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In this supplement, we provide proofs for all theorems and
lemmas in the main paper, more exhaustive experimental
results and details on the experiments.

1 Proofs

1.1 Proofs from Section 2

Lemma 2.1. In any round t, the point selected by
EST is the same as the point selected by a variant of
GP-UCB with λt = minx∈X

m̂t−µt−1(x)
σt−1(x)

. Conversely,
the candidate selected by GP-UCB is the same as the
candidate selected by a variant of EST with m̂t =
maxx∈X µt−1(x) + λtσt−1(x).

Proof. We omit the subscripts t for simplicity. Let a be the
point selected by GP-UCB, and b selected by EST. Without
loss of generality, we assume a and b are unique. With
λ = minx∈X

m̂−µ(x)
σ(x) , GP-UCB chooses to evaluate

a = arg maxx∈X µ(x)+λσ(x) = arg minx∈X
m̂− µ(x)

σ(x)
.

This is because

m̂ = max
x∈X

µ(x) + λσ(x) = µ(a) + λσ(a).

By definition of b, for all x ∈ X, we have

Pr[Mb|m̂,D]

Pr[Mx|m̂,D]
≈
Q( m̂−µ(b)σ(b) )

∏
x′ 6=b Φ( m̂−µ(x

′)
σ(x′) )

Q( m̂−µ(x)σ(x) )
∏

x′ 6=x Φ( m̂−µ(x
′)

σ(x′) )

=
Q( m̂−µ(b)σ(b) )Φ( m̂−µ(x)σ(x) )

Q( m̂−µ(x)σ(x) )Φ( m̂−µ(b)σ(b) )

≥ 1.

The inequality holds if and only if m̂−µ(b)
σ(b) ≤ m̂−µ(x)

σ(x) for
all x ∈ X, including a, and hence

m̂− µ(b)

σ(b)
≤ m̂− µ(a)

σ(a)
= λ = min

x∈X

m̂− µ(x)

σ(x)
,

which, with uniqueness, implies that a = b and GP-UCB
and EST select the same point.

For the other direction, we denote the candidate selected by
GP-UCB by

a = arg maxx∈X µ(x) + λσ(x).

The variant of EST with m̂ = maxx∈X µ(x) + λσ(x) se-
lects

b = arg maxx∈X Pr[Mx|m̂,D].

We know that for all x ∈ X, we have m̂−µ(b)
σ(b) ≤ m̂−µ(x)

σ(x)

and hence m̂ ≤ µ(b) + m̂−µ(x)
σ(x) σ(b). Since m̂ = µ(a) +

λσ(a), letting x = a implies that

m̂ = max
x∈X

µ(x) + λσ(x) ≤ µ(b) + λσ(b).

Hence, by uniqueness it must be that a = b and GP-UCB
and EST select the same candidate.

1.2 Proofs from Section 3

Lemma 3.2. Pick δ ∈ (0, 1) and set ζt = (2 log(πt

2δ ))
1
2 ,

where
∑T
t=1 π

−1
t ≤ 1, πt > 0. Then, for EST, it holds

that Pr[µt−1(xt) − f(xt) ≤ ζtσt−1(xt)] ≥ 1 − δ, for all
t ∈ [1, T ].

Proof. Let zt = µt−1(xt)−f(xt)
σt−1(xt)

∼ N (0, 1). It holds that

Pr[zt > ζt] =

∫ +∞

ζt

1√
2π
e−z

2/2 dz

=

∫ +∞

ζt

1√
2π
e−(z−ζt)

2/2−ζ2t /2−zζt dz

≤ e−ζ
2
t /2

∫ +∞

ζt

1√
2π
e−(z−ζt)

2/2 dz

=
1

2
e−ζ

2
t /2.

A union bound extends this bound to all rounds:

Pr[zt > ζt for some t ∈ [1, T ]] ≤
T∑
t=1

1

2
e−ζ

2
t /2.
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With ζt = (2 log(πt

2δ ))
1
2 and

∑T
t=1 π

−1
t = 1, this implies

that with probability at least 1− δ, it holds that µt−1(xt)−
f(xt) ≤ ζtσt−1(xt) for all t ∈ [1, T ]. One may set πt =
1
6π

2t2, or πt = T , in which case ζt = ζ = (2 log( T2δ ))
1
2 .

Lemma 3.3. If µt−1(xt) − f(xt) ≤ ζtσt−1(xt), the
regret at time step t is upper bounded as r̃t ≤ (νt +

ζt)σt−1(xt) , where νt , minx∈X
m̂t−µt−1(x)
σt−1(x)

, and m̂t ≥
maxx∈X f(x), ∀t ∈ [1, T ].

Proof. At time step t ≥ 1, we have

r̃t = max
x∈X

f(x)− f(xt)

≤ m̂t − f(xt)

≤ m̂t − µt−1(xt) + ζtσt−1(xt)

= (νt + ζt)σt−1(xt).

2 Experiments

2.1 Approximate m

In the paper, we estimate m to be

m̂ = m0 +

∫ ∞
m0

1−
∏
x∈W

Φ
(w − µ(x)

σ(x)

)
dw (1)

which involves an integration from the current maximum
m0 of the observed data to positive infinity. In fact the
factor inside the integration quickly approaches zero in
practice. We plot g(w) = 1 −

∏
x∈W Φ

(
w−µ(x)
σ(x)

)
in

Figure 1, which looks like half of a Gaussian distribu-
tion. So instead of numerical integration (which can be
done efficiently), heuristically we can sample two values of
g(w) to fit ĝ(w) = ae−(w−m0)

2/2b2 and do the integration∫∞
m0

ĝ(w) dw =
√

2πab analytically to be more efficient.
This method is what we called ESTa in the paper, while the
numerical integration is called ESTn.

We notice that our estimation m̂ can serve as a tight upper
bound on the real value of the max of the function in prac-
tice. One example of is shown in Figure 1 with a 1-D GP
function. This example shows how PI, ESTa and ESTn
estimate m. Both ESTa and ESTn are upper bounds of the
true maximum of the function, and ESTn is actually very
tight. For PI, θ = arg max1≤τ<t yτ + ε is always a lower
bound of an ε shift over the true maximum of the function.

2.2 Synthetic data

We show the examples of the functions we sampled from
GP in Figure 2. The covariance function of GP is an
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Figure 1: Top: g(w), w ∈ [m0,+∞); Bottom: estimation
of m.

isotropic Matérn kernel with parameters ` = 0.1, σf = 1.
The mean function is a linear function with a fixed random
slope for different dimensions, and the constant is 1.

2.3 Initialization tuning for trajectory optimization

The 8 configurations of start state are [7 1 0 0], [7 0 0 0],
[1 0 0 0], [1 1 0 0], [2 0 0 0], [2 1 0 0], [3 0 0 0], [3 1 0 0],
where the first two dimensions denote the position and the
last two dimension denote the speed. We only tune the first
two dimension and keep the speed to be 0 for both direc-
tions. The target state is fixed to be [5 9 0 0].

We can initialize the trajectory by setting the mid point
of trajectory to be any point falling on the grid of the
space (both x axis and y axis have range [−2, 12]). Then
use SNOPT to solve the trajectory optimization problem,
which involves an objective cost function (we take the neg-
ative cost to be a reward function to maximize), dynamics
constraints, and obstacle constraints etc. Details of trajec-
tory optimization are available in [11, 10].

We used the same settings of parameters for GP as in Sec-
tion 2.2 for all the methods we tested and did kernel param-
eter fitting every 5 rounds. The same strategy was used for
the image classification experiments in the next section.
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Figure 2: Examples of a function sampled from 1-D GP
(top), and a function sampled from 2-D GP (bottom) with
isotropic Matérn kernel and linear mean function. We de-
liberately create many local optimums to make the problem
hard.

2.4 Parameter tuning for image classification

We use the linear SVM in the liblinear package for all the
image classification experiments. We extract the FC7 ac-
tivation from the imagenet reference network in the Caffe
deep learning package [5] as the visual feature. The re-
ported classification accuracy is the accuracy averaged over
all the categories. ‘-c’ cost is the model parameter we tune
for the linear SVM.

In Caltech101 and Caltech256 experiment [1, 2], there are
8,677 images from 101 object categories in the Caltech101
and 29,780 images from 256 object categories. The train-
ing size is 30 images per category, and the rest are test im-
ages.

In SUN397 experiment [12], there are 108,754 images
from 397 scene categories. Images are randomly split into
training and test set. The training size is 50 images per
category, and the rest are test images.

In MIT Indoor67 experiment [7], there are 15,620 images
from 67 indoor scene categories. Images are randomly split
into training set and test set. The training size is 100 images
per category, and the rest are test images.

In Stanford Action40 experiment [13], there are 9,532 im-
ages from 40 action categories. Images are randomly split
into training set and test set. The training size is 100 images
per category, and the rest are test images.

In UIUC Event8 experiment [6], there are 1,579 images
from 8 event categories. Images are randomly split into
training set and test set. Training size is 70 images per
category, and the rest are test images.

We used features extracted from a convolutional neural net-
work (CNN) that was trained on images from ImageNet. It
has been found [14] that features from a CNN trained on
a set of images focused more on places than on objects,
the Places database, work better in some domains. So,
we repeated our experiments using the Places-CNN fea-
tures, and the results are shown in Figure 3 and Table 1.
All the methods help to improve the classification accuracy
on the validation set. EST methods achieve good accuracy
on each validation set on par with the best competitors for
most of the datasets. And we also observe that for Cal-
tech101 and Event8, RAND and UCB converge faster and
achieve better accuracy than other methods. As we have
shown in Section ??, UCB and RAND perform worse than
other methods in terms of cumulative regret, because they
tend to explore too much. However, more exploration can
be helpful for some black-box functions that do not satisfy
our assumption that they are samples from GP. For exam-
ple, for discontinuous step functions, pure exploration can
be beneficial for simple regret. One possible explanation
for the better results of RAND and UCB is that the black-
box functions we optimize here are possibly functions not
satisfying our assumption. The strong assumption on the
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black-box function is also a major drawback of Bayesian
optimization,

2.5 Comparison to entropy search methods

Entropy search methods [3, 4] aim to minimize the
entropy of the probability for the event Mx (x =
arg maxx′∈X f(x′)). Although not suitable for minimiz-
ing cumulative regret, ES methods are intuitively ideal for
minimizing simple regret. We hence in this section com-
pare the empirical performance of entropy search (ES) [3]
and predictive entropy search (PES) [4] to that of the EST
methods (EST/GP-UCB/PI) and EI.

Since both ES and PES only support squared exponential
covariance function and zero mean function in their code
right now, and it requires significant changes in their code
to accommodate other covariance functions, we created
synthetic functions that are different from the ones we used
in Section 4 in the paper. The new functions are sampled
from 1-D (80 functions) and 2-D GP (20 functions) with
squared exponential kernel (σf = 0.1 and l = 1) and 0
mean. Function examples are shown in Figure 4.

We show the results on these synthetic functions in Fig-
ure 5,6, and a standard optimization test function, Branin
Hoo function, in Figure 7. It is worth noting that ES meth-
ods make queries on the most informative points, which are
not necessarily the points with low regret. At each round,
ES methods make a “query” on the black-box function, and
then make a “guess” of the arg max of the function (but do
not test the “guess”). We plot the regret achieved by the
“guesses” made by ES methods. For the 1-D GP task, all
the methods behave similarly and achieve zero regret ex-
cept RAND. For the 2-D GP task, EI is the fastest method to
converge to zero regret, and in the end ESTn, PI,EI and ES
methods achieve similar results. For the test on Branin Hoo
function, PES achieves the lowest regret. ESTa converges
slightly faster than PES, but to a slightly higher regret.

We also compared the running time for all the methods in
Table 2. 1 It is assumed in GP optimization that it is more
expensive to evaluate the blackbox function than comput-
ing the next query to evaluate using GP optimization tech-
niques. However, in practice, we still want the algorithm
to output the next query point as soon as possible. For ES
methods, it can be sometimes unacceptable to run them for
black-box functions that take minutes to complete a query.

References

[1] Li Fei-Fei, Rob Fergus, and Pietro Perona. Learning
generative visual models from few training examples:
An incremental Bayesian approach tested on 101 ob-

1All of the methods were run with MATLAB (R2012b), on
Intel(R) Xeon(R) CPU E5645 @ 2.40GHz.
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Figure 4: Examples of a function sampled from 1-D GP
(left), and a function sampled from 2-D GP (right) with
squared exponential kernel and 0 mean functions. These
functions can be easier than the ones in Figure 2 since they
have fewer local optima.

t

20 40 60 80 100 120 140

r t

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

RAND

UCB

EI

PI

ES

PES

ESTn

Figure 5: Simple regret for functions sampled from 1-D GP
with squared exponential kernel and 0 mean.



Zi Wang, Bolei Zhou, Stefanie Jegelka

t

0
1
0

2
0

3
0

4
0

accuracy on val set 0
.6

1
5

0
.6

2

0
.6

2
5

0
.6

3

0
.6

3
5

0
.6

4

C
a
lt
e
c
h
1
0
1

R
A

N
D

U
C

B

E
I

P
I

E
S

T
a

E
S

T
n

t
0

1
0

2
0

3
0

4
0

accuracy on val set

0
.4

2

0
.4

3

0
.4

4

0
.4

5

0
.4

6

C
a
lt
e
c
h
2
5
6

R
A

N
D

U
C

B

E
I

P
I

E
S

T
a

E
S

T
n

t
0

1
0

2
0

3
0

4
0

accuracy on val set

0
.6

7

0
.6

7
5

0
.6

8

0
.6

8
5

0
.6

9

0
.6

9
5

0
.7

0
.7

0
5

In
d
o
o
r6

7

R
A

N
D

U
C

B

E
I

P
I

E
S

T
a

E
S

T
n

t

0
1
0

2
0

3
0

4
0

accuracy on val set 0
.5

6
8

0
.5

7

0
.5

7
2

0
.5

7
4

0
.5

7
6

0
.5

7
8

0
.5

8

0
.5

8
2

S
U

N
3
9
7

R
A

N
D

U
C

B

E
I

P
I

E
S

T
a

E
S

T
n

t
0

1
0

2
0

3
0

4
0

accuracy on val set

0
.4

3

0
.4

4

0
.4

5

0
.4

6

0
.4

7

0
.4

8
A

c
ti
o
n
4
0

R
A

N
D

U
C

B

E
I

P
I

E
S

T
a

E
S

T
n

t
0

1
0

2
0

3
0

4
0

accuracy on val set

0
.8

9
5

0
.9

0
.9

0
5

0
.9

1

0
.9

1
5

0
.9

2
E

v
e
n
t8

R
A

N
D

U
C

B

E
I

P
I

E
S

T
a

E
S

T
n

Fi
gu

re
3:

M
ax

im
um

ac
cu

ra
cy

on
th

e
va

lid
at

io
n

se
to

ve
r

ite
ra

tio
n

of
th

e
op

tim
iz

at
io

n.
E

xp
er

im
en

ts
ar

e
re

pe
at

ed
5

tim
es

.
T

he
vi

su
al

fe
at

ur
es

us
ed

he
re

ar
e

D
ee

p
C

N
N

fe
at

ur
es

pr
e-

tr
ai

ne
d

on
th

e
Pl

ac
es

da
ta

ba
se

.



Optimization as Estimation with Gaussian Processes in Bandit Settings (Supplement)

Table
1:C

lassification
accuracy

on
the

testsetofthe
datasets

afterthe
m

odelparam
eteris

tuned
by

E
STa

and
E

ST
n.Tuning

achieves
good

im
provem

entoverthe
results

in
[14].

C
altech101

C
altech256

Indoor67
SU

N
397

A
ction40

E
vent8

Im
agenet-C

N
N

feature
87.22

67.23
56.79

42.61
54.92

94.42
E

STa
88.23

69.39
60.02

47.13
57.60

94.91
E

ST
n

88.25
69.39

60.08
47.21

57.58
94.86

Places-C
N

N
feature

65.18
45.59

68.24
54.32

42.86
94.12

E
STa

66.94
47.51

70.27
58.57

46.24
93.79

E
ST

n
66.95

47.43
70.27

58.65
46.17

93.56



Zi Wang, Bolei Zhou, Stefanie Jegelka

t

100 200 300 400 500

r t

0

0.5

1

1.5

2

2.5

3

RAND

UCB

EI

PI

ES

PES

ESTn

Figure 6: Simple regret for functions sampled from 2-D GP
with squared exponential kernel and 0 mean.

t

5 10 15 20

r t

0

5

10

15

20

25

30

35

40

45

50

RAND

UCB

EI

PI

ES

PES

ESTa

ESTn

Figure 7: Simple regret for Branin Hoo function.
UCB/EI/PI/ESTa/ESTn use the isotropic Matérn kernel
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Table 2: Comparison on the running time (s) per iteration.
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