “ h|yO,Θ, tµO,WOuLq

9πs,hφpyO;µO,WOΣshW
J
sh ` σ

2
sIq

where φp¨;µ,Σq denotes the density function of a multivariate Gaussian with
mean µ and covariance Σ.

6 METIS

To illustrate the dyadic clustering tree obtained from METIS, we simulated
3003 points first from a swissroll and then from a hemisphere. The results are
visualized in Figure 1.

7 Convergence and Mixing of Gibbs Sampler

To diagnose the convergence of the proposed Gibbs sampler for GEODE, we
follow the Gelman-Rubin diagnostic and ran two chains with over-dispersed ran-
dom starts and calculate the potential scale reduction factor R̂ for each random
scalars. To diagnose the mixing, we pick one of the two chains and calculate
the effective sample size neff out of 2000 posterior samples for each random
scalars. We use two simulated datasets to illustrate the superb convergence and
mixing of the proposed Gibbs sampler. In the first dataset, we set D “ 104,
p “ 5, d “ 10 and N “ 500. Both chains correctly select the first 5 dimensions.
The diagnostic details are summarized in Table 1. In the second dataset, we set
D “ 105, p “ 10, d “ 20 and N “ 500. Both chains again correctly select the
first 10 dimensions. The diagnostic details are summarized in Table 2. As can
be seen, all the R̂’s are very close to 1, indicating good convergence. All the
neff is fairly large, indicating good mixing.
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Scale 2 Scale 3 Scale 4

Scale 5 Scale 6 Scale 7

Scale 2 Scale 3 Scale 4

Scale 5 Scale 6 Scale 7

Figure 1: The dyadic clustering tree at each scale generated from METIS for
synthetic data on a swissroll and on a hemisphere.

Table 2: Dataset 2
u1 u2 u3 u4 u5 σ2

R̂ 0.9998 0.9999 0.9998 0.9999 0.9999 0.9999
neff 655 642 627 717 678 702

u6 u7 u8 u9 u10
R̂ 1.0004 1.0006 1.0003 0.9999 1.0001
neff 686 728 719 660 674
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