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Abstract

Recently, there has been rising interest in
Bayesian optimization – the optimization of an
unknown function with assumptions usually ex-
pressed by a Gaussian Process (GP) prior. We
study an optimization strategy that directly uses
an estimate of the argmax of the function. This
strategy offers both practical and theoretical ad-
vantages: no tradeoff parameter needs to be se-
lected, and, moreover, we establish close connec-
tions to the popular GP-UCB and GP-PI strate-
gies. Our approach can be understood as auto-
matically and adaptively trading off exploration
and exploitation in GP-UCB and GP-PI. We il-
lustrate the effects of this adaptive tuning via
bounds on the regret as well as an extensive em-
pirical evaluation on robotics and vision tasks,
demonstrating the robustness of this strategy for
a range of performance criteria.

1 Introduction

The optimization of an unknown function that is expensive
to evaluate is an important problem in many areas of sci-
ence and engineering. Bayesian optimization uses proba-
bilistic methods to address this problem. In particular, an
increasingly popular direction has been to model smooth-
ness assumptions on the function via a Gaussian Process
(GP). The Bayesian approach provides a posterior distri-
bution of the unknown function, and thereby uncertainty
estimates that help decide where to evaluate the function
next, in search of a maximum. Recent successful appli-
cations of this Bayesian optimization framework include
the tuning of hyperparameters for complex models and al-
gorithms in machine learning, robotics, and computer vi-
sion [3, 6, 16, 19, 29, 32].

Despite progress on theory and applications of Bayesian
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optimization methods, the practitioner continues to face
many options: there is a menu of algorithms, and their rela-
tions and tradeoffs are only partially understood. Typically,
the points where the function is evaluated are selected se-
quentially; and the choice of the next point is based on ob-
served function values at the previous points. Popular al-
gorithms vary in their strategies to pick the next point: they
select the point that maximizes the probability of improve-
ment (GP-PI) [17]; the expected improvement (GP-EI) [22];
or an upper confidence bound (GP-UCB) [30] on the max-
imum function value. Another alternative is entropy search
(ES) [12], which aims to minimize the uncertainty about
the location of the optimum of the function. Each algo-
rithm reduces the black-box function optimization problem
to a series of optimization problems of known acquisition
functions.

The motivations and analyses (if available) differ too: ob-
jectives include cumulative regret, where every evaluation
results in a reward or cost and the average of all function
evaluations is compared to the maximum value of the func-
tion; simple regret that takes into account only the best
value found so far [4]; the performance under a fixed fi-
nite budget [11]; or the uncertainty about the location of
the function maximizer [12]. Here, we focus on the estab-
lished objectives of cumulative regret in bandit games.

Notably, many of the above algorithms involve tuning a pa-
rameter to trade off exploration and exploitation, and this
can pose difficulties in practice [12]. Theoretical analyses
help in finding good parameter settings, but may be con-
servative in practice [30]. Computing the acquisition func-
tion and optimizing it to find the next point can be com-
putationally very costly too. For example, the computation
to decide which next point to evaluate for entropy search
methods tends to be very expensive, while GP-PI, GP-EI
and GP-UCB are much cheaper.

In this paper, we study an intuitive strategy that offers a
compromise between a number of these approaches and, at
the same time, establishes connections between them that
help understand when theoretical results can be transferred.
Our strategy uses the Gaussian Process to obtain an esti-
mate of the argument that maximizes the unknown function
f . The next point to evaluate is determined by this estimate.
This point, it turns out, is not necessarily the same as the
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the argument with the highest upper confidence bound.

This strategy has both practical and theoretical advantages.
On the theoretical side, we show connections to the popular
GP-UCB and GP-PI strategies, implying an intuitive and
provably correct way of setting the parameters in those im-
portant methods. Moreover, we establish bounds on the re-
gret of our estimation strategy. From a practical viewpoint,
our strategy obviates any costly parameter tuning. In fact,
we show that it corresponds to automatically and adap-
tively tuning the parameters of GP-UCB and GP-PI. Our
empirical evaluation includes problems from non-convex
optimization, robotics, and computer vision. The experi-
ments show that our strategy performs similarly to or even
better than the best competitors in terms of cumulative re-
gret. Although not designed to minimize simple regret di-
rectly, in practice our method also works well as measured
by simple regret, or by the number of steps to reach a fixed
regret value. Together, these results suggest that our strat-
egy is easy to use and empirically performs well across a
spectrum of settings.

Related work. The practical benefits of Bayesian opti-
mization have been shown in a number of applications [3,
6, 19, 29, 32, 33]. Different Bayesian optimization algo-
rithms differ in the selection criteria of the next point to
evaluate, i.e., the acquisition function. Popular criteria in-
clude the expected improvement (GP-EI) [22], the prob-
ability of improving over a given threshold (GP-PI) [17],
and GP-UCB [30], which is motivated by upper confidence
bounds for multi-armed bandit problems [2, 1]. GP-EI,
GP-PI and GP-UCB have a parameter to select, and the
latter two are known to be sensitive to this choice. En-
tropy search (ES) [12] and the related predictive entropy
search (PES) [13] do not aim to minimize regret directly,
but to maximize the amount of information gained about
the optimal point. High-dimensional settings were con-
sidered in [7, 33]. Extensive empirical comparisons in-
clude [6, 29, 20]. Theoretical bounds on different forms
of regret were established for GP-UCB [30] and GP-EI [5].
Other theoretical studies focus on simple regret [4, 11] or
finite budgets [11]. In this work, in contrast, we are moti-
vated by practical considerations.

1.1 Background and Notation

Let f(·) ∼ GP (0, k) be an unknown function we aim
to optimize over a candidate set X. At time step t,
we select point xt and observe a possibly noisy func-
tion evaluation yt = f(xt) + εt, where εt are i.i.d.
Gaussian noise N (0, σ2). Given the observations Dt =
{(xτ , yτ )}tτ=1 up to time t, we obtain the posterior mean
and covariance of the function via the kernel matrix Kt =
[k(xi,xj)]xi,xj∈Dt

and kt(x) = [k(xi,x)]xi∈Dt [24]:
µt(x) = kt(x)T(Kt + σ2I)−1yt, and kt(x,x

′) =
k(x,x′)−kt(x)T(Kt+σ

2I)−1kt(x′). The posterior vari-

ance is given by σ2
t (x) = kt(x,x). Furthermore, we de-

note by Q(·) the tail probability of the standard normal dis-
tribution φ(·), and by Φ(·) its cumulative probability.

The Bayesian Optimization setting corresponds to a bandit
game where, in each round t, the player chooses a point xt
and then observes yt = f(xt)+εt. The regret for round t is
defined as r̃t = maxx∈X f(x)− f(xt). The simple regret
for any T rounds is rT = mint∈[1,T ] r̃t, and the (average)
cumulative regret is RT = 1

T

∑T
t=1 r̃t.

1.2 Existing methods for GP optimization

We focus on the following three approaches for compari-
son, since they are most widely used in bandit settings.

GP-UCB. Srinivas et al. [30] provide a detailed analysis
for using upper confidence bounds [2] with GP bandits.
They propose the strategy xt = arg maxx∈X µt−1(x) +

λtσt−1(x) where λt = (2 log(|X|π2t2/(6δ)))
1
2 for finite

X. Their regret bound holds with probability 1− δ.

GP-EI. The GP-EI strategy [22] selects the point max-
imizing the expected improvement over a pre-specified
threshold θt [22]. For GPs, this improvement is given
in closed form as EI(x) = E[(f(x) − θt)+] =
[φ(γ(x))− γ(x)Q(γ(x))]σt−1(x), where γ(x) =
θt−µt−1(x)
σt−1(x)

. A popular choice for the threshold is θt =
maxτ∈[1,t−1] yτ .

GP-PI. The third strategy maximizes the probability
PI(x) = Pr[f(x) > θt] = 1−Φ(γ(x)) of improving over
a threshold θt [17], i.e., xt = arg minx∈X γ(x). GP-PI is
sensitive to the choice of θt: as we will see in Section 2, θt
trades off exploration and exploitation, and setting θt too
low (e.g., θt = maxτ∈[1,t−1] yτ ) can result in getting stuck
at a fairly suboptimal point. A popular choice in practice is
θt = maxτ∈[1,t−1] yτ + ε, for a chosen constant ε.

2 Optimization as estimation

In this work, we study an alternative criterion that provides
an easy-to-use and tuning-free approach: we use the GP
to estimate the arg max of f . In Section 2.1, we will see
how, as a side effect, this criterion establishes connections
between the above criteria. Our strategy eventually leads to
tighter bounds than GP-UCB as shown in Section 3.

Consider the posterior probability (in round t) that a fixed
x ∈ X is an arg max of f . We call this event Mx

and, for notational simplicity, omit the subscripts t − 1
here. The event Mx is equivalent to the event that for all
x′ ∈ X, we have v(x′) := f(x′) − f(x) ≤ 0. The dif-
ference v(x′) between two Gaussian variables is Gaussian:
v(x′) ∼ N (µ(x′)− µ(x), σ(x)2 + σ(x′)2 − 2k(x,x′)2).
The covariance for anyx′,x′′ ∈ X is Cov(v(x′), v(x′′)) =
σ(x)2 + k(x′,x′′)2 − k(x,x′)2 − k(x,x′′)2.
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The random variables {v(x′)}x′∈X determine the cumula-
tive probability

Pr[Mx|D] = Pr[∀x′ ∈ X, v(x′) ≤ 0|D]. (1)

This probability may be specified via limits as e.g. in [12,
App.A]. Moreover, due to the assumed smoothness of f ,
it is reasonable to work with a discrete approximation and
restrict the set of candidate points to be finite for now (we
discuss discretization further in Section 5). So the quantity
in Eqn. (1) is well-defined. Since computing Pr[Mx|D] for
large |X| can be costly, we use a “mean-field” approach and
approximate {f(x)}x∈X by independent Gaussian random
variables with means µ(x) and variances σ(x)2 for all x ∈
X. Given be the maximum value m of f , the probability of
the event Mx|m,D amounts to

Pr[Mx|m,D] ≈ Q
(m− µ(x)

σ(x)

) ∏

x′ 6=x

Φ
(m− µ(x′)

σ(x′)

)
.

Our estimation strategy (EST) chooses to evaluate
arg maxx∈X Pr[Mx|m̂,D] next, which is the function in-
put that is most likely to achieve the highest function value.

Of course, the function maximum m may be unknown. In
this case, we use a plug-in estimate via the posterior expec-
tation of Y = maxx∈X f(x) given D [26]:

m̂ = E[Y |D] (2)

=

∫ ∞

0

Pr[Y > y|D]− Pr[Y < −y|D] dy. (3)

If the noise in the observations is negligible, we can sim-
plify Eqn. (3) to be

m̂ = m0 +

∫ ∞

m0

1−
∏

x∈X
Φ
(w − µ(x)

σ(x)

)
dw (4)

where m0 = maxτ∈[1,t−1] yτ is the current observed max-
imum value. Under conditions specified in Section 3, our
approximation with the independence assumption makes m̂
an upper bound onm, which, as we will see, conservatively
emphasizes exploration a bit more. Other ways of setting
m̂ are discussed in Section 5.

2.1 Connections to GP-UCB and GP-PI

Next, we relate our strategy to GP-PI and GP-UCB: EST
turns out to be equivalent to adaptively tuning θt in GP-
PI and λt in GP-UCB. This observation reveals unifying
connections between GP-PI and GP-UCB and, in Section 3,
yields regret bounds for GP-PI with a certain choice of θt.
Lemma 2.1 characterizes the connection to GP-UCB:
Lemma 2.1. In any round t, the point selected by
EST is the same as the point selected by a variant of
GP-UCB with λt = minx∈X

m̂t−µt−1(x)
σt−1(x)

. Conversely,
the candidate selected by GP-UCB is the same as the
candidate selected by a variant of EST with m̂t =
maxx∈X µt−1(x) + λtσt−1(x).

Proof. We omit the subscripts t for simplicity. Let a be the
point selected by GP-UCB, and b selected by EST. Without
loss of generality, we assume a and b are unique. With
λ = minx∈X

m̂−µ(x)
σ(x) , GP-UCB chooses to evaluate

a = arg maxx∈X µ(x)+λσ(x) = arg minx∈X
m̂− µ(x)

σ(x)
.

This is because

m̂ = max
x∈X

µ(x) + λσ(x) = µ(a) + λσ(a).

By definition of b, for all x ∈ X, we have

Pr[Mb|m̂,D]

Pr[Mx|m̂,D]
≈
Q( m̂−µ(b)σ(b) )Φ( m̂−µ(x)σ(x) )

Q( m̂−µ(x)σ(x) )Φ( m̂−µ(b)σ(b) )
≥ 1.

The inequality holds if and only if m̂−µ(b)
σ(b) ≤ m̂−µ(x)

σ(x) for
all x ∈ X, including a, and hence

m̂− µ(b)

σ(b)
≤ m̂− µ(a)

σ(a)
= λ = min

x∈X
m̂− µ(x)

σ(x)
,

which, with uniqueness, implies that a = b and GP-UCB
and EST select the same point.

The other direction of the proof is similar and can be found
in the supplement.

Proposition 2.2. GP-PI is equivalent to EST when setting
θt = m̂t in GP-PI.

As a corollary of Lemma 2.1 and Proposition 2.2, we obtain
a correspondence between GP-PI and GP-UCB.

Corollary 2.3. GP-UCB is equivalent to GP-PI if λt is
set to minx∈X

θt−µt−1(x)
σt−1(x)

, and GP-PI corresponds to GP-
UCB if θt = maxx∈X µt−1(x) + λtσt−1(x).

Algorithm 1 GP-UCB/PI/EST

1: t← 1;D0 ← ∅
2: while stopping criterion not reached do
3: µt−1,Σt−1← GP-predict(X|Dt−1)

4: m̂t =





maxx∈X µt−1(x) + λtσt−1(x) GP-UCB
max1≤τ<t yτ + ε GP-PI
E[Y |Dt−1] (see Eqn. (3)/Eqn. (4)) EST

5: xt ← arg minx∈X
m̂t−µt−1(x)

σt−1(x)

6: yt ← f(xt) + εt, εt ∼ N (0, σ2)
7: Dt ← {xτ , yτ}tτ=1

8: t← t+ 1
9: end while

Proposition 2.2 suggests that we do not need to calcu-
late the probability Pr[Mx|m̂t,Dt−1] directly when im-
plementing EST. Instead, we can reduce EST to GP-PI
with an automatically tuned target value θt. Algorithm 1
compares the pseudocode for all three methods. We use
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“GP-predict” to denote the update for the posterior mean
and covariance function for the GP as described in Sec-
tion 1.1. GP-UCB/PI/EST all share the same idea of reach-
ing a target value (m̂t in this case), and thereby trading
off exploration and exploitation. GP-UCB in [30] can
be interpreted as setting the target value to be a loose
upper bound maxx∈X µt−1(x) + λtσt−1(x) with λt =

(2 log(|X|π2t2/6δ))
1
2 , as a result of applying the union

bound over X1. GP-PI applies a fixed upwards shift of ε
over the current maximum observation maxτ∈[1,t−1] yτ . In
both cases, the exploration-exploitation tradeoff depends
on the parameter to be set. EST implicitly and automati-
cally balances the two by estimating the maximum. Viewed
as GP-UCB or GP-PI, it automatically sets the respective
parameter.

Note that this change by EST is not only intuitively reason-
able, but it also leads to vanishing regret, as will become
evident in the next section.

3 Regret Bounds

In this section, we analyze the regret of EST. We first show
a bound on the cumulative regret both in expectation and
with high probability, with the assumption that our estima-
tion m̂t is always an upper bound on the maximum of the
function. Then we interpret how this assumption is satis-
fied via Eqn. (3) and Eqn. (4) under the condition specified
in Corollary 3.5.
Theorem 3.1. We assume m̂t ≥ maxx∈X f(x),∀t ∈
[1, T ], and restrict k(x,x′) ≤ 1. Let σ2 be the vari-
ance of the Gaussian noise in the observation, γT the
maximum information gain of the selected points, C =
2/ log(1 + σ−2), and t∗ = arg maxt νt where νt ,
minx∈X

m̂t−µt−1(x)
σt−1(x)

. The cumulative expected regret sat-

isfies
∑T
t=1 E [r̃t|Dt−1] ≤ νt∗

√
CTγT .With probability at

least 1 − δ, it holds that
∑T
t=1 r̃t ≤ (νt∗ + ζT )

√
CTγT ,

with ζT = (2 log( T2δ ))
1
2 .

The information gain γT after T rounds is the maxi-
mum mutual information that can be gained about f from
T measurements: γT = maxA⊆X,|A|≤T I(yA,fA) =

maxA⊆X,|A|≤T
1
2 log det(I + σ−2KA). For the Gaussian

kernel, γT = O((log T )d+1), and for the Matérn kernel,
γT = O(T d(d+1)/(2ξ+d(d+1)) log T ) where d is the dimen-
sion and ξ is the roughness parameter of the kernel [30,
Theorem 5].

The proof of Theorem 3.1 follows [30] and relies on the
following lemmas which are proved in the supplement.

1Since Pr[|f(x) − µ(x)| > λtσ(x)] ≤ e
−λ2t

2 , applying the
union bound results in Pr[|f(x)− µ(x)| > λtσ(x),∀x ∈ X] ≤
|X|e

−λ2t
2 . This means f(x) ≤ maxx∈X µ(x) + λtσ(x) with

probability at least 1− |X|e
−λ2t

2 [30, Lemma 5.1].

Lemma 3.2. Pick δ ∈ (0, 1) and set ζt = (2 log(πt2δ ))
1
2 ,

where
∑T
t=1 π

−1
t ≤ 1, πt > 0. Then, for EST, it holds

that Pr[µt−1(xt) − f(xt) ≤ ζtσt−1(xt)] ≥ 1 − δ, for all
t ∈ [1, T ].

Lemma 3.2 is similar to but not exactly the same as [30,
Appendix A.1]: while they use a union bound over all of X,
here, we only need a union bound over the actually evalu-
ated points {xt}Tt=1. This difference is due to the different
selection strategies.

Lemma 3.3. If µt−1(xt) − f(xt) ≤ ζtσt−1(xt), the
regret at time step t is upper bounded as r̃t ≤ (νt +

ζt)σt−1(xt) , where νt , minx∈X
m̂t−µt−1(x)
σt−1(x)

, and m̂t ≥
maxx∈X f(x), ∀t ∈ [1, T ].

The proof of Theorem 3.1 now follows from Lemmas 3.2,
3.3, and Lemma 5.3 in [30].

Proof. (Thm. 3.1) The expected regret of round t is
E[r̃t|Dt−1] ≤ m̂t − µt−1(xt) = νtσt−1(xt). Using
t∗ = arg maxt νt, we obtain that

∑T
t=1 E [r̃t|Dt−1] ≤

νt∗
∑T
t=1 σt−1(xt).

To bound the sum of variances, we first use that
(1 + a)x ≤ 1 + ax for 0 ≤ x ≤ 1 and the
assumption σt−1(xt) ≤ k(xt,xt) ≤ 1 to obtain

σ2
t−1(xt) ≤ log(1+σ−2σ2

t−1(xt))

log(1+σ−2) . Lemma 5.3 in [30] now

implies that
∑T
t=1 σ

2
t−1(xt) ≤ 2

log(1+σ−2)I(yT ;fT ) ≤
2

log(1+σ−2)γT . The Cauchy-Schwarz inequality leads to
∑T
t=1 σt−1(xt) ≤

√
T
∑T
t=1 σ

2
t−1(xt) ≤

√
2TγT

log(1+σ−2) .

Together, we have the final regret bound

T∑

t=1

E [r̃t|Dt−1] ≤ νt∗
√

2T

log(1 + σ−2)
γT .

Next we show a high probability bound. The condi-
tion of Lemma 3.3 holds with high probability because of
Lemma 3.2. Thus with probability at least 1− δ, the regret
for round t is bounded as follows,

r̃t ≤ (νt + ζt)σt−1(xt) ≤ (νt∗ + ζT )σt−1(xt),

where ζt = 2 log(πt2δ ), πt = π2t2

6 , and t∗ = arg maxt νt.
Therefore, with probability at least 1− δ,

T∑

t=1

r̃t ≤ (νt∗ + ζT )

√
2TγT

log(1 + σ−2)
.

Next we show that if we estimate m̂t as described in Sec-
tion 2 by assuming all the {f(x)}x∈X are independent con-
ditioned on the current sampled data Dt, m̂t can be guar-
anteed to be an upper bound on the function maximum m
given kt(x,x′) ≥ 0,∀x,x′ ∈ X.
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Lemma 3.4 (Slepian’s Comparison Lemma [28, 21]). Let
u,v ∈ Rn be two multivariate Gaussian random vectors
with the same mean and variance, such that E[vivj ] ≤
E[uiuj ],∀i, j. Then E[supi∈[1,n] vi] ≥ E[supi∈[1,n] ui].

Slepian’s Lemma implies a relation between our approxi-
mation m̂t and m.

Corollary 3.5. Assume g ∼ GP (µ, k) has posterior mean
µt(x) and posterior covariance kt(x,x′) ≥ 0,∀x,x′ ∈ X
conditioned on Dt. Define a series of independent ran-
dom variables h(x) with equivalent mean µt(x) and poste-
rior variance kt(x,x), ∀x ∈ X. Then, E[supx∈X h(x)] ≥
E[supx∈X g(x)].

Proof. By independence, ∀x,x′ ∈ X

0 = E[h(x)h(x′)]− E[h(x)]E[h(x′)]

≤ E[g(x)g(x′)]− E[g(x)]E[g(x′)]

Hence, Slepian’s Lemma implies that E[supx∈X h(x)] ≥
E[supx∈X g(x)].

Corollary 3.5 assumes that kt(x,x′) ≥ 0, ∀x,x′ ∈ X.
This depends on the choice of X and k. Notice that
kt(x,x

′) ≥ 0 is only a sufficient condition and, even if
the assumption fails, m̂t is often still an upper bound on m
in practice (illustrations in the supplement).

In contrast, the results above are not necessarily true for
any arbitrary θt in GP-PI, an important distinction between
GP-PI and GP-EST.

Before evaluating the EST strategy empirically, we make
a few important observations. First, EST does not re-
quire manually setting a parameter that trades off explo-
ration and exploitation. Instead, it corresponds to auto-
matically, adaptively setting the tradeoff parameters λt in
GP-UCB and θt in GP-PI. For EST, this means that if the
gap νt is large, then the method focuses more on explo-
ration, and if “good” function values (i.e., close to m̂t) are
observed, then exploitation increases. If we write EST as
GP-PI, we see that by Eqn. (4), the estimated m̂t always
ensures θt > maxτ∈[1,T ] yτ , which is known to be advan-
tageous in practice [20]. These analogies likewise suggest
that θt = maxτ∈[1,T ] yτ corresponds to a very small λt in
GP-UCB, and results in very little exploration, offering an
explanation for the known shortcomings of this θt.

4 Experiments

We test EST2 in three domains: (1) synthetic black
box functions; (2) initialization tuning for trajectory op-
timization; and (3) parameter tuning for image classifica-
tion. We compare the following methods: EST with a

2The code is available at https://github.com/zi-w/GP-EST.

Table 1: Minimum Regret r(t) and time to achieve this
minimum for functions sampled from 1-D (top) and 2-D
Gaussian Processes (bottom) with a limited budget of iter-
ations. ESTa and ESTn achieve lower regret values (rmin)
faster than other methods (Tmin). Here, ‘¯’ denotes the
mean and ‘ˆ’ the median.

1-D GP, max 150 rounds
RAND UCB EI PI ESTa ESTn

T̂min 79.5 53 8 7 26 23
r̂min 0.051 0.000 0.088 0.487 0.000 0.000
T̄min 78.4 50.9 9.77 8.32 26.1 21.9
r̄min 0.107 0.000 0.295 0.562 0.024 0.043

2-D GP, max 1000 rounds
RAND UCB EI PI ESTa ESTn

T̂min 450.5 641.5 40.5 45 407.5 181
r̂min 0.640 0.090 1.035 1.290 0.000 0.000
T̄min 496.3 573.8 48.4 59.8 420.7 213.4
r̄min 0.671 0.108 0.976 1.26 0.021 0.085

Laplace approximation, i.e., approximating the integrand in
Eqn. (4) by a truncated Gaussian (ESTa, details in supple-
ment); EST with numerical integration to evaluate Eqn. (4)
(ESTn); UCB; EI; PI; and random selection (RAND). We
omit the ’GP-’ prefix for simplicity.

For UCB, we follow [30] to set λt with δ = 0.01. For PI,
we use ε = 0.1. These parameters are coarsely tuned via
cross validation to ensure a small number of iterations for
achieving low regret. Additional experimental results and
details may be found in the supplement.

4.1 Synthetic Data

We sampled 200 functions from a 1-D GP and 100 func-
tions from a 2-D GP with known priors (Matérn kernel and
linear mean function). The maximum number of rounds
was 150 for 1-D and 1000 for 2-D. The first samples were
the same for all the methods to minimize randomness ef-
fects. Table 1 shows the lowest simple regret achieved
(rmin) and the number of rounds needed to reach it (Tmin).
We measure the mean (T̄min and r̄min) and the median
(T̂min and r̂min). Figure 1(a) illustrates the average simple
regret and the standard deviation (scaled by 1/4). While
the progress of EI and PI quickly levels off, the other meth-
ods continue to reduce the regret, ESTn being the fastest.
Moreover, the standard deviation of ESTa and ESTn is
much lower than that of PI and EI. RAND is inferior both in
terms of Tmin and rmin. UCB finds a good point but takes
more than twice as many rounds as EST for doing so.

Figure 1(b) shows the cumulative regret RT . As for the
simple regret, we see that EI and PI focus too much on ex-
ploitation, stalling at a suboptimal point. EST converges
to lower values, and faster than UCB. For additional intu-
ition on cumulative regret, Figure 1(c) plots the cumulative
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Figure 1: (a) Simple regrets for functions sampled from 1-D GP and 2-D GP over the number of rounds. ESTn quickly
minimizes regret. (b) Cumulative regrets for functions sampled from 1-D GP and 2-D GP. ESTn lowers the regret more
than PI and EI and faster than UCB. (c) Regrets r̃t and simple regrets rt for a 3-D function sampled from GP and the 3-D
Hartmann function. Here, EST is ESTa. For EST, the regret in each round is usually less than that of UCB, explaining
UCB’s higher cumulative regret.

regret r̃t and the simple regret rt for UCB and EST for a
function sampled from 3-D GP and a standard optimization
test function (the 3-D Hartmann function). UCB tends to
have higher cumulative regret than other methods because
it keeps exploring drastically even after having reached the
optimum of the function. This observation is in agreement
with the experimental results in [30] (they improved UCB’s
performance by scaling λt down by a factor of 5), indicat-
ing that the scheme of setting λt in UCB is not always ideal
in practice.

In summary, the results for synthetic functions suggest that
throughout, compared to other methods, EST finds better
function values within a smaller number of iterations.

4.2 Initialization Tuning for Trajectory Optimization

In online planning, robots must make a decision quickly,
within a possibly unknown budget (humans can stop the
“thinking period” of the robot any time, asking for a feasi-
ble and good decision to execute). We consider the prob-
lem of trajectory optimization, a non-convex optimization
problem that is commonly solved via sequential quadratic
programming (SQP) [27]. The employed solvers suffer
from sub-optimal local optima, and, in real-world scenar-
ios, even merely reaching a feasible solution can be chal-
lenging. Hence, we use Bayesian Optimization to tune the

Table 2: Lowest reward attained in 20 rounds on the air-
plane problem (illustrated in Figure 2). The results are av-
erages over 8 settings.

RAND UCB EI
mean 27.4429 29.2021 29.1832
std 3.3962 3.1247 3.1377

PI ESTa ESTn
mean 28.0214 27.7587 29.2071
std 4.1489 4.2783 3.1171

initialization for trajectory optimization. In this setting, x
is a trajectory initialization, and f(x) the score of the solu-
tion returned by the solver after starting it at x.

Our test example is the 2D airplane problem from [31],
illustrated in Figure 2. We used 8 configurations of the
starting point and fixed the target. Our candidate set X of
initializations is a grid of the first two dimensions of the
midpoint state of the trajectory (we do not optimize over
speed here). To solve the SQP, we used SNOPT [9]. Fig-
ure 2 shows the maximum rewards achieved up to round
t (standard deviations scaled by 0.1), and Table 2 displays
the final rewards. ESTn achieves rewards on par with the
best competitors. Importantly, we observe that Bayesian
optimization achieves much better results than the standard
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Figure 2: (a) Illustration of trajectory initializations. Trajectory initializations are passed to the non-convex optimization
solver to ensure a solution with as few collisions with the obstacles as possible. (b) Maximum rewards up to round t. EI
and ESTn perform relatively better than other methods.

random restarts, indicating a new successful application of
Bayesian optimization.

4.3 Parameter Tuning for Image Classification

Our third set of experiments addresses Bayesian optimiza-
tion for efficiently tuning parameters in visual classifica-
tion tasks. Here, x is the model parameter and y the accu-
racy on the validation set. Our six image datasets are stan-
dard benchmarks for object classification (Caltech101 [8]
and Caltech256 [10]), scene classification (Indoor67 [23]
and SUN397 [34]), and action/event classification (Ac-
tion40 [35] and Event8 [18]). The number of images per
data set varies from 1,500 to 100,000. We use deep CNN
features pre-trained on ImageNet [14], the state of the art
on various visual classification tasks [25].

Our experimental setup follows [36]. The data is split into
training, validation (20% of the original training set) and
test set following the standard settings of the datasets. We
train a linear SVM using the deep features, and tune its reg-
ularization parameter C via Bayesian optimization on the
validation set. After obtaining the parameter recommended
by each method, we train the classifier on the whole train-
ing set, and then evaluate on the test set.

Figure 3 shows the maximum achieved accuracy on the val-
idation set during the iterations of Bayesian optimization
on the six datasets. While all methods improve the classi-
fication accuracy, ESTa does so faster than other methods.
Here too, PI and EI seem to explore too little. Table 3 dis-
plays the accuracy on the test set using the best parameter
found by ESTa and ESTn, indicating that the parameter
tuning via EST improved classification accuracy. For ex-
ample, the tuning improves the accuracy on Action40 and
SUN397 by 3-4% over the results in [36].

5 Discussion

Next, we discuss a few further details and extensions.

Table 3: Classification accuracy for visual classification
on the test set after the model parameter is tuned. Tuning
achieves good improvements over the results in [36].

Caltech101 Caltech256 Indoor67
[36] 87.22 67.23 56.79
ESTa 88.23 69.39 60.02
ESTn 88.25 69.39 60.08

SUN397 Action40 Event8
[36] 42.61 54.92 94.42
ESTa 47.13 57.60 94.91
ESTn 47.21 57.58 94.86

Setting m̂. In Section 2, we discussed one way of set-
ting m̂. There, we used an approximation with independent
variables. We focused on Equations (3) and (4) through-
out the paper since they yield upper bounds m̂ ≥ m that
preserve our theoretical results. Nevertheless, other possi-
bilities for setting m̂ are conceivable. For example, close
in spirit to Thompson and importance sampling, one may
sample m̂ from Pr[Y ] =

∏
x∈X Φ(Y−µ(x)σ(x) ). Furthermore,

other search strategies can be used, such as guessing or
doubling, and prior knowledge about properties of f such
as the range can be taken into account.

Discretization. In our approximations, we used dis-
cretizations of the input space. While adding a bit more
detail about this step here, we focus on the noiseless case,
described by Equation (4). Equation (3) can be analyzed
similarly for more general settings. For a Lipschitz con-
tinuous function, it is essentially sufficient to estimate the
probability of f(x) ≤ y,∀x ∈ X on set W, which is a
ρ-covering of X.

We assume that f is Lipschitz continuous. Our analysis can
be adapted to the milder assumption that f is Lipschitz con-
tinuous with high probability. Let L be the Lipschitz con-
stant of f . By assumption, we have |f(x)− f(x′)| ≤ Lρ,
for all ‖x−x′‖ ≤ ρ. If X is a continuous set, we construct
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Figure 3: Maximum accuracy on the validation set over the iteration of the optimization. ESTa converges faster than other
methods. Experiments are repeated 5 times, the standard deviation is scaled by 1/4.

its ρ-covering W such that ∀x ∈ X, infx′∈W ‖x−x′‖ ≤ ρ.
Let EX(y) be the event that f(x) ≤ y,∀x ∈ X. Then,
Pr[EX(y)] ≥ Pr[EW(y − ρL), EX\W(y)] = Pr[EW(y −
ρL)] The last step uses Lipschitz continuity to compute
Pr[EX\W(y)|[EW(y − ρL)] = 1. We can use this lower
bound to compute m̂, so m̂ remains an upper bound on m.
Notably, none of the regret bounds relies on a discretiza-
tion of the space. Morever, once m̂ is chosen, the acqui-
sition function can be optimized with any search method,
including gradient descent.

High dimensions. Bayesian Optimization methods gen-
erally suffer in high dimensions. Common assumptions
are a low-dimensional or simpler underlying structure of f
[7, 33, 15]. Our approach can be combined with those
methods too, to be extended to higher dimensions.

Relation to entropy search. EST is closely related to
entropy search (ES) methods [12, 13], but also differs in
a few important aspects. Like EST, ES methods approx-
imate the probability of a point x being the maximizer
arg maxx′∈X f(x′), and then choose where to evaluate
next by optimizing an acquisition function related to this
probability. However, instead of choosing the input that is
most likely to be the arg max, ES chooses where to evalu-
ate next by optimizing the expected change in the entropy
of Pr[Mx]. One reason is that ES does not aim to mini-
mize cumulative regret like many other bandit methods (in-
cluding EST). The cumulative regret penalizes all queried
points, and a method that minimizes the cumulative regret

needs to query enough supposedly good points. ES meth-
ods, in contrast, purely focus on exploration, since their
objective is to gather as much information as possible to
estimate a final value in the very end. Since the focus of
this work lies on cumulative regret, detailed empirical com-
parisons between EST and ES may be found in the supple-
ment.

6 Conclusion

In this paper, we studied a new Bayesian optimization
strategy derived from the viewpoint of the estimating the
arg max of an unknown function. We showed that this
strategy corresponds to adaptively setting the trade-off pa-
rameters λ and θ in GP-UCB and GP-PI, and established
bounds on the regret. Our experiments demonstrate that
this strategy is not only easy to use, but robustly performs
well by measure of different types of regret, on a variety of
real-world tasks from robotics and computer vision.
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