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Abstract

Feature selection is an important technique
for alleviating the curse of dimensionality.
Unsupervised feature selection is more chal-
lenging than its supervised counterpart due
to the lack of labels. In this paper, we present
an effective method, Stochastic Neighbor-
preserving Feature Selection (SNFS), for se-
lecting discriminative features in unsuper-
vised setting. We employ the concept
of stochastic neighbors and select the fea-
tures that can best preserve such stochas-
tic neighbors by minimizing the Kullback-
Leibler (KL) Divergence between neighbor-
hood distributions. The proposed approach
measures feature utility jointly in a non-
linear way and discriminative features can
be selected due to its push-pull’ property.
We develop an efficient algorithm for opti-
mizing the objective function based on pro-
jected quasi-Newton method. Moreover, few
existing methods provide ways for determin-
ing the optimal number of selected features
and this hampers their utility in practice.
Our approach is equipped with a guideline
for choosing the number of features, which
provides nearly optimal performance in our
experiments. Experimental results show that
the proposed method outperforms state-of-
the-art methods significantly on several real-
world datasets.

1 Introduction

In the era of big data, datasets are often characterized
by high dimensionality in many machine learning or
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data mining tasks. To alleviate the curse of dimen-
sionality, feature selection [8] [12] [19] has become an
important technique. By selecting a subset of high-
quality features, feature selection can speed up the
learning process and provide easier interpretation of
the problem.

Depending on the availability of supervision informa-
tion, feature selection methods can be categorized into
two classes: supervised feature selection and unsuper-
vised feature selection. Since class labels are usually
expensive to obtain, our work focuses on unsupervised
scenario. It is usually more difficult to evaluate the
discriminativeness of features without guidance from
class labels. Different heuristics (e.g., frequency based,
variance based) have been proposed to perform unsu-
pervised feature selection. Similarity-preserving ap-
proaches [8] [22] have gained much popularity among
others. In such similarity preserving methods, a fea-
ture is considered to be good if it can preserve the local
manifold structure well.

Recently, pseudo label based algorithms with Lo
norm [20] [10] have become increasingly popular.
Since class labels are not available, such methods at-
tempt to generate cluster labels (i.e., pseudo labels)
or subspace representations through linear transforma-
tion/regression regularized by Lo, norm. They rank
features by their usefulness on predicting pseudo la-
bel/constructing the subspace. One major drawback
of such approach is that the cluster labels are usually
far from accurate and such inaccurate pseudo labels
can mislead feature selection.

The central issue in unsupervised feature selection is
how to effectively uncover the discriminative informa-
tion embedded in the data. Inspired by the popular
visualization technique Stochastic Neighbor Embed-
ding (SNE) [9], we employ the concept of stochastic
neighbors for the purpose of unsupervised feature se-
lection. We develop a novel unsupervised feature se-
lection method, Stochastic Neighbor-preserving Fea-
ture Selection (SNF'S), to select a set of high-quality
features. Specifically, for each data point, other data
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points are its neighbors with certain probability. The
goal is to select a set of features that best preserve such
stochastic probability. With this criterion, the derived
gradient update formula is very simple, and it has a
desirable pull-push property that the selected features
can pull similar data points close and push dissimilar
data points far apart. As a result, data points from
different classes could be better separated with the set
of selected features. The advantages of SNFS can be
summarized as follows:

e The aim of unsupervised feature selection is usu-
ally to improve subsequent clustering tasks. Pop-
ular clustering methods such as KMeans and
Spectral Clustering [11] are distance/similarity-
based methods: KMeans needs to measure the
similarity /distance to centroids when assigning
data points and Spectral Clustering needs to build
a similarity graph for clustering. State-of-the-
art Lo norm based approaches [20] [10] [14] se-
lect features based on how well they can linearly
explain the variance of cluster labels (i.e., by
their linear regression coefficients). By contrast,
SNF'S is not based on linear regression and is able
to evaluate features jointly in a more similarity-
friendly manner.

e The proposed criterion aims to keep similar data
points closer than dissimilar data points. Such
a criterion can select discriminative features to
make the clusters more separable.

e For supervised feature selection, one can choose
the number of selected features based on cross-
validation performance. But it is very challenging
to choose the optimal number of features in un-
supervised setting. The inability of existing ap-
proaches [10] [14] to choose optimal feature size
limits their practical utility. We provide a guide-
line for deciding feature sizes and experimental
results indicate that this proposed guideline can
usually achieve decent performance.

We develop an efficient optimization algorithm for the
proposed method based on projected quasi-Newton
method.  Experimental results on six real-world
datasets illustrate the superiority of SNFS.

2 Related Work

In this section, we review related work on feature se-
lection.

2.1 Supervised Feature Selection

The goal of feature selection is to alleviate the curse of
dimensionality, enabling machine learning models to

achieve comparable, if not better, performance. Tra-
ditional feature selection methods generally fall into
three categories: filter model [21] [13], wrapper model
[5] and embedded model [3] [17]. In supervised fea-
ture selection, the criterion for feature quality is usu-
ally straightforward: high-quality features should be
highly correlated with class labels. Different methods
are proposed to capture the correlation between la-
bel and feature, such as Mutual Information, Fisher
Score [4] and HSIC [16]. For example, Song et al.
(2007) introduces Hilbert-Schmidt Independence Cri-
terion (HSIC) as a measure of dependence between
the features and the labels [16]. LASSO [17], as an
embedded model, performs feature selection during re-
gression/classification by using L, regularization.

2.2 Unsupervised Feature Selection

In the unsupervised setting, various heuristics are pro-
posed to guide the feature selection process. One pop-
ular guiding principle is to preserve the local mani-
fold structure or similarity [8] [21] [22]. But features
useful for preserving similarity are not necessarily dis-
criminative. Also, these earlier unsupervised feature
selection algorithms tend to evaluate the importance
of features individually [8] [21], which neglects correla-
tion among features and may introduce redundancy in
the selected features. Recent methods [20] [10] [15] [18]
using sparsity-inducing norms overcome this issue by
evaluating the features as a whole. For example, Un-
supervised Discriminative Feature Selection (UDFS)
[20] introduces pseudo label-based regression to better
capture discriminative information. Sparsity-inducing
L1 norm is used to select the feature jointly. Robust
Unsupervised Feature Selection (RUFS) [14] further
employs robust Ls 1 loss on the regression objective to
alleviate the effect of outlier instances. Robust Spec-
tral Feature Selection (RSFS) [15] uses robust learning
framework with local kernel regression for generating
pseudo-labels.

Essentially, all the pseudo label based methods evalu-
ate the utility of features based on how well in lin-
ear projection they can explain the variance of the
cluster labels. As a result, they have similar draw-
backs: first, they only evaluate features on their linear
ability and overlook their non-linear usefulness. Sec-
ond, the pseudo labels derived from clustering are usu-
ally not accurate enough. The noisy information con-
tained in the pseudo labels can further mislead fea-
ture selection. Moreover, state-of-the-art pseudo-label
approaches [14] [15] usually have 3 ~ 5 free parame-
ters (e.g., neighborhood size, number of latent dimen-
sions and hyperparameters controlling regularization
terms), which are difficult, if not impossible to tune
without supervision.
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3 Formulations

3.1 Notations

Suppose we have n data samples X = [x1,Xa,...,Xp]
and the total number of features is D. So x; € RP
and z;; denotes the value of ¢-th (t = 1,..., D) feature
of x;. Our goal is to select d (d < D) discriminative
features. We use w € {0, 1} as the selection indicator
vector: w; = 1 indicates the ¢-th feature is selected and
w; = 0 otherwise.

3.2 Stochastic Neighbors-preserving Feature
Selection

We assume each data sample has all the other data
samples as stochastic neighbors with certain probabil-
ity, rather than having a fixed set of neighbors. Let
us denote the probability of x; having x; (j # i) as
its neighbors as p;; and assume p;; depends on their
similarity S;;. The larger S;; is, the more likely x; is
x;’s neighbor. For convenience, we also define p;; = 0
fori=1,...,n.

To make Z?=1 pij = 1, we use the softmax function
to define this probability.

D = exp (S”)
Y Zk;éi exp (Sik)

In principle, S;; could be any affinity measure, such
as cosine similarity and negative euclidean distance.
We use inner product to measure the similarity of two
data points in this paper and therefore S;; = x! x;.

(1)

To add more flexibility to the model, we also include a
scale (bandwidth) parameter o2 in the softmax func-
tion as follows. We will discuss how to set this param-
eter later in this paper.

- exp(Sij/JQ)
Dij Zk# exp (S /0?)

After feature selection, we denote similarity calculated
on the selected features as s;; = x; diag(w)x;, where
diag(w) is the diagonal matrix using w as diagonal
elements. So, the probability of x; being the neighbor
of x; after feature selection is g;;.

(2)

T )
exp (xi dlafz(W)XJ )

x; diag(w)x
s exp(w)

(3)

qij =

Note that ¢;; (or p;;) is not only influenced by s;; (or
Sij), but also affected by s, (or S;;, k=1,...,j —
1,7+1,...,n) via the normalization term. Therefore,
gi; (or pi;) is determined by the relative value of s;;
(or S;;) compared with other s;; (or Six).

To preserve the stochastic neighbors, we try to make
two distributions q; = [gi1,...,qin]’ and p; =
[Di1s- -, Pin]T similar by minimizing their KL diver-
gence for each x;.

Z Dij log p” (4)

JFi

L(pi||as)

We propose the following feature selection criterion:
selecting the set of features to minimize the sum of KL
divergence between p; and q; on all the data points.

mm Z Z Dij 1og p”

i= 1j7$z

s.t. Z wy =
t=1

wy € {0,1},Vt=1,...,D

The goal is that, for similar data points, we still want
them to be similar after feature selection. For dis-
similar data points, it is desirable to keep them dis-
similar with selected features. So, by minimizing KL-
divergence between p; and q; fori =1, ..., n, we select
the features that make similar data samples still closer
than dissimilar samples.

3.3 Setting Scale Parameter

In this subsection, we discuss how to set the
scale/bandwidth parameter 0. p; is influenced by the
value of ¢2: the higher o2 is, the higher entropy p; has.
For data sample x;, when o2 is relatively large, other
data samples tend to have similar probability of being
x;’s neighbors. In the extreme case, when o2 goes to
infinity, all other data samples have equal probability
of being x;’s neighbor. When ¢?2 is small, the probabil-
ity tends to be concentrated on a small number of most
similar neighbors. We define the average perplexity as
follows.

Perplexity(P) = 2w 2i=1 H(P:) (6)

where H(p;) = —Z#i pijlogp;; is the entropy of
pi- The perplexity has a more intuitive interpretation
than ¢2: it can be interpreted as a smooth measure
of the effective number of neighbors. The perplexity
is a monotonically increasing function of 02 and larger
perplexity corresponds to larger o2. After we specify
the value of perplexity, the value of o2 can be found by
line search (e. g binary search). So we do not need to
directly set o2. Rather, we use perplexity as a proxy
since it has more intuitive explanation. As we will
show in the experimental results, SNFS can usually
achieve good performance for a reasonably large range
of perplexity (e.g., 5 ~ 50).
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4 Optimization
4.1 Gradient Derivation

The formulation in Eq (5) is a ’0/1’ integer program-
ming problem, which is time-consuming to optimize.
To make the optimization more efficient, we relax the
'0/1” constraint on w; (V¢ = 1,...,D) to real values
in the range of [0,1]. Also, we re-write the summation
constraint Z?: 1 w¢ = d using Lagrangian multiplier.

mln ZZp” log +)\||WH1

i=1 j#i 7)
st.0<w, <L,Vt=1,...,D

where || - ||1 is the Ly norm and X is the parameter to
control the L; regularization. Note that in general L
norm is not differentiable due to the non-smoothness
at value 0, but in our case, |wi| = w; since w; (Vt =
1,..., D) is always non-negative.

Let us denote the objective in Eq (7) as £. Tt takes
several steps to calculate the gradient 3 aﬁ (derivation
details are in supplemental material), but the final re-
sult is simple.

871015 = _ZZ Dij — qij xztx_]t/o- + A (8)

i=1 j#i

If we use negative euclidean distance as the affinity
measure (i.e., s;; = —(x; —x;) " diag(w)(x; —x;)), one
can derive the following gradient formula in a similar
manner:

awt ZZ Dij — ng -th - x]t) /0' + A (9)

i=1 j#i

Such a gradient update formula in Eq (8) (or Eq (9))
has an intuitive push-pull interpretation: when x;
is more likely to be x;’s neighbor than desired (e.i.,
pij < gij), wy is updated in the direction of z;x;t/0?
(or —(wit — xj¢)*/0?) to push them away; when x;
is less likely to be x;’s neighbor than desired (e.i.,
Pij > qij), wy is updated to pull them closer. If a
feature has little contribution in preserving the dis-
tribution of stochastic neighbors, its weight tends to
shrink to zero under the effect of Ly regularization.

4.2 Projected Quasi-Newton Method

To make the optimization more efficient, we incor-
porate second order information by using projected
quasi-Newton method [1]. At each iteration, we par-
tition wy (¢ = 1,...,D) into two groups: restricted

variables R, and free variables F,,.

R ={wi|(wy < e 9L > 0) or

5
>1_ hdad
('U}ti]. E/\awt<0)}
Fuw ={wy,we,...,wp} — Ry (11)

where € is a small positive value. The restricted vari-
ables are those close to the lower or upper bound in
their gradient direction. In Newton’s Method, the scal-
ing matrix S* for the free variables at iteration k is the
inverse Hessian matrix.

§% = [V2L(w")]5 (12)
For both free and restricted variables, the scaling ma-
trix can be defined as follows.

Sk = ﬁ)’c ]g} (13)

The scaling matrix D for restricted variables can be
identity matrix. In each iteration, we find appropriate
step size n* using backtracking line search to satisfy
Armijo rule:

Fw") —

where ¢; is a constant in the range of 0 < ¢; < 1
and d is the descent direction (d = S¥VL(w*) in our
case). Note that computing the step size does not
increase the computational complexity of the method,
since computing the orthogonal projection after each
backtracking step is trivial.

f(wk + nkdk) < cmkdk (14)

The final projected-Newton update formula is as fol-
lows.

Ve p(wh — nFskvL(wh)) (15)

where the projection operator P(:) projects the value
() to [0,1].

[P(w)]: = min(1, max(0,w;)),Vt =1,...,D  (16)

For restricted variables wf € RE . we can directly set
them to 0 or 1 if € is sufficiently small.

: oL
0, 1fwt<e/\aw >0

P(whn*SFVL(wH))], = {

17)
So, we only need to compute the scaling matrix S
for free variables. This can save considerable com-
putation time if the number of free variables is small
(i.e., |[Fu| < |Ruw|), which is usually the case in fea-
ture selection scenario. It has been shown [1] [6] this
projected-Newton method is convergent under mild
conditions.
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Theorem 4.1 For a loss function L, assume that VL
is Lipschitz continuous and V2L has bounded eigenval-
ues. Then every limit point of w* generated by Eq (15)
is a stationary point of Eq (7).

However, the Newton-step is often computation-
intensive and requires D? storage. To save compu-
tation time and storage space, we approximate the
Hessian with L-BFGS, as shown in Algorithm 1. L-
BFGS only requires O(mD) storage if the gradients
in that last m iterations are used. Though the con-
vergence rate of the method has been shown for S*
derived from the Hessian, the convergence itself only
requires a positive-definite gradient scaling S* with
bounded eigenvalues for all & [1]. Thus, quasi-Newton
approximations (e.g., L-BFGS) can also be employed
to derive convergent methods. In our experiments, the
optimization algorithm usually converges in less than
20 iterations.

Algorithm 1 Projected L-BFGS Algorithm for SNFS

1: Initialize w «+ [1,1,...,1]

2: while not converge do

3: Identify restricted and free variables by Eq (10)
and Eq (11).

4: Set the restricted variables to the correspond-
ing lower or upper bound (i.e., 0 or 1)

5: Calculate the gradient using Eq (8) and S for
free variables using the gradient information of last
m iterations.

6: Use backtracking line search to find the step
size 7 that satisfies Armijo condition Eq (14)

7 Update w using formula Eq (15)

end while

9: Select features with w; (t =1,..
l—«

®

., D) greater than

4.3 Determining the number of selected
features

It is worth noting that w can be intuitively interpreted
as features’ importance scores in preserving stochas-
tic neighbors. The relaxed w; (t = 1,...,D) has the
maximum value of 1 and the minimum of 0. For un-
relaxed w, we simply retain the features with w; = 1.
Similarly, to select the high-quality features from re-
laxed version of w, we can select the features with w;
equal or close to 1. For example, we can keep the
features with w; greater than (1 — «) for a small «
(e.g., « = 0.05 or @« = 0.1. We denote the number
of features with scores larger than (1 — «) as Ni_,.
For example, Ny g is the number of features that have
scores greater than 0.9. As we will show in the ex-
perimental results, such a strategy can usually achieve
near-optimal performance.

Since Ny.g is influenced by the regularization param-
eter A (i.e., larger A leads to smaller Ny g), one can
also do a line search for appropriate A (e.g., via bi-
nary search) if he wants to retain a specific number of
features.

5 Discussion

Similarity-based approaches are a popular thread of
unsupervised feature selection methods. In this sec-
tion, we discuss how SNF'S is different and superior to
other similarity-based methods.

Laplacian Score [8] and SPEC [21] are based on the
eigenvalues of similarity matrix. They assign a score to
each feature and select the features with higher scores.
Features are evaluated individually and redundancy
can have negative impact on the performance of se-
lected features. Besides, while the selected features
will make similar data points still similar, they make
little effort to make dissimilar data points far apart.

SPFS and MCFS [2] perform sparse linear regression
towards the spectral decomposition of similarity ma-
trix and choose the features with large coefficients.
NDFS [10], RUFS [14] and RSFS [15] generate cluster
labels and perform linear regression with Lo ; norm.
The drawback is that the inaccurate cluster labels can
provide misleading information for feature selection.
In all these regression-based methods, the selection
criterion depends on how well the features can lin-
early explain the variance of cluster labels/subspace
representation. This limits their effectiveness in clus-
tering tasks, since most popular clustering algorithms
are based on similarity /distance, such as KMeans and
Spectral Clustering [11].

Moreover, a common shortcoming of all these methods
is that they do not provide any guideline for choosing
the number of selected features.

In contrast, SNFS evaluates features jointly and non-
linearly. Rather than preserving the similarity itself,
SNF'S focuses on preserving the relative value of sim-
ilarity in each neighborhood. Table 1 summarizes
the difference between several popular similarity-based
feature selection methods. We can see that SNFS has
several desirable properties, which enable it to identify
a set of more discriminative features.

6 Experiment

6.1 Baselines

We compare our approach to using all features and five
unsupervised feature selection methods as baselines.
LS and MCFS are manifold-preserving/similarity-
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Table 1: Comparison of different similarity-based unsupervised feature selection methods

NDFS[10],
Methods LS[8], SPEC|[21] SPFS[23], MCFS[2] | RUFS[14], SNF'S
RSFS[15]
Evaluate features jointly? X v v v
Evaluate features non-linearly? || v X X v
Do not rely on clustering? v v X v
Guideline for setting number N N N v
of selected features?
Table 2: Statistics of datasets
Statistics BBC | BBC Sport | BlogCatalog | TDT | Guardian | Newsgroup
# of instances 2225 | 737 500 1500 | 302 1575
# of features 9636 | 4612 4547 6458 | 3631 2849
# of classes 5 5 5 15 6 4

preserving approaches. UDFS, RUFS and RSFS are
pseudo-label based methods which also consider the
similarity information.

o All Features: It uses all the features for evalua-
tion.

e Laplacian Score (LS): Laplacian score [8] selects
the features which can best preserve the local
manifold structure.

e MCFS: Multi-cluster Feature Selection [2] per-
forms spectral analysis and sparse regression to
select features.

e UDFS: Unsupervised Discriminative Feature Se-
lection [20] is a psuedo-label based approach
which performs Lg;-norm regularized subspace
learning.

e RUFS: Robust Unsupervised Feature Selection
[14] generates psuedo labels by NMF (Non-
negative Matrix Factorization) and local learning-
based regularization [7].

e RSFS: Robust Spectral Feature Selection [15] se-
lects features by robust spectral analysis frame-
work and Lj ;-norm regularized regression.

6.2 Datasets

We use six publicly available datasets: BBC and BBC-
Sport news dataset!, Guardian news dataset?, Blog-
Catalog?® blog-posts dataset, Newsgroup 4 and TDT2°.

"http://mlg.ucd.ie/datasets/bbc.html

’http://mlg.ucd.ie/datasets/3sources.html

3http://dmml.asu.edu/users/xufei/datasets.html

“http://www.cs.umb.edu/~smimarog/textmining/
datasets/

Shttp://www.cad.zju.edu.cn/home/dengcai/Data/
TextData.html

More details of the datasets can be found in the sup-
plemental material. The statistics of six datasets are
summarized in Table 2.

6.3 Experimental Setting

In this section, we evaluate the quality of selected fea-
tures by their clustering performance. We use Accu-
racy and Normalized Mutual Information (NMI) to
evaluate the result of clustering, following the typical
setting of evaluation for unsupervised feature selection
[20] [10]. These two metrics evaluate the cluster qual-
ity by matching and comparing the cluster labels with
ground-truth labels (more detailed definition of the
two metrics is presented in supplemental material).
Higher values of Accuracy and NMI indicate better
quality of clustering.

We set k = 5 for the kNN neighbor size in the baseline
methods following previous convention [10]. For the
number of pseudo classes in UDFS, RUFS and RSFS,
we use the ground-truth number of classes. Besides,
UDFS, RUFS and RSFS also require specifying the
values of several other regularization parameters. In
the original papers of UDFS, RUFS and RSFS, they
use class labels to find the best parameters by grid
search. However, this violates the assumption of no
supervision and could be unfair to approaches with
less or no free parameters. Nonetheless, we perform
grid search in the range of {0.1, 1,10} for the regular-
ization parameters in UDFS, RUFS and RSFS. Besides
the best performance, we also report the median per-
formance for them, which is a more realistic reflection
of these methods’ practical power. For SNFS proposed
in this paper, we fix perplexity = 15 and A = 1072 xn
on all datasets and we will discuss the sensitivity of
these two parameters in the following subsection. ©.

SFor the projected quasi-Newton method in the opti-
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Following the convention in previous work [2] [20], we
use KMeans ” for clustering evaluation. Since Kmeans
is affected by the initial seeds, we repeat the experi-
ment for 20 times and report the average performance.
We vary the number of features in the range of {100,
200, 400, 600}. For SNFS, we report the cluster-
ing performance using the features with scores greater
than 0.9.

6.4 Clustering Results

The clustering accuracy on six datasets is shown in Ta-
ble 3 (NMI results can be found in supplemental mate-
rial). The experimental results show that feature selec-
tion is a very effective technique for enhancing cluster-
ing. With much less features, SNFS (Ny9) can obtain
better accuracy and NMI than using all the features.
For instance, compared with using all 4547 features,
SNFS with only 230 features improves the clustering
accuracy by 36.4% on BlogCatalog dataset. Besides
the improved accuracy and NMI, using selected fea-
tures rather than all features can also lead to better
interpretability.

We can observe that for SNFS, using Ny g features
usually performs the best (or nearly the best) among
different number of features. The top Ny g features all
have scores equal to 1 or very close to 1. So it is not
wise to use only a subset of them. Also, using more
than Ny g features may lead to redundancy since less
important features are included.

When comparing SNFS with the baseline methods,
we observe that SNFS has very competitive perfor-
mance. The accuracy and NMI of SNFS (Nyg) is
better than or comparable to the best performance of
two strong baselines (RUFS and RSFS) and outper-
forms their median performance significantly. Since
in practice one cannot know the optimal parameters
of RUFS and RSFS in unsupervised scenario, the me-
dian performance is more representative of their prac-
tical utility. Also, all the baseline methods do not
provide guidelines for determining the number of se-
lected features. For example, RUFS achieves its top
median performance with 400, 200 and 600 features
on BBCSport, BlogCatalog and Guardian datasets,
respectively. This makes these baseline methods less
favorable in practice.

In summary, although these baseline methods also at-
tempt to exploit similarity information in certain ways,
they do not perform as well as SNFS. The experi-
mental results illustrate that SNFS is a more effective

mization of SNFS, we use the implementation at http:

//www.cs.ubc.ca/~schmidtm/Software/minConf .html
"We use the code at http://www.cad.zju.edu.cn/

home/dengcai/Data/Clustering.html

method for selecting discriminative features.

6.5 Sensitivity Analysis

For unsupervised feature selection, it is important that
the feature selection algorithm is not very sensitive to
its parameters. SNFS has two free parameters: the
perplexity and the regularization parameter A for L;
norm. In this section, we investigate how the perfor-
mance of SNFS (Np ) varies w.r.t different parameter

values 8.

Figure 1 shows the clustering accuracy of SNFS (Ngg)
over different values of perplexity. We can observe that
SNFS has consistently good performance with different
perplexity values ranging from 5 ~ 50. In most cases,
the performance is better than using all the features.

For )\, we wvary its value in the range of

[0.0001, 0.0002, 0.0004, 0.0006, 0.0008, 0.001, 0.002, 0.004] x

n. The clustering performance of SNFS (Nyg) over
different A is shown in Figure 2. On most datasets,
SNFS has decent performance and can outperform
using all features, if A is not too small (< 2 x 1074 x n)
or too large (> 2 x 1073 x n).

7 Conclusion

In this paper, we propose a new method, SNFS, for
unsupervised feature selection by preserving stochastic
neighbors. For each data point, other data points can
be its potential neighbors with certain probability. We
select the features that can approximate the original
distribution by minimizing the KL-divergence. This
criterion can select discriminative features that makes
similar data points close and push dissimilar data
points far apart. The objective function has less pa-
rameters than the state-of-the-art pseudo-label meth-
ods and it has a simple gradient update formula. We
develop an efficient optimization algorithm for SNFS
based on projected L-BFGS. Empirical results show
that the proposed method outperforms state-of-the-
art approaches on several real-world datasets.
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Table 3: Clustering accuracy on six datasets. For UDFS, RUFS, RSFS, median/best performance is reported.
SNFS(Ny.g) denotes the performance of SNFS with top Ng.g features.

[ Method I BBC I BBC Sport |
| # features [ 100 [ 200 [ 400 [ 600 [ 100 [ 200 [ 400 [ 600 |
All Features 0.8071 0.6551
LS 0.2360 0.2655 0.4322 0.4718 0.4185 0.4561 0.5110 0.6751
MCFS 0.6223 0.7489 0.7793 0.8217 0.6082 0.7075 0.7027 0.7248
UDFS 0.4246/0.4811 | 0.6174/0.6681 | 0.7766/0.7805 | 0.7599/0.7763 || 0.4661/0.4875 | 0.4770/0.5601 | 0.5390/0.605 | 0.5770/0.6139
RUFS 0.4744/0.7548 | 0.6708,/0.8584 | 0.7976/0.8991 | 0.8263/0.8836 || 0.6018/0.7487 | 0.6598/0.7683 | 0.7009/0.7518 | 0.6812/0.7187
RSFS 0.5677/0.7660 | 0.7523/0.8118 | 0.8068/0.8863 | 0.8326/0.8693 || 0.6158/0.6658 | 0.6546/0.714 | 0.6648/0.6961 | 0.6494/0.7030
SNFS 0.6040 0.7729 0.8165 0.8102 0.5847 0.6881 0.7455 0.6964
SNFS(No.9) 0.8414(550) 0.7195(440)
[ Method I BlogCatalog I Guardian |
| # features || 100 200 [ 400 600 | 100 200 [ 400 [ 600 \
All Features 0.4627 0.5477
LS 0.2998 0.4084 0.4203 0.4003 0.3364 0.4083 0.6573 0.6237
MCFS 0.3704 0.4428 0.4143 0.4161 0.5093 0.5053 0.5361 0.5348
UDFS 0.3901/0.3917 | 0.4069/0.4691 | 0.4383/0.4749 | 0.4876/0.5321 || 0.3682/0.4998 | 0.4525/0.5144 | 0.5127/0.5394 | 0.5247/0.5411
RUFS 0.4877/0.5307 | 0.5508/0.5756 | 0.5476/0.5889 | 0.5375/0.5648 || 0.4369/0.5608 | 0.5329/0.5659 | 0.5490/0.5661 | 0.5563/0.5791
RSFS 0.3847/0.4969 | 0.4371/0.5346 | 0.4709/0.5464 | 0.5031/0.5412 || 0.5320/0.5553 | 0.5296/0.5816 | 0.5550/0.5907 | 0.5541/0.5921
SNFS 0.5842 0.6350 0.5924 0.5821 0.5288 0.6063 0.6290 0.6071
SNFS(Ny.o) 0.6313(230) 0.6270(440)
‘ Method H Newsgroup H TDT ‘
| # features [ 100 [ 200 [ 400 [ 600 [ 100 [ 200 [ 400 [ 600 |
All Features 0.7184 0.7711
LS 0.2808 0.3863 0.6420 0.7063 0.6548 0.7472 0.7870 0.7816
MCFS 0.3374 0.4368 0.4883 0.5059 0.6128 0.6656 0.7250 0.7367
UDFS 0.3516/0.4145 | 0.3954/0.4173 | 0.4403/0.4653 | 0.4604/0.6335 || 0.4863/0.4979 | 0.6102/0.6110 | 0.7231/0.7247 | 0.7499/0.7520
RUFS 0.4687/0.6073 | 0.4595/0.6435 | 0.4915/0.6476 | 0.5295/0.6477 || 0.4381/0.6865 | 0.5423/0.8112 | 0.6731/0.7967 | 0.7614/0.8198
RSFS 0.3969/0.6045 | 0.4776/0.6516 | 0.6069/0.6765 | 0.6225/0.6923 || 0.6589/0.7806 | 0.7730/0.8153 | 0.7695/0.8173 | 0.7854/0.8261
SNFS 0.4518 0.5075 0.6833 0.7039 0.7502 0.7902 0.7835 0.7890
SNFS(No.9) 0.8007(495) 0.8161(163)
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Figure 1: Clustering accuracy with different perplexity values
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