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Abstract

It is standard to assume a low-dimensional
structure in estimating a high-dimensional
density. However, popular methods, such as
probabilistic principal component analysis,
scale poorly computationally. We introduce
a novel empirical Bayes method that we term
geometric density estimation (GEODE) and
show that, with mild conditions and among
all d-dimensional linear subspaces, the span
of the d leading principal axes of the data
maximizes the model posterior. With these
axes pre-computed using fast singular value
decomposition, GEODE easily scales to high
dimensional problems while providing uncer-
tainty characterization. The model is also ca-
pable of imputing missing data and dynami-
cally deleting redundant dimensions. Finally,
we generalize GEODE by mixing it across a
dyadic clustering tree. Both simulation stud-
ies and real world data applications show su-
perior performance of GEODE in terms of
robustness and computational efficiency.

1 Introduction

Let yi ∈ <D, for i = 1, . . . , N , be a sample from an un-
known distribution having support in a subset of <D.
We are interested in estimating its density when D is
large, and the data have a low-dimensional structure
with intrinsic dimension p such that p � D. Kernel
methods work well in low dimensions, but face chal-
lenges in scaling up to large D settings. Moreover,
careful tuning of bandwidth is needed, since the choice
of bandwidth fundamentally impacts performance (Liu
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et al., 2007). Bayesian nonparametric models (Escobar
and West, 1995; Rasmussen, 1999) provide an alterna-
tive approach for density estimation, specifying priors
for the bandwidth parameters allowing adaptive es-
timation without cross-validation (Shen et al., 2013).
However, inference is prohibitively costly.

To combat the curse of dimensionality, it is pop-
ular to assume that the data concentrate near a
low-dimensional linear subspace. Principal compo-
nent analysis (PCA) is a ubiquitous technique build-
ing upon such assumption. Tipping and Bishop
(1999b) generalized PCA within a density estimation
framework and introduced probabilistic PCA (PPCA).
PPCA can be viewed as a special case of the factor
analyzer model (FA), which does not assume isotropic
error. Carvalho et al. (2008) and Bhattacharya and
Dunson (2011) (among many others) have successfully
applied FA under the Bayesian paradigm while addi-
tionally assuming sparsity. However, FA involves com-
plex computation that does not scale well. PPCA,
on the other hand, can be fitted via the expectation
maximization algorithm (EM), which is computation-
ally cheaper especially when D is large (Roweis, 1998).
EM also offers a straightforward way to accommo-
date missing data through imputation at each itera-
tion. However, PPCA is not able to scale to massive
dimensional problems, and is sensitive to the choice
of p. Moreover, the computational cost will explode
even in the existence of a tiny proportion of missing
data. These computational bottlenecks of PPCA are
illustrated in § 4.

Randomized singular value decompositions (SVD) are
able to estimate the geometric structure of the data
vectors with tiny error at a very small computational
cost (Rokhlin et al., 2009). Unfortunately, traditional
PPCA cannot utilize this cheaply obtained geomet-
ric information. We propose a novel Bayesian model
that we term geometric density estimation (GEODE),
which leverages on fast SVD algorithms, and hence
easily scales to high dimensional problems (D = 106

in our simulation). We also generalize our model to a
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mixture of GEODE (mGEODE) to account for non-
linear cases via a dyadic clustering tree, and illustrate
its performance via real world image data.

The remainder of the paper is organized as follows.
We start with a brief review of PPCA and discuss its
computational bottlenecks. We then propose GEODE
in § 3, and demonstrate its performance via simulation
in § 4. mGEODE is proposed in § 5. A detailed dis-
cussion on the computational cost is reported in § 6.
An image inpainting application is presented in § 7,
and a discussion is reported in § 8.

2 PPCA Revisited

Letting C = ΓΓ> + σ2I where Γ ∈ <D×d and d < D,
the PPCA model can be written as

y ∼ N (µ,C). (1)

Letting λ1, . . . , λD denote the eigenvalues of the sam-
ple covariance matrix ordered descendingly, it can be
shown (Tipping and Bishop, 1999b) that the MLE of
Γ and σ2 is given as

ΓML = Ud(Λd − σ2I)1/2R,

σ2
ML =

1

D − d
D∑

j=d+1

λj ,

where the column vectors in the D × d matrix Ud are
the principal eigenvectors of the sample covariance ma-
trix, with the corresponding eigenvalues λ1, . . . , λd in
the d × d diagonal matrix Λd, and R is an arbitrary
d× d orthogonal rotation matrix.

We use Y to denote the demeaned observation matrix
in which each row is a demeaned data vector. Accord-
ing to the above result, one can solve PPCA by ap-
plying a SVD on Y . Note that depending on whether
the sample size N is smaller than D, either all D or
all N singular values are needed, with a computational
cost of at least O(min{ND2, N2D}) even using itera-
tive methods. Iterative methods are likely to be non-
robust if more than a small number of singular values
are needed.

Roweis (1998) pointed out that using EM could be
computationally cheaper, especially in cases where D
is large. Although reported computational cost is
O(NDd), a cost that is comparable to that of our
proposed model, the simulation results show that the
constant in the cost of EM is much larger. Moreover,
it is not clear how the convergence rate of EM varies
with respect to D and d, and performance is very sen-
sitive to the choice of d. In practice, d is typically
picked by cross validation, whose computational cost
is prohibitive when D or N is large.

A fast rank-d SVD (Rokhlin et al., 2009) approximates
an exact SVD to its first d leading singular values at a
certain error bound with a high probability. The com-
putational cost is O(NDd). The algorithm is proved
to have a better performance when singular values af-
ter the dth singular value decay very slowly, which is
typically the case in practice. One might ask if fast
SVD can be applied to PPCA, since the closed form
MLE comes from a SVD on Y . Unfortunately, instead
of just the first d singular values, one will need all of
them in computing σ2

ML. Moreover, since fast rank-d
SVD relies on randomization, there is a correspond-
ing approximation error. It is not clear how PPCA
performs in the presence of such error.

3 Geometric Density Estimation

In this section, we develop GEODE piece by piece.
The correctness of the method is first justified via a
theorem, and a shrinkage prior is then specified to fa-
cilitate GEODE to automatically identify and delete
redundant dimensions. Finally, an efficient Gibbs sam-
pler is designed for posterior computation.

3.1 Model Formulation

Let W be a D × d matrix with column vectors being
orthonormal, Σ = diag(α2

1, . . . , α
2
p), C = WΣW> +

σ2I and S = 1
N

∑N
i=1(yi−µ)(yi−µ)>. The model is

as follows

y ∼ N (µ,C)

σ2 ∼ IG(aσ, bσ),
(2)

where IG(aσ, bσ) denotes an inverse Gamma distri-
bution with shape parameter aσ and rate parameter
bσ. The corresponding log-posterior (up to an addi-
tive constant) is

L =− N

2

{
D ln(2π) + ln |C|+ tr(C−1S)+

2aσ + 2

N
ln(σ−2) +

2bσ
N

σ−2
}
.

3.2 Empirical Bayes Solution for µ and W

µ andW carries the geometric information of the data
vectors and uniquely define a linear subspace in <D,
with µ being the origin. Motivated by computational
considerations and from an empirical Bayes perspec-
tive, we will first estimate µ and W relying on a single
pass through the data, and then fix them afterwards
at these estimated values. In particular, we solve the
following optimization problem:

(µ̂, Ŵ ) = arg max
µ,W

[
max
σ2,Σ
L(µ,W , σ2,Σ)

]
. (3)
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The following theorem shows that a closed form so-
lution to (3) exists and can be obtained via a single
SVD through the data. The proof is reported in the
supplementary material.

Theorem 1. Let λ1, . . . , λD be the eigenvalues of
S ordered descendingly, define ek = (D − d)λk −∑k+D−d−1
j=k λj for all k ≤ d + 1 and define q =∑D
j=d+1 λj − (D − d)λD. Suppose

Condition 1: d < rank(S)

Condition 2: (aσ + 1)λD ≤ N
2 q

Condition 3: For all ek > 0, bσ <
N
2 ek.

Then

µ̂ = ȳ, Ŵ = Ud

solves (3), where the column vectors of the D×d matrix
Ud are the d leading right singular vectors of Y .

Condition 1 is trivial since it has to be satisfied in the
first place in order for the model to make sense. In
practice, condition 2 and 3 are easily met when N is
large. Theorem 1 shows that the span of the d leading
right singular vectors of Y maximizes the posterior of
model (2) among all d-dimensional linear subspace in
<D, regardless of the choice of prior for σ2.

We term the column vectors of Ŵ as the principal axes
of the data and denote them by wj , for j = 1, . . . , d.
The theorem yields a practical method for obtaining
µ̂ and Ŵ , which is summarized as follows.

• µ̂ = 1
N

∑N
i=1 yi.

• Obtain wj , for j = 1, . . . , d, via applying the fast
rank-d SVD on Y .

This will be the first step in our method. As we do
not know the true dimension p of the subspace, we ob-
tain d principal axes, with d chosen to correspond to
a conservative upper bound, so that we are confident
a priori that d ≥ p. In the sequel, we will define a
shrinkage prior on Σ that will effectively delete redun-
dant principal axes, and favor the model around the
true p. Exploiting this behavior, an adaptive Gibbs
sampler will be proposed.

3.3 Prior for Σ and Learning of p

For the diagonal elements of Σ, we could simply fix
them at the values that maximize (3), and from the
proof of Theorem 1 we know that such values are α2

j =

λj − σ2, for all j = 1, . . . , d. In this way our model

only contains a single unknown σ2. However this is
problematic since our inference would rely heavily on
the accuracy of the SVD on Y . Moreover, with all
except σ2 fixed a priori, the model uncertainty tends
to be severely underestimated.

Hence, instead of fixing α2
j ’s, we will learn them by giv-

ing them a carefully designed prior distribution. This
prior distribution also facilitates GEODE to automat-
ically delete redundant principal axes.

Equipped with µ̂ and Ŵ and with another pass
through the data, we can obtain for all i = 1, . . . , N
sufficient statistics Ai = (yi − µ̂)>(yi − µ̂) and Zi =

Ŵ>(yi − µ̂), with Z
(j)
i denoting the jth element of

Zi. We then apply a random variable transformation
uj = (1 + σ−2α2

j )
−1, for j = 1, . . . , d. With basic

algebra, the likelihood of GEODE is then

f(yi) ∝(σ2)−D/2
d∏

j=1

u
1/2
j exp

{
− 1

2
σ−2×

[
Ai −

d∑

j=1

(1− uj)(Z(j)
i )2

]}
.

The derivation is reported in the supplementary ma-
terial.

Delete redundant principal axes. We rely on
the following geometric intuition. It is easy to check
that w>j y ∼ N (w>j µ, α

2
j + σ2). Hence α2

j is the
signal variance along the direction wj , which should
be decreasing for j = 1, . . . , p and be zero for j =
p + 1, . . . , d. This motivates us to penalize α2

j by in-
creasingly shrinking towards zero as j increases, which
is equivalent to shrinking uj increasingly for larger j.
To accomplish this adaptive shrinkage, we propose a
multiplicative exponential process prior that adapts
the prior of Bhattacharya and Dunson (2011). Letting

δj =
∏j
k=1 τk, the prior is given for j = 1, . . . , d as

follows:

uj ∼ Ga(0,1)(δj + 1, 1)

τj ∼ Exp[1,∞)(aτ )

where Ga(0,1)(δj + 1, 1) denotes a Gamma distribu-
tion with shape parameter δj + 1 and rate parameter
1 truncated within (0, 1) and Exp[1,∞)(aτ ) denotes an
Exponential distribution with parameter aτ truncated
within [1,∞). δj and τj are the global and the local
shrinkage parameter for α2

j , respectively. Since τj ≥ 1

for j = 1, . . . , d, δj =
∏j
k=1 τk is increasing with re-

spect to j. As a result, uj is stochastically approaching
one, since the truncated gamma density concentrates
around one as δj increases. In practice, we fix aσ = 2,
bσ = 2, and aτ = 0.05 as a default.
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3.4 Posterior Computation

To avoid paying a heavy computational price for choos-
ing a conservative upper bound d ≥ p, we automat-
ically delete redundant principal axes as computa-
tion proceeds. To this end, we adopt an adaptive
Gibbs sampler related to that developed by Bhat-
tacharya and Dunson (2011). To be specific, we let
{1, . . . , d} = A ∪ R, with A ∩ R = ∅. The sets
A and R index the active and removed axes, respec-
tively. At iteration t of the sampler, with probability
p(t) = exp(c0 + c1t), we refine sets A and R, where
c0 = −1 and c1 = 0.005 are chosen to favor frequent
adaptation early in the chain and exponentially fast
decay in frequency. In the refinement step, we remove
all axes in A having less than tol = 10−2 impact, and if
no such axis exists, move the small element of R back
to A. We will stop the adaptation after a pre-specified
stopping time so that the Gibbs sampler will converge
to the posterior distribution associated with one se-
lected set of principal axes. Before the stopping time,
the Gibbs sampler is jumping around different target
distributions and all samples will be thrown away as
burn-ins.

The algorithm implementing GEODE can be summa-
rized as follows:

Step 1 (preprocessing): Obtain µ̂ and Ŵ as described
in § 3.2 and compute sufficient statistics Ai and Zi for
i = 1, . . . , N .

Step 2 (Gibbs sampler): Set A = {1, . . . , d} and R =
∅. Iterate until obtaining T posterior samples:

1. Update uj for all j ∈ A according to

Ga(0,1)
(
âj , b̂j

)
, where âj =

∏
k<=j,k∈A τk + N/2

and b̂j = 1 + 1
2σ
−2∑n

i=1(Z
(j)
i )2.

2. Update τj for all j ∈ A according to Exp[1,∞)

(
λ̂j
)
,

where λ̂j = aτ − ln(
∏
k>j−1,k∈A uk)

3. Update σ−2 according to Ga
(
ĉ, d̂
)
, where ĉ = aσ+

DN/2, d̂ = 1
2

∑N
i=1

[
Ai−

∑
j∈A(1−uj)(Z(j)

i )2
]

+
bσ.

4. If after the stopping time, go directly to the next
iteration. Otherwise,

• if before the stopping time, then with proba-
bility 1−p(t) go directly to the next iteration
and otherwise go to step 5.

• if at the stopping time, move all j ∈ A such

that rtj =
(
αtj
)2
/maxj∈A

(
αtj
)2
< tol from A

to R and go to next iteration.

5. Move all j ∈ A such that rtj =(
αtj
)2
/maxj∈A

(
αtj
)2

< tol from A to R. If

no such j exists, then move the smallest j from
R to A.

The derivation of the conditional posteriors is in the
supplementary material. The preprocessing part only
involves two passes through the data, with a compu-
tational cost linear in D, while the cost of the Gibbs
sampler is independent of D. This makes it easy to
scale to high dimensional problems. The superior com-
putational performance of GEODE is illustrated in the
next section via simulations and a detailed discussion
on the computational cost is reported in § 6.

3.5 Missing Data Imputation

Bayesian models can easily utilize partially observed
data by probabilistically imputing the missing fea-
tures based on their conditional posterior distribution.
Moreover, prediction can also be viewed as a missing
data imputation problem. We propose several scalable
missing data strategies for GEODE, and discuss the
appropriateness of these strategies in different missing
data scenarios.

Notations yM and yO are introduced as the missing
part and the observed part of y respectively. Let µM
and WM denote the parts of µ and W correspond-
ing to yM , and let µO and WO denote the parts cor-
responding to yO. The following proposition enables
efficient sampling from the conditional posterior distri-
bution p(yM |yO,Θ), where Θ denotes all the unknown
parameters in the model.

Proposition 1. Introduce augmented data η ∈ <d
such that (y|η,Θ) ∼ N (µ + Wη, σ2I) and (η|Θ ∼
N (0,Σ). Then we have the conditional distribu-
tion with η marginalized out equal (y|Θ) ∼ N (µ +
WΣW>, σ2I). Furthermore, we have

η|yO,Θ ∼ N (µ̂η, Ĉη),

yM |η,yO,Θ ∼ N (µM +WMηi, σ
2I),

where Ĉη =
(
ΣW>

OWO/σ
2 + I

)−1
Σ and µ̂η =

ĈηW
>
O (yO − µO)/σ2.

Corollary 1. For any Θ, the following are true

yO|Θ,µO,WO ∼ N (µO,WOΣW>
O + σ2I),

yM |yO,Θ,µO,WO ∼ N (µ̂M , ĈM ), (4)

where µ̂M = µM +WM µ̂η and ĈM = WM ĈηW
>
M +

σ2I.

Proofs are reported in the supplementary material.

Let DM denote the number of missing features in y.
Equipped with Proposition 1 and Corollary 1, we pro-
pose the following three imputation strategies:
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Figure 1: Comparing the MSE of estimating σ2 under
different D and p. Results for PPCA are color coded
with black denoting d = p, blue denoting d = p + 5,
and purple denoting d = p+ 10.

• Small DM (≤ d): sample using (4) is preferred
to sampling using Proposition 1 due to numer-
ical concerns. The computational complexity is
O(d3).

• Moderately large DM (> d): sample via the data
augmentation technique provided in Proposition
1. The computational complexity isO(d3+DMd).

• Large DM : sample via data augmentation in the
first few steps of the Gibbs sampler, and later on
fix the value of yM to its last update. When DM

is large, we cannot afford to run a Gibbs sampler
with each step having a complexity linear in DM .

4 Simulation Studies

In this section, we compare GEODE to its counterpart
PPCA in terms of accuracy, robustness and computa-
tional efficiency via simulations. All experiments are
conducted in Matlab version 2015a on an OS X laptop
with a double 3.1 GHz Intel(R) Core(TM) i7 processor.
PPCA is fitted using Matlab function ppca under the
statistics and machine learning toolbox. This function
implements an EM algorithm for PPCA, which han-
dles missing data (Roweis, 1998; Ilin and Raiko, 2010).
All results reported are obtained by averaging over 10
replicated experiments.

Moderately large D without missing data: In this first
simulation study, we let D vary from 100 to 500 and
fix N to be 500. We test both methods on three differ-
ent intrinsic dimensions, i.e., p ∈ {5, 10, 20}. To test
the robustness of PPCA to the choices of d, we let d
take values in {p, p+ 5, p+ 10} while fixing d = 30 for

Figure 2: Comparing CPU times fitting the model un-
der different D and p. Results for PPCA are color
coded, with black denoting d = p, blue denoting
d = p+ 5, and purple denoting d = p+ 10.

GEODE. We evaluate the performance of both meth-
ods in terms of mean square error (MSE) in estimating
σ2. The comparison of the two models is presented in
Figure 1. The thin black lines denote the MSE of
PPCA, with a correct guess of p, i.e., d = p. Though
they seem to be better than GEODE, the difference
decreases as p increases. However, when incorrectly
choosing d, which is common in practice, the perfor-
mance of PPCA (denoted by the thin colored lines)
drops dramatically, and is much worse than GEODE.

The corresponding CPU time of fitting both models is
reported in Figure 2. The computational cost of PPCA
grows fast in D, while the cost of GEODE grows much
slower and is dominated by the Gibbs sampler part.
This explains why in Figure 2 the cost of GEODE
seems not to grow in D. To check how well GEODE
dynamically delete the redundant principal axes, for
j = 1, . . . , d, we calculate the average proportion of
j’s being inside R within all iterations where adapta-
tion takes place. These proportions are visualized in
Figure 3. It can be easily seen that GEODE is able
to quickly identify the redundant axes. Hence, we can
conclude from the simulations that GEODE performs
almost as well but slightly worse than the best PPCA
can achieve, but with a much smaller computational
cost. Moreover, GEODE automatically select p start-
ing from any crude guess d, while the performance of
PPCA is highly sensitive to the choice of d.

Moderately large D with missing data: Though the
EM algorithm of PPCA offers a straightforward way
to impute missing data, even a very small proportion
of missingness explodes its computational cost. In this
simulation study, we fix N = 500, and randomly select

861



Scalable geometric density estimation

Figure 3: Proportion of inclusion for j within all adap-
tations averaged across all replicates.

Figure 4: Top: MSE in estimating σ2; Bottom: the
CPU time fitting GEODE.

25 observations with 5 features missing. We fit PPCA
with d = p and run simulations for D = 100 and D =
200. In estimating σ2, GEODE generates almost as
good results as PPCA, with a CPU time less than 4
seconds for both cases. However, the CPU time of
fitting PPCA is 177 seconds for D = 100 and 578
seconds for D = 200.

Massive D: To evaluate the scalability of GEODE to
massive dimensions, we redo the previous two exper-
iments on GEODE with D varying from 105 to 106.
Note that D = 106 is the largest that we can test on
our computer due to storage limits (with N = 500 and
D = 106, a single Y takes more than 3 GB storage).
For illustration purposes, we fix p = 5. The MSE and
the CPU time are reported in Figure 4. It is clear that
GEODE remains computationally feasible even when
D = 106, while providing very good performance.

5 Mixture of GEODE

Mixture of PPCA (Tipping and Bishop, 1999a) ex-
tends PPCA to characterize non-Gaussian data. How-
ever, it inherits the computational drawbacks of
PPCA. Mixture of factor analyzers (MFA) avoids the
isotropic error constraint of mixture of PPCA, but the
corresponding EM algorithm (Ghahramani and Hin-
ton, 1996) suffers a similar computational bottleneck.
Bayesian MFA is a straightforward Bayesian imple-
mentation in small dimensional problems (Diebolt and
Robert, 1994; Richardson and Green, 1997), but faces
problems in scaling beyond a few 100 dimensions. In-
spired by the empirical Bayes idea of GEODE in linear
cases, we propose to learn and fix a multiscale set of
potential principal component axes in a first stage. In
the second stage, we mix across these principal com-
ponent axes according to their likelihood in a Bayesian
paradigm. The ability to learn the intrinsic dimension
p’s (we allow different spaces having different dimen-
sions) and the ability to characterize uncertainty are
both inherited from the linear case.

5.1 Multiscale Principal Axes

To acquire a multiscale set of principal directions, we
first adopt METIS (Karypis and Kumar, 1998) to ob-
tain a dyadic clustering tree of the dataset. This is
partly motivated by the compressive sensing technique
developed by Allard et al. (2012), which efficiently
compresses the data by locally finding the best linear
subspaces to approximate these dyadic clusters. More-
over, a tree structure allows the model to adapt to
different local smoothness by mixing across fine scales
and coarse scales. A dyadic clustering tree of the data
{yi}Ni=1 is defined as follows.

Definition 1. With s = 0, . . . , L denoting the scale
index and h = 1, . . . , 2s denoting the node index within
scale s, a level-L dyadic clustering tree of {yi}Ni=1

is a family of index sets Dsh ⊆ {1, . . . , N} such that

• for every s,
⋃2s

h=1Dsh = {1, . . . , N};

• for s ≤ s′ and 1 ≤ h′ ≤ 2s
′
, either Ds′h′ ⊆ Dsh or

Ds′h′ ∩ Dsh = ∅;

• for s < s′ and 1 ≤ h′ ≤ 2s
′
, there exists a unique

h = 1, 2, . . . , 2s such that Ds′h′ ⊆ Dsh.

The tree is denoted by {Dsh}L.

METIS generates the tree-structure clustering by par-
titioning a weighted graph constructed from the data.
Following the suggestion by Allard et al. (2012), we
add an edge between each data point and its k nearest
neighbors and set the weight between any yi and yj to
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be e−‖yi−yj‖22/δ. δ is chosen adaptively at each point yi
as the distance between yi and its bk/2c nearest neigh-
bor. In practice, we fix k to be 30 and constrain the
leaf size |DLh| to be greater than 10, for h = 1, . . . , 2L.
The depth of the tree L depends on the sample size N ,
and is automatically decided by METIS. Performance
of METIS is illustrated in the supplementary material
through multiple simulations.

Equipped with a level-L dyadic clustering tree {Dsh}L,
the corresponding multiscale principal axes are defined
as follows:

Definition 2. The multiscale principal axes of
{yi}Ni=1 with respect to a level-L dyadic clustering tree
{Dsh}L are defined as a family of centroids µ̂sh ∈ <D
and a family of orthogonal matrices Ŵsh ∈ <D×d such
that for all s and h

• µ̂sh = 1
|Dsh|

∑
i∈Dsh

yi;

• Ŵsh = Ush, where the d column vectors in Ush
are the leading d right singular vectors of Ysh. Ysh
is a |Dsh| ×D matrix with each row representing
a demeaned data vector from Dsh.

The multiscale principal axes are denoted as
{µ̂sh, Ŵsh}L.

In practice, we use fast rank-d SVD to compute Ŵsh.

5.2 Model Formulation

Equiped with the multiscale principal axes
{µ̂sh, Ŵsh}L, the mixture of GEODE model
(mGEODE) is given by

y ∼
∑

sh

πshN (µ̂sh,Csh) (5)

where Csh = ŴshΣshŴ
>
sh + σ2

sI and Σsh is a d × d
positive diagonal matrix, for s = 0, . . . , L and h =
1, . . . , 2s. For all s and h, Σsh and σ2

s are given
the same prior distribution as in GEODE. We assume
isotropic error variance σ2

s for each scale s to enable
clusters from the same scale to share information.

We then finish the formulation of mGEODE by choos-
ing a prior for the multiscale mixing weights πsh. This
prior should be structured to allow adaptive learning
of the appropriate tradeoff between coarse and fine
scales. Heavily favoring coarse scales may lead to re-
duced variance but also high bias if the coarse scale
approximation is not accurate. High weights on fine
scales may lead to low bias but high variance due to
limited sample size in each fine resolution component.
With this motivation, Canale and Dunson (2016) pro-
posed a multiresolution stick-breaking process gener-
alizing usual “flat” stick-breaking (Sethuraman, 1994).

In particular, let

Ssh ∼ Be(1, aS), Rsh ∼ Be(bR, bR) (6)

with Ssh denoting the probability that the observation
stops at node (s, h) of a binary tree and Rsh denoting
the probability that the observation moves down to the
right from node (s, h) conditioning on not stopping at
node (s, h). Hence

πsh = Ssh
∏

r<s

(1− Sr gshr
)Tshr (7)

where gshr = dh/2s−re denotes the ancestors of node
(s, h) at scale r, Tshr = Rr gshr

if node (r+1, gsh(r+1))
is the right daughter of node(r + 1, gshr) , other-
wise Tshr = 1 − Rr gshr

. Canale and Dunson (2016)

showed that
∑∞
s=0

∑2s

h=1 πsh = 1 almost surely for any
aS , bR > 0. This result makes the defined weights a
proper set of multiscale mixing weights. As aS in-
creases, finer scales are favored, resulting in a highly
non-Gaussian density.

In practice, we only consider a truncated finite-depth
multiscale mixture with depth being L. Let {π̃sh}s≤L
denote the truncated weights, which are identical to
{πsh} except that the stopping probabilities at scale L

are set equal to one to ensure
∑L
s=1

∑2s

h=1 π̃sh = 1.

5.3 Posterior Computation

The posterior sampling for the mGEODE is almost
identical to the GEODE, except for the newly intro-
duced variables

(
si, hi

)
, Ssh and Rsh. The conditional

posterior of
(
si, hi

)
is given by

p(si = s, hi = h)

∝πshN (µsh,WshΣshW
>
sh + σ2

sI).

The conditional posteriors of Ssh and Rsh are given by

Ssh ∼ Beta(1 + nsh, aS + vsh − nsh),

Rsh ∼ Beta(bR + rsh, bR + vsh − nsh − rsh),

where vsh is the number of observations passing
through node (s, h), nsh is the number of observa-
tions stopping at node (s, h), and rsh is the number
of observations that continue to the right after passing
through node (s, h).

The remaining Gibbs steps are very similar to GEODE
and are provided in the supplementary material.

6 Computational Aspects

GEODE Letting T denote the total number of
Gibbs sampler iterations, the computational cost can
be split as follows.
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Figure 5: The first row shows the original images, second row shows the images with pixels missing, and the
third row shows the reconstructed images.

Construction of principal axes: The complexity of fast
rank-d SVD is O(NDd).

Comstruction of sufficient statistics: The complex-
ity of computing Ai = ỹ>i ỹi for all i is O(ND) and
the complexity of computing Zi = W>ỹi for all i is
O(NDd). Hence, the overall complexity is O(NDd).

Gibbs sampler: The cost is dominated by updating σ2

and u, whose complexities are both O(NTd).

Hence the overall complexity of the GEODE is
O(NDd+NTd).

mGEODE Letting K denote the number of near-
est neighbours in constructing the weighted graph, the
computational cost can be split as follows.

Construction of weighted graph: The complexity of
ANN in finding K nearest neighbours is O(DN logN)
(Arya et al., 1998). The complexity of computing the
weights for the graph is O(KND).

Graph partition: The cost of METIS O(KN logN).

Construction of multiscale principal axes: For each
node (s, h), the cost of applying the fast rank-d SVD
is O(|Dsh|Dd). We have |Dsh| = O(2−sN) and there
are 2L such Dsh’s. Summing them all with L < log2N
we obtain a total cost of O(N logNDd).

Construction of sufficient statistics: As in the lin-
ear case, for each node (s, h), the complexity is
O(|Dsh|Dd). Similar to deriving the complexity for
multiple principal axes, the complexity for construct-
ing the sufficient statistics is O(N logNDd).

Gibbs sampler: The complexity of the sampler is dom-
inated by updating (si, hi) for all i and updating ush
for all nodes, whose complexities are both O(NT2Ld).

Hence, the overall complexity of mGEODE is
O(N logNDd+NT2Ld).

Moreover, the Gibbs sampler converges fast with su-
perb mixing. MCMC diagnostic based on potential
scale reduction factor and effective sample size can be
found in the supplementary materials. In practice we

fix T = 3000 with the number of burn-in fixed at 1000
and the stopping time fixed at 800. No thinning is
needed.

7 Application

Given that GEODE has already been carefully stud-
ied in § 4, we devote this section to illustrate the per-
formance of mGEODE through an image inpainting
application.

The Frey faces data (Roweis et al., 2002) contains 1965
20× 28 video frames of a single face with different ex-
pressions. mGEODE is trained on 1000 images for less
than 2 minutes and then reconstruct (predict) the rest
965 damaged images. The reconstruction is done in
less than 10 minutes. The mean absolute reconstruc-
tion error of mGEODE is 7.04, which outperforms the
error of 7.40 reported by Titsias and Lawrence (2010).
14 reconstructions are shown in Figure 5. In this ap-
plication, we set d = 20. Increasing d moderately had
essentially no impact on the results.

8 Discussion

In high dimensional applications, PPCA is ubiq-
uitously used since it not only provides an low-
dimensional embedding, but also a density estima-
tion. Unfortunately, the dominating algorithm fitting
PPCA is not scalable to high dimensions. We tackle
this problem by proposing a empirical Bayes model
novelly built upon a fast SVD technique. The pro-
posed GEODE showed excellent performance in scal-
ing computationally, while providing a valid charac-
terization of uncertainty in predictions. It also showed
excellent performance in inferring the subspace dimen-
sion and handling missing data. We also propose a
mixture of GEODE model which mixes local GEODE
models across a dyadic clustering tree. This mGEODE
model showed excellent performance in a real world
data application.
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