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Abstract

Probabilistic graphical models have been widely
used to model complex systems and aid scien-
tific discoveries. Most existing work on high-
dimensional estimation of exponential family
graphical models, including Gaussian and Ising
models, is focused on consistent model selection.
However, these results do not characterize uncer-
tainty in the estimated structure and are of lim-
ited value to scientists who worry whether their
findings will be reproducible and if the estimated
edges are present in the model due to random
chance. In this paper, we propose a novel estima-
tor for edge parameters in an exponential family
graphical models. We prove that the estimator is√
n-consistent and asymptotically Normal. This

result allows us to construct confidence intervals
for edge parameters, as well as, hypothesis tests.
We establish our results under conditions that are
typically assumed in the literature for consistent
estimation. However, we do not require that the
estimator consistently recovers the graph struc-
ture. In particular, we prove that the asymptotic
distribution of the estimator is robust to model se-
lection mistakes and uniformly valid for a large
number of data-generating processes. We illus-
trate validity of our estimator through extensive
simulation studies.

1 Introduction
Probabilistic graphical models [Lauritzen, 1996] have been
widely used to explore complex system and aid scientific
discovery in areas ranging from biology and neuroscience
to financial modeling and social media analysis. An undi-
rected graphical model consists of a graph G = (V,E),
where V = {1, . . . , p} is the set of vertices and E is the
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set of edges, and a p-dimensional random vector X =
(X1, . . . , Xp)

T that is Markov with respect to G. In par-
ticular, we have that Xa and Xb are conditionally indepen-
dent given X\ab = {Xc | c ∈ {1, . . . , p}\{a, b}} if and
only if (a, b) 6∈ E. One of the central questions in high-
dimensional statistics is estimation of the undirected graph
G given n independent realizations of X , as well as quan-
tifying uncertainty of the estimator.

We focus on a class of pairwise exponential family graph-
ical models where the node conditional distribution of Xa

given X\a = {Xc | c ∈ V \a} is specified by an exponen-
tial family

logP
(
Xa | X\a; θ∗

)
= Ψa(Xa)

(
θ∗aa +

∑

b∈N(a)

θ∗abΨb(Xb)
)

+Ca(Xa)− Ā
(
θ∗aa +

∑

b∈N(a)

θ∗abΨb(Xb)
)

where {Ψa(·)}a∈V are sufficient statistics, Ca(Xa) is the
base measure,

Ā(t) = log

∫
exp

(
Ψa(Xa) · t+ Ca(Xa)

)
dXa (1)

is the log-partition function, andN(a) = {b ∈ V | (a, b) ∈
E} are neighbors of the node a in the graph G. These con-
ditional distributions specify the following unique joint dis-
tribution [Yang et al., 2015]:

logP(X; θ∗) =
∑

a∈V
θ∗aaΨa(Xa)

+
∑

(a,b)∈E
θ∗abΨa(Xa)Ψb(Xb)

+
∑

a∈V
Ca(Xa)−A(θ∗), (2)

where A(θ∗) is the log partition function for the joint
model. The model (2) considered here is general and in-
cludes Gaussian [Meinshausen and Bühlmann, 2006], Ising
[Ravikumar et al., 2010] as special case. Given n inde-
pendent observations x1, . . . , xn from the model in (2), we
construct a

√
n consistent estimator of a parameter θ∗ab and
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show that it is asymptotically normal. Based on this result,
we perform (asymptotic) inference for coefficients θ∗. In
particular, we construct valid confidence intervals for pa-
rameters in the model with nominal coverage and propose
statistical tests with nominal size to test existence of edges
in the graphical model. Our inference results are uniformly
valid over a large class of data generating procedures and
are robust to model selection mistakes, which commonly
occur in ultra-high dimensional setting. Our results are of
fundamental importance to scientists who are interested in
uncertainty associated with point estimates. For example,
given a point estimate θ̂ of θ∗, a scientist does not know if
an edge is present in the estimated model due to random
fluctuation or there is indeed a statistically significant con-
ditional dependence between two nodes. Therefore, our
results complement existing results in the literature, which
are focused on consistent model selection and parameter
recovery, as we review below.

Related work. Our work contributes to two areas. First,
we contribute to the growing literature on graphical model
selection in high-dimensions. A lot of work has been done
under the assumption that X ∼ N(0,Σ), in which case
the edge set E of the graph G is encoded by the non-
zero elements of the precision matrix Ω [Meinshausen and
Bühlmann, 2006, Yuan and Lin, 2007, Rothman et al.,
2008, Friedman et al., 2008, d’Aspremont et al., 2008, Fan
et al., 2009, Lam and Fan, 2009, Yuan, 2010, Cai et al.,
2011, Liu and Wang, 2012, Zhao and Liu, 2014]. Learning
structure of the Ising model based on the penalized pseudo-
likelihood was studied in [Höfling and Tibshirani, 2009,
Ravikumar et al., 2010, Xue et al., 2012]. More recently,
[Yang et al., 2015] studied estimation of graphical models
under the assumption that the node conditional distribution
belongs to an exponential family distribution. Such node
conditional distribution includes many standard distribu-
tions, including Bernoulli, Gaussian, Poisson and exponen-
tial. Furthermore, there exist joint distributions, consistent
with these node conditional distributions, that include large
number of familiar graphical models, including Gaussian
graphical model, Ising model and mixed graphical models
[Lee and Hastie, 2012, Chen et al., 2013a, Cheng et al.,
2013, Yang et al., 2014, 2013, 2015, Yuan et al., 2013, Guo
et al., 2011]. In our paper, we construct a novel

√
n con-

sistent estimator of a parameter corresponding to a particu-
lar edge in a pairwise exponential family graphical model.
This is a first procedure that can obtain parametric rate of
convergence for an edge parameter in an exponential fam-
ily graphical model.

Second, we contribute to the literature on high-dimensional
inference. Recently, there has been a lot of interest on per-
forming valid statistical inference in the high-dimensional
setting. [Zhang and Zhang, 2013, Belloni et al., 2013a,b,
van de Geer et al., 2014, Javanmard and Montanari, 2014,
2013, Ning and Liu, 2014a,b, Farrell, 2013] developed

methods for construction of confidence intervals for low di-
mensional parameters in high-dimensional linear and gen-
eralized linear models, as well as hypothesis tests. These
methods construct honest, uniformly valid confidence in-
tervals and hypothesis test based on the `1 penalized esti-
mator in the first stage. Similar results were obtained in the
context of `1 penalized least absolute deviation and quan-
tile regression [Belloni et al., 2013c,d]. [Lockhart et al.,
2014] study significance of the input variables that enter the
model along the lasso path. [Lee et al., 2013, Taylor et al.,
2014] perform post-selection inference conditional on the
selected model. [Liu, 2013, Ren et al., 2013, Chen et al.,
2013b] construct

√
n consistent estimators for elements of

the precision matrix Ω under a Gaussian assumption. We
contribute to the literature by demonstrating how to con-
struct estimators that are robust and uniformly valid under
more general distributional assumptions.

Notation. We use [n] to denote the set {1, . . . , n}. For a
vector a ∈ Rn, let S(a) = {j : aj 6= 0} be the support set.
Let Λmax(A) denote the maximum eigenvalue of matrix
A. Let A ◦ B denote the Hadamard product of A and B.
We use N(µ, σ2) to denote the normal distribution with
mean µ and variance σ2. We use an . bn to denote that
an ≤ Cbn holds for all large enough n, with some finite
positive constant C, and an & bn if bn . an. We use→D
to denote convergence in distribution.

2 Methodology

In this section, we outline our double selection proce-
dure for estimating θ∗ab and making valid inference about
this parameter. To simplify the presentation, we assume
that Ψa(Xa) = Xa and Ψab(Xa, Xb) = XaXb. Let
x1, . . . , xn be n independent samples from (2). With out
loss of generality, assume we are interested in the edge be-
tween a and b, where a, b ∈ [p], and a < b. Let θ ∈ R2p−1

be the vector such that

θ = (θab, θ1a, . . . , θpa︸ ︷︷ ︸
no index for b

, θ1b, . . . , θpb︸ ︷︷ ︸
no index for a

)T .

Our procedure consists of three steps. In the first step, we
construct a pilot estimator θ̃ of θ∗ by minimizing the penal-
ized composite likelihood (see (5) below). The goal of this
step is to find a parameter θ that solves the population set
of estimating equations

E[∇Ln(θ)] = 0, (3)

where Ln(θ) = 1
2 (Lan(θ) + Lbn(θ)) is the composite

likelihood and Lan(θ) is the negative conditional pseudo-
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likelihood for node a ∈ V given by

Lan(θ) =− 1

n

∑

i∈[n]

xia


θaa +

∑

b∈N(a)

θabxib


+ Ca(xia)

− Ā


θaa +

∑

b∈N(a)

θabxib


 .

We obtain θ̃ by first finding a minimizer of the penalized
composite likelihood

θ̂ = arg min
θ
Ln(θ) + λ1‖θ‖1

and then refitting on the estimated support

θ̃ = arg min
θ
Ln(θ) subject to S(θ̃) ⊆ S(θ̂). (4)

Since θ̃ is obtained via a model selection procedure, it is ir-
regular and its asymptotic distribution cannot be estimated
[Leeb and Pötscher, 2007, Pötscher, 2009]. In order to
make the estimator regular, in steps 2 and 3 we construct
θ̌ that is robust against mistakes in estimation of the nui-
sance component1 of the vector θ∗. In particular, we find θ,
which, in addition to (4), also solves for

∂

∂θ\ab
E[∇Ln(θ)]

∣∣∣
θ\ab=θ∗\ab

= 0. (5)

The relation (6) states that the estimator needs to be insensi-
tive with respect to first order perturbations of the nuisance.
The idea of creating an estimator that is robust to perturba-
tions of nuisance have been recently used in [Belloni et al.,
2013a] and [Belloni et al., 2013d], however, the approach
goes back to work of [Neyman, 1959]. In the remainder of
the section, we provide details to the steps two and three.

In order to facilitate exposition, we introduce additional no-
tation. Let Xia ∈ R2p−1 be a vector with p non-zero ele-
ments: the element in the first position, Xia(1) = xib, and
the elements in position 2 to position b, Xia(j) = xi(j−1),
except the position a + 1, where Xia(a+1) = 1; from po-
sition b + 1 to position p, Xia(j) = xi(j), the elements in
position p+ 1 to position 2p− 1 are all zeros. That is

Xia = (xib, xi1, . . . , xi(a−1), 1, . . . , xip, 0, . . . , 0︸ ︷︷ ︸
p+1 to 2p−1

)T .

Thus

Lan(θ) =− 1

n

∑

i∈[n]

xia
(
X Tiaθ

)
+ Ca(xia)− Ā

(
X Tiaθ

)
.

1Since we are interested in inference for θ∗ab, we treat the rest
of the vector as a nuisance.

similarly, we can define Xib ∈ R2p−1 as

Xib = (xia, 0, . . . , 0︸ ︷︷ ︸
2 to p

, xi1, . . . , xi(b−1), 1, . . . , xip)
T .

Let Qn(θ) be the Hessian of Ln evaluated at θ, with ele-
ments

[Qn(θ)](i)(j) =
∂2Ln(θ)

∂θi∂θj
.

With this notation, we are ready to give details of step 2 and
3 of our estimation procedure for the edge parameter θ∗ab.
In the second step, we find γ̂ab ∈ R2p−1 by minimizing the
following `1 penalized problem

min
γ

1

2
γTQn(θ̃)γ − eTabQn(θ̃)γ + λ2‖Γ̂γ‖1

subject to γab = 0, (6)

where Γ̂ ∈ R2p−1×2p−1 is a diagonal weighting matrix.
Each diagonal element Γ̂2

ab serves as an estimate of the vari-
ance of the score vector. Here we remark that the choice of
Γ̂ allows us to choose the penalty parameter λ2 is a way that
does not depend on unknown parameters of the problem.

Finally, in the third step, we obtain a consistent, asymptot-
ically normal estimator of θ∗ab by minimizing the following
restricted optimization program

θ̌ = arg min
θ
Ln(θ) subject to S(θ̌) ⊆ S̃ (7)

where S̃ = S(θ̃) ∪ S(γ̂) ∪ {ab}. We will show that

σ̂−1
n,ab

√
n
(
θ̌ab − θ∗ab

)
→D N(0, 1)

where σ̂2
n,ab =

[(
Qn,S̃S̃(θ̃)

)−1
]

ab,ab

. (8)

Let zα be such that P[N(0, 1) ≤ zα] = α. Based on the
above result, we construct a 1 − α confidence interval for
θ∗ab as

[
θ̌ab + σ̂nzα/2/

√
n, θ̌ab + σ̂nz1−α/2/

√
n
]
. (9)

This confidence interval is uniformly valid over a large
number of data generating processes and does not rely
on consistent model selection or β-min condition that is
commonly assumed for proving sparsistency [Wainwright,
2009].

It is not immediately obvious why should this procedure
work. Therefore, we provide a heuristic argument here.
Let Q̌ = Qn(θ̌). The first order optimality condition give
us [∇Ln(θ̌)]S̃ = 0 and

[∇Ln(θ∗)]S̃ = [∇Ln(θ∗)−∇Ln(θ̌)]S̃

=
[(∫ 1

0

Qn(tθ̌ + (1− t)θ∗)dt
)

︸ ︷︷ ︸
Q̄:=Q̄(θ̌)

]
S̃

(θ̌ − θ)S̃

= Q̌S̃(θ̌ − θ)S̃ +
(
Q̄− Q̌

)
S̃

(θ̌ − θ)S̃ .
(10)
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Let γ̌ = γ(θ̌, S̃) ∈ R|S̃| be the minimizer of

min
γ

1

2
γT Q̌S̃γ − eTabQ̌S̃γ subject to γab = 0 (11)

and σ2
n,ab = Q̌ab,ab − 2eTabQ̌S̃ γ̌ + γ̌T Q̌S̃ γ̌. Let č =

c(θ̌, S̃) ∈ R|S̃| be the contrast vector with components de-
fined as čj = −γ̌j for j 6= ab, and čj = 1 for j = ab. In a
similar way, we define c(θ∗, S̃) with Qn(θ∗)S̃ used in (12)
to obtain γ(θ∗, S̃). Multiplying (11) by č and rearranging
terms, we have

c(θ∗, S̃)T [∇Ln(θ∗)]S̃ + ∆(2)(θ̌)

= σ2
n,ab

(
θ̌ab − θab

)
+ ∆(1)(θ̌)

where ∆(1)(θ̌) = čT (Q̄ − Q̌)S̃(θ̌ − θ)S̃ and ∆(2)(θ̌) =(
č− c(θ∗, S̃)

)T
[∇Ln(θ∗)]S̃ . Using the properties of the

refitted estimator, we will prove that
√
n∆(1)(θ̌)→P 0 and√

n∆(2)(θ̌) →P 0 uniformly for all θ̌ in a neighborhood
around θ∗. Therefore, our heuristic argument is almost
done as σ2

n,ab converges in probability to a quantity that
is bounded away from zero and

√
nc(θ∗, S̃)T [∇Ln(θ∗)]S̃

has a limiting normal distribution. All that we still need to
show is that σ2

n in (9) consistently estimates the asymptotic
variance of

√
n(θ̌ab−θ∗ab). This heuristic argument is made

precise in Theorem 8.

It should be clear from the above argument that we did not
require that S(θ∗) ⊆ S̃. Our results only require that the re-
fitted composite likelihood estimator consistently estimates
θ∗ in the `2 norm. However, this can be established under
mild conditions [Negahban et al., 2012].

3 Theoretical Properties

In this section, we outline main theoretical properties of
our procedure. We start by providing high-level condi-
tions that allow us to establish properties of each step
in our procedure. Let Q∗ = E[Wia(θ∗)2XiaX Tia +
Wib(θ

∗)2XibX Tib ] be the population version of the Fisher
information matrix, where Wia(θ∗)2 = Ā′′(X Tiaθ∗). Let
Un = (2n)−1

∑
i∈[n](XiaX Tia + XibX Tib ) and U∗ = E[Un]

be the sample and population versions of the covariance
matrix, respectively. Let s = |S(θ∗)| be the size of true
support. We assume the following two regularity condi-
tions on Qn(θ∗) and Un.

Assumption 1. (Restricted eigenvalue) There exists a con-
stant κ > 0, such that for any ∆ satisfying ‖∆Sc‖1 ≤
3‖∆S‖1 with S = support(θ∗), we have ∆TQn∆ ≥
κ‖∆‖22.

Let φA(s) = sup
{

∆TA∆
‖∆‖22

| ‖∆‖0 ≤ s
}

denote the maxi-
mum s-sparse eigenvalue of a matrix A.

Assumption 2. (Maximum sparse eigenvalue) There exists
φmax, such that φUn(s) = φmax <∞.

Above conditions are required to establish estimation con-
sistency and sparsity control in the first stage. Assump-
tion A1 is weaker than the Incoherence condition in [Yang
et al., 2012], which is needed to ensure model selection
consistency. Assumption A2 is required to show that with
high-probability |S̃| ≤ C|S(θ∗)|, that is, the size of the se-
lected support in the third stage is not too large. As shown
in the appendix, by assuming the sparse eigenvalue condi-
tions on population Fisher information matrix and conva-
riance matrix, these conditions can be shown to hold with
high-probability.

Similar to [Yang et al., 2012], we need the following con-
ditions on the exponential family graphical model to obtain
tail bounds on X .

Assumption 3 (Moment). There exist constants κ1 and κ2

such that maxa∈V E[Xa] ≤ κ1 and maxa∈V E[X2
a ] ≤ κ2.

Assumption 4 (Log-partition function of joint dis-
tribution). There exists a constant κA, such that
supu:|u|≤1(∂2/∂2θab)A (θ∗ab + u) ≤ κA.
Assumption 5 (Log-partition function of node–
conditional distribution). There exist constants
κ3 maxa

9
2‖θ∗a‖2 and κ4 ∈ [0, 1/4] such that

max{|Ā′′(κ3 log p)|, |Ā′′′(κ3 log p)|} ≤ nκ4 .

With the above assumptions, we have the following result
that characterizes the performance of the first stage estima-
tor.

Theorem 6. Suppose that assumptions A1-A5 hold and
that the penalty parameter in the first stage satisfies λ1 =

2C1

√
log p
n for some constant C1 that does not depend on

(n, p, s). Then there exists a constant C2, such that with
probability at least 1−O(p−1), we have

‖θ̂ − θ∗‖2 ≤
C2

κ

√
s log p

n
, ‖θ̂ − θ∗‖1 ≤

4sC2

κ

√
log p

n
,

(θ̃ − θ∗)TQn(θ∗)(θ̃ − θ∗) ≤ 256sC2 log p

κn

|S(θ̃)| ≤ sC
2
2 minm∈M φUn(m)

64κ2
,

whereM = {m ∈ N : m > 2sC2
1φUn

(m)/(64κ2)}.

This theorem establishes two results. First, the `2 norm
convergence result for the stage one estimator. Second, it
establishes that the size of the support of θ̃ is not much
larger than the size of the true support θ∗.

Our next result establishes convergence results for the sec-
ond stage. Let γ∗ab be the minimizer of

min
γ

1

2
γTQ∗γ − eTabQ∗γ subject to γab = 0.
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Under the sparsity assumption on θ∗, we have that the
Markov blanket of (Xa, Xb) is small, hence γ∗ab is sparse.
The following theorem establish the estimation error bound
on γ∗.

Theorem 7. Suppose that assumptions A1-A5 hold and
that the penalty parameter in the second stage satisfies

λ2 = 2C1

√
log p
n . Then with probability at least 1 −

O(p−1),

(γ̂ − γ∗)TQn(θ̃)(γ̂ − γ∗) ≤ C s log p

κn

|support(γ̂)| ≤ |support(γ∗)|C
2
1 minm∈M φUn

(m)

9κ2

whereM = {m ∈ N : m > 2sC2
1φUn

(m)/(9κ2)}.

We will use results of Theorem 6 and 7 to prove our main
result given in the following theorem.

Theorem 8. (Asymptotic Normality) Suppose that condi-
tions of Theorem 6 and 7 hold. The estimator θ̌ab admits
the following decomposition

σ̂−1
n,ab

√
n(θ̌ab − θ∗ab) = Nab + oP (1)

where Nab →D N(0, 1) and σ̂n,ab is defined in (9).

Note that the result holds for a wide range of data gener-
ating processes and does not require perfect model selec-
tion. Our estimator is regular and robust to model selection
mistakes. We will illustrate these properties in simulation
studies where we also compare with a naive estimator that
assumes perfect model selection.

4 Simulation Studies

In this section we perform extensive simulation studies to
illustrate finite sample performance of our procedure. We
demonstrate that the proposed double selection approach
can be used to construct valid confidence intervals for var-
ious exponential family graphical models (including Gaus-
sian, Ising and Poisson) on various graph structures (in-
cluding Chain, Nearest Neighbor and Erdős-Rényi).

We construct three kinds of graph structures, described be-
low:

Chain graph: we first randomly permute the nodes and
then connect them in succession.

Nearest Neighbor graph: we follow the generating pro-
cess described in [Li and Gui, 2006]. For each node, we
draw a point uniformly at random in a unite square, then
connect the nodes to its 4-Nearest Neighbors.

Erdős-Rényi graph: we follow the process in [Mein-
shausen and Bühlmann, 2006]. We generate a random
graph with 2p edges and a constrain that the maximum de-
gree cannot exceed 5.
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Figure 2: Normal probability plot of estimations on Pois-
son, chain graph, n = 200, p = 200.

We generate the following three examples in exponential
family graphical models, with the detailed settings de-
scribed blow:

Gaussian graphical model: where the node conditional
distribution is

Xa|X\a = x\a ∼ N


 ∑

(a,b)∈S∗

θ∗ab
θ∗bb

xb, 1


 .

We set θ∗ii,∀i ∈ [p] to 1, and for each edge (a, b) ∈ S∗, the
strength θ∗ab is drawn from uniformly random distribution
in [−0.5, 0.5].

Ising graphical model: where the node conditional distri-
bution is

Xa|X\a = x\a ∼ Bern

(
exp(2Xa

∑
(a,b)∈S∗ θ

∗
abxb)

exp(2Xa

∑
(a,b)∈S∗ θ

∗
abxb) + 1

)
.

For each edge (a, b) ∈ S∗, we choose θ∗ab uniformly in
[−1, 1].

Poisson graphical model: where the node conditional dis-
tribution is

Xa|X\a = x\a ∼ Poisson


 ∑

(a,b)∈S∗
θ∗abxb


 .

We set θ∗ii,∀i ∈ [p] as 2, and for each edge (a, b) ∈ S∗, the
strength θ∗ab is drawn uniformly in [−0.2, 0].

Note that under the above settings, the true edge strength
might be weak, which makes the consistent model selec-
tion unlikely. Except for the Gaussian graphical model
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Figure 1: Comparison between Naive Selection, Double Selection and Oracle Estimator on a random edge of the graph with
n = 200, p = 200. Top row: Ising models with Nearest Neighbor graph, Bottom row: Poisson models with Erdős-Rényi
graph.

from which the data could be efficiently sampled, we use
Markov Chain Monte Carlo sampling to generate the data.
We solve the joint neighborhood selection procedure using
proximal gradient methods, with λ1 and λ2 set to be a con-
stant factor of

√
log p/n following our theories. For each

setting, we first randomly draw a pair from S (edges) and a
pair from Sc (non-edges) as the node pair we are interested
in performing inference.

4.1 Asymptotic Normality
We first demonstrate the asymptotic normality of the pro-
posed estimator. We run the inference procedure 1000
times and draw the histogram of θ̌ab together with a proba-
bility density function of a normal distribution and the true
value θ∗ab as a reference. We compare the double selection
procedure with the post naive selection, which uses lasso to
select the edges and perform post selection inference, and
the oracle estimator, which knows the graph structure S∗

and performs maximum likelihood estimation on S∗. Fig-
ure 1 shows a case for Ising and Poisson graphical models2.
We can clearly see that if we just perform post naive selec-
tion inference, the estimator is significantly biased which
makes the constructed confidence intervals invalid. The
post double selection procedure is robust to model selec-
tion mistakes and produces unbiased confidence intervals

2Please refer to appendix for more results.

with correct coverage. Compared to the oracle, the sam-
pling variance of the estimator is slightly larger, which is
the price we pay for not knowing the true graph struc-
ture. Finally, Figure 2 shows the normal probability plot
for the estimation of random pairs on a Poisson model
with chain graph structure. Again, the normal probabil-
ity plot demonstrate the estimations obtained via the pro-
posed post-double selection procedure are comparable to
those obtained from the oracle procedure.

4.2 Confidence Intervals
We also examine the performance of the constructed con-
fidence intervals. We construct a 95% confidence interval
based on (10). We measure the empirical frequency that the
constructed confidence interval covers the true parameter,
and the average width of the confidence intervals. Suppose
we are interested in θ∗ab and let ĈIt(θab) denote the con-
structed interval at t-th trial. Then the average coverage
and average length of the confidence interval will be

Avgcov =
1

T

T∑

t=1

I{θ∗ab∈ĈIt(θab)}

Avglen =
1

T

T∑

t=1

|ĈIt(θab)|.

As a reference, we also compared with the oracle proce-
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Table 1: Coverage and length of constructed confidence intervals for Gaussian graphical models

Graph(n,p) DS, (a, b) ∈ S DS, (a, b) ∈ Sc Oracle, (a, b) ∈ S Oracle, (a, b) ∈ Sc
Avgcov Avglen Avgcov Avglen Avgcov Avglen Avgcov Avglen

Chain(200,100) 0.998 0.363 0.975 0.321 0.994 0.318 0.969 0.300
ER(200,100) 0.944 0.267 0.915 0.257 0.903 0.219 0.919 0.226
NN(200,100) 0.983 0.340 0.988 0.397 0.967 0.295 0.995 0.347

Chain(200,200) 0.986 0.362 0.976 0.353 0.972 0.300 0.985 0.310
ER(200,200) 0.935 0.264 0.921 0.266 0.883 0.210 0.918 0.222
NN(200,200) 0.987 0.402 0.997 0.415 0.989 0.316 0.999 0.347

Chain(400,200) 0.971 0.229 0.969 0.227 0.981 0.209 0.982 0.216
ER(400,200) 0.916 0.163 0.882 0.165 0.854 0.146 0.905 0.154
NN(400,200) 0.982 0.248 0.987 0.260 0.985 0.219 0.999 0.239

Table 2: Coverage and length of constructed confidence intervals for Ising graphical models

Graph(n,p) DS, (a, b) ∈ S DS, (a, b) ∈ Sc Oracle, (a, b) ∈ S Oracle, (a, b) ∈ Sc
Avgcov Avglen Avgcov Avglen Avgcov Avglen Avgcov Avglen

Chain(200,100) 0.935 0.488 0.992 0.393 0.954 0.421 0.981 0.336
ER(200,100) 0.966 0.564 0.971 0.524 0.974 0.418 0.975 0.442
NN(200,100) 0.962 0.492 0.993 0.473 0.958 0.468 0.988 0.473

Chain(200,200) 0.966 0.500 0.983 0.378 0.975 0.374 0.982 0.353
ER(200,200) 0.978 0.745 0.983 0.587 0.979 0.507 0.988 0.455
NN(200,200) 0.986 0.830 0.982 0.425 0.976 0.754 0.968 0.341

Chain(400,200) 0.964 0.341 0.981 0.262 0.978 0.262 0.969 0.247
ER(400,200) 0.965 0.522 0.977 0.402 0.981 0.350 0.984 0.313
NN(400,200) 0.968 0.543 0.984 0.285 0.968 0.512 0.971 0.238

dure, which performs classical statistical inference with
known true structure. Table 1,2,3 report the Avgcov and
Avglen on Gaussian, Ising, and Poisson graphical models,
respectively. We make the following observations:

i) When looking at the coverage, both the post double se-
lection procedure and oracle inference performs reasonably
well for all kinds of graphical models and graph structures,
which verifies the theories of asymptotic normality. As the
number of samples n increase, the coverage tends to be
closer to 95%.

ii) When looking at the width, we found that generally
speaking the confidence intervals produced by post dou-
ble selection are just slightly wider than the ones in oracle
inference, which is considered to be the asymptotically ef-
ficient estimators. This validates the power of proposed
double selection procedure.

iii) When comparing the width across different graph struc-
tures, on Ising and Poisson models: the Nearest Neighbor
and Erdős-Rényi graphs usually produce wider confidence
intervals than chain graphs, which might because that chain
graph is relatively easier for graph recovery.

4.3 Illustration
We also give illustrations to demonstrate constructed con-
fidence intervals according to our procedure. We perform

post double selection inference for every edge in the graph
and then plot the 95% confidence intervals. Figure 3 pro-
vides one realization of confidence intervals of the whole
node paris (most elements in Sc were omitted for better vi-
sualization), for an Ising graphical model with chain graph
structure. We can see that the intervals are quite reasonable
and most of them trap the true parameter.

5 Conclusion

We develop a new robust estimation procedure for an edge
parameter in an exponential family graphical model. Our
estimator is shown to be

√
n-consistent and asymptotically

normal, which allows us to perform statistical inference.
This is very important problem with huge practical impli-
cations. Our paper timely fills a gap in the literature that has
so far been focused on point estimation. Our theoretical re-
sults are illustrated through simulations on commonly used
types of probabilistic graphical models, where the node-
conditional distribution is Gaussian, Bernoulli and Poisson.
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