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Abstract

A pretraining algorithm, which is a layer-by-
layer greedy learning algorithm, for a deep
Boltzmann machine (DBM) is presented in
this paper. By considering the deep belief
net type of pretraining for the DBM, which is
a simplified version of the original pretrain-
ing of the DBM, two interesting theoretical
facts about pretraining can be obtained. (1)
By applying two different types of approx-
imation, a replacing approximation by us-
ing a Bayesian network and a Bethe type
of approximation based on the cluster vari-
ation method, to two different parts of the
true log-likelihood function of the DBM, pre-
training can be derived from a variational ap-
proximation of the original maximum like-
lihood estimation. (2) It can be ensured
that the pretraining improves the variational
bound of the true log-likelihood function of
the DBM. These two theoretical results will
help deepen our understanding of deep learn-
ing. Moreover, on the basis of the theoretical
results, we discuss the original pretraining of
the DBM in the latter part of this paper.

1 Introduction

Pretraining is one of the central techniques for train-
ing learning models with deep architectures in which
we perform greedy layer-wise unsupervised training
from the bottom to the top (Hinton et al., 2006). Al-
though pretraining seems to be rather heuristic and far
from principle learning strategies for models, e.g., the
backpropagation method for deep neural networks, it
is known in practice that they can produce powerful
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models that outperform models obtained by conven-
tional techniques, such as a support vector machine
(Bengio, 2009). It is believed that models trained by
pretraining are certain stacked autoencoders and learn
high-level representations of observed data sets, which
is why pretraining is effective (Hinton and Salakhutdi-
nov, 2006; Bengio, 2009). Empirical knowledge about
pretraining has been accumulated in this decade. How-
ever, theoretical knowledge, such as the relationships
between the principle learning methods and pretrain-
ing, is lacking. It is believed that the development of
a theoretical background for pretraining will increase
our understanding of deep learning.

A deep Boltzmann machine (DBM) (Salakhutdinov
and Hinton, 2009) is a probabilistic deep learning
model proposed as an extension of a deep belief net
(DBN) (Hinton et al., 2006). Although, in principle,
DBMs should be trained by maximum likelihood es-
timation (MLE), pretraining is applied to them, and
the resulting DBMs provide an excellent performance
in various applications, such as pattern recognition
systems. In the pretraining of DBNs, each of the
two layers is regarded as a restricted Boltzmann ma-
chine (RBM), which is separated from the other layers,
and an unsupervised learning algorithm, such as con-
trastive divergence (Hinton, 2002) or persistent con-
trastive divergence (Tieleman, 2008), is run for each
RBM separately. Although the procedure of pretrain-
ing for DBMs is almost the same as that for DBNs, it
is slightly modified by, e.g., replicating the bottom and
top layers and doubling the weights in the intermediate
layers (Salakhutdinov and Hinton, 2009; Salakhutdi-
nov and Larochelle, 2010; Salakhutdinov and Hinton,
2012).

The aim of this paper is to provide some insight into
the relationship between pretraining and MLE in a
DBM. In the first part, a simplified version of pre-
training for a DBM without modification, i.e., the
DBN type of pretraining for the DBM, is considered,
and two interesting theoretical facts about pretraining
procedure are revealed: (1) it is derived from a varia-
tional approximation of the MLE procedure, and (2) it
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improves the variational lower bound of the true log-
likelihood function of the DBM. In the latter part, we
apply these two theoretical results to the original type
of pretraining in DBMs and discuss it. A variational
analysis of DBMs was presented by Salakhutdinov and
Hinton (Salakhutdinov and Hinton, 2012). However,
their analysis is applicable to only a specific type of
DBM. In contrast, the analysis presented in this pa-
per is applicable to general DBMs.

2 Deep Boltzmann Machine

Let us consider a DBM with R hidden layers and de-
note the set of visible variables and the set of hidden
variables in the rth hidden layer by v := {vi | i ∈ V}
and h(r) := {h

(r)
j | j ∈ Hr}, respectively, where V

and Hr are the sets of labels of variables in the visible
layer and rth hidden layer, respectively. The visible
and the hidden variables are assumed to be discrete.
The energy function of the DBM is expressed by

EDBM(v, H;θ) := −
∑

i∈V

∑

j∈H1

w
(1)
ij vih

(1)
j

−
R∑

r=2

∑

i∈Hr−1

∑

j∈Hr

w
(r)
ij h

(r−1)
i h

(r)
j , (1)

where θ := {w(r) | r = 1, 2, . . . , R} is the set of the
connection parameters between two layers and H :=
{h(r) | r = 1, 2, . . . , R}. The DBM is the probabilistic
deep learning model described by

PDBM(v, H | θ) :=
1

ZDBM(θ)
exp

(
− EDBM(v,H; θ)

)
,

(2)

where ZDBM(θ) :=
∑

v

∑
H exp(−EDBM(v, H;θ)) is

the partition function of the DBM. In Fig. 1, an ex-
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Figure 1: (a) DBM with three hidden layers (R = 3).
(b) Simple representation of (a).

ample of a DBM with three hidden layers (Fig. 1(a))
and its simple representation (Fig. 1(b)) are shown.

For a given set of N data points D := {v(µ) | µ =
1, 2, . . . , N}, the log-likelihood function of the DBM is
described as

LDBM(θ) :=
∑

v

QD(v) ln PDBM(v | θ), (3)

where PDBM(v | θ) is the marginal distribution of Eq.
(2), and

QD(v) :=
1

N

N∑

µ=1

δ(v,v(µ))

is the empirical distribution of the data points. Here,
δ(a, b) is the Kronecker delta. By maximizing Eq.
(3) with respect to θ, we achieve the maximum likeli-
hood estimate of the DBM. The MLE procedure of the
DBM, however, is computationally expensive; there-
fore, in practice, we train the DBM by using layer-
wise pretraining to find good initial values of θ, and
after pretraining, we fine-tune the parameters using an
approximate MLE procedure such as the mean-field
approximation.

3 DBN Type of Pretraining for DBMs

Although the original pretraining procedure for DBMs
is not the same as that for DBNs (Salakhutdinov
and Hinton, 2009; Salakhutdinov and Larochelle, 2010;
Salakhutdinov and Hinton, 2012), we first consider the
DBN type of pretraining (Hinton et al., 2006) for the
DBM. We detail the pretraining procedure as follows.
First, let us define the layer-wise RBM. For 1 ≤ r ≤ R,
the RBM consisting of the (r − 1)th and rth hidden
layers is expressed as

P
(r)
RBM(h(r−1),h(r) | w(r))

:=
1

Z
(r)
RBM(w(r))

exp
(

− E
(r)
RBM(h(r−1), h(r);w(r))

)
,

(4)

where E
(r)
RBM(h(r−1), h(r); w(r)) is the energy function

of the RBM defined by

E
(r)
RBM(h(r−1), h(r); w(r))

:= −
∑

i∈Hr−1

∑

j∈Hr

w
(r)
ij h

(r−1)
i h

(r)
j ,

and Z
(r)
RBM(w(r)) is the partition function of the RBM.

Here and in the following, the zeroth hidden layer is
identified as the visible layer, i.e., h(0) = v and H0 =
V.

During pretraining, we first train w(1) by training the

first RBM, P
(1)
RBM(v, h(1) | w(1)), consisting of the vis-

ible layer and first hidden layer (RBM1 in Fig. 2(a))
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Figure 2: DBN type of pretraining for the DBM in Fig. 1.

using MLE with the given data set D, namely, maxi-
mizing the log-likelihood function

L
(1)
RBM(w(1)) :=

∑

v

QD(v) ln
∑

h(1)

P
(1)
RBM(v, h(1) | w(1))

(5)

with respect to w(1). Let the solution for training the
first RBM be represented by w̃(1).

After training the first RBM, we train w(2) using
the maximum likelihood estimate of the second RBM,

P
(2)
RBM(h(1),h(2) | w(2)), consisting of the first and sec-

ond hidden layers (RBM2 in Fig. 2(b)). During train-
ing, we use the feature points in the first hidden layer,
which are generated by

Pfp(h(1) | w̃(1), D) :=
∑

v

P
(1)
RBM(h(1) | v, w̃(1))QD(v),

where P
(r)
RBM(h(r) | h(r−1),w(r)) is the conditional dis-

tribution of the RBM in Eq. (4) from the lower layer
to the upper layer, as the pseudo-data points. Namely,
when training the second RBM, we maximize the log-
likelihood function

L
(2)
RBM(w(2); w̃(1)) :=

∑

h(1)

Pfp(h(1) | w̃(1), D)

× ln
∑

h(2)

P
(2)
RBM(h(1), h(2) | w(2))

with respect to w(2). Let the solution for training the
second RBM be represented by w̃(2).

Then, we train w(3) using the maximum likelihood

estimate of the third RBM, P
(3)
RBM(h(2), h(3) | w(3))

(RBM3 in Fig.2(c)). During training, we use the fea-
ture points on the second hidden layer, which are gen-
erated by

Pfp(h(2) | w̃(1), w̃(2), D)

:=
∑

v,h(1)

P
(2)
RBM(h(2) | h(1), w̃(2))P

(1)
RBM(h(1) | v, w̃(1))

× QD(v),

as the pseudo-data points. In the same manner, w(r)

in an upper layer is trained by maximizing the log-
likelihood function

L
(r)
RBM(w(r); θ̃r−1) :=

∑

h(r−1)

Pfp(h(r−1) | θ̃r−1, D)

× ln
∑

h(r)

P
(r)
RBM(h(r−1), h(r) | w(r)) (6)

with respect to w(r), where θ̃r := {w̃(k) | k =
1, 2, . . . , r} and

Pfp(h(r) | θ̃r, D) :=
∑

v

∑

Hr−1

QD(v)

×
r−1∏

k=0

P
(k+1)
RBM (h(k+1) | h(k), w̃(k+1)), (7)

for 1 ≤ r ≤ R−1. Here, Hr := {h(k) | k = 1, 2, . . . , r},
and w̃(k) is the solution for training the kth RBM.
Note that we define H0 = ∅ here. Therefore, the sum-
mation over Hr−1 disappears when r = 1 in Eq. (7).

4 Interpretation of Pretraining as a
Variational Approximation of MLE

The log-likelihood function of the DBM in Eq. (3) can
be decomposed as

LDBM(θ) = −
∑

v

QD(v)FH|V(θ,v) + FDBM(θ), (8)

where FDBM(θ) := − lnZDBM(θ) is the free energy of
the DBM, referred to as the full-free energy (FFE),
and

FH|V(θ,v) := − ln
∑

H

exp
(

− EDBM(v,H; θ)
)

(9)
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is the free energy of the DBM for a specific v, referred
to as the clamped-free energy (CFE). In the following,
the two types of free energy, the FFE and CFE, are
approximated by different types of variational approx-
imations, respectively.

4.1 Variational Approximation for the
Clamped-Free Energy using a Deep
Bayesian Network

(a)

h
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h
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h
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v (clamped)
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h
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Figure 3: (a) True conditional distribution π∗(H |
v) = PDBM(H | v, θ). (b) Bayesian network π†(H |
v, θ) as the approximation of (a).

For the test distribution π(H | v), let us define the
variational free energy as

FH|V [π] :=
∑

H

EDBM(v, H; θ)π(H | v) − H[π], (10)

where H[p] := −∑
x p(x) ln p(x) is the entropy func-

tional. The minimum of the variational free energy
under the normalization constraint for π(H | v) coin-
cides with the CFE in Eq. (9):

FH|V(θ, v) = min
π

{
FH|V [π] |

∑

H

π(H | v) = 1
}

,

and π(H | v), which minimize the variational free en-
ergy, is

π∗(H | v) = PDBM(H | v,θ), (11)

where PDBM(H | v, θ) is the true conditional distri-
bution of the DBM conditioned with the visible layer
(Fig. 3(a)).

Here, let us prepare the Bayesian network (BN) (see
Fig. 3(b)) defined by

π†(H | v, θ) :=

R−1∏

r=0

P
(r+1)
RBM (h(r+1) | h(r), w(r+1))

(12)

as the approximation of the true distribution in Eq.
(11). The conditional distributions in the BN are the

conditional distributions of the RBMs in Eq. (4). By
substituting Eq. (12) into the variational free energy
in Eq. (10), we obtain

FH|V [π†] = − ln
∑

h(1)

exp
(

− E
(1)
RBM(v, h(1); w(1))

)

−
R−1∑

r=1

∑

h(r)

Ppost(h
(r) | θr, v)

× ln
∑

h(r+1)

exp
(

− E
(r+1)
RBM (h(r), h(r+1); w(r+1))

)
,

(13)

where θr := {w(k) | k = 1, 2, . . . , r}, and

Ppost(h
(r) | θr,v)

:=
∑

Hr−1

r−1∏

k=0

P
(k+1)
RBM (h(k+1) | h(k), w(k+1)), (14)

for 1 ≤ r ≤ R − 1, is the marginal distribution of
the BN. Because the BN in Eq. (12) satisfies the
normalization constraint

∑
H π†(H | v, θ) = 1, the

BN can be a candidate of the solution to the varia-
tional minimization of Eq. (10). However, in general,
π†(H | v, θ) ̸= PDBM(H | v, θ); therefore, we find the
inequality

FH|V [π†] ≥ FH|V [π∗] = FH|V(θ, v) (15)

holds, because FH|V [π∗] is the true minimum of the
variational free energy in Eq. (10).

4.2 Variational Approximation for the
Full-Free Energy using the Bethe Free
Energy

If each layer in the DBM is regarded as a block,
the structure of the DBM can be read as the one-
dimensional Markov random field of the blocks, e.g.,
see Fig. 4(a). Therefore, by using its marginal distri-
butions, we can express the DBM in Eq. (2) as

PDBM(v, H | θ)

= PDBM(v | θ)
R−1∏

r=0

PDBM(h(r+1) | h(r)θ)

= PDBM(v,h(1) | θ)
R−1∏

r=1

PDBM(h(r), h(r+1) | θ)

PDBM(h(r) | θ)
.

(16)

Following Eq. (16), let us define the variational free
energy as

FDBM[ϕ] :=
∑

v,H

EDBM(v,H; θ)ϕ(v, H) − H[ϕ], (17)
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Figure 4: (a) DBM as a one-dimensional chain. (b) Bethe-type decomposition based on the CVM.

together with the test distribution ϕ(v, h), which is
expressed by

ϕ(v, H) := Γ0,1(v, h(1))

R−1∏

r=1

Γr,r+1(h
(r), h(r+1))

γr(h(r))
,

(18)

where Γr,r+1(h
(r),h(r+1)) is the joint distribution of

h(r) and h(r+1), and γr(h
(r)) is the distribution of h(r).

By using Eq. (18), we can express Eq. (17) as Eq.
(19). Eq. (19) is identified with the (blocked) Bethe
free energy of FDBM(θ) obtained by the cluster vari-
ation method (CVM) (Yedidia et al., 2005; Pelizzola,
2005) by decomposing the clusters according to Fig.
4(b). The variational minimization of the Bethe free
energy with respect to γ = {γr(h

(r)) | 1 ≤ r ≤ R − 1}
and Γ = {Γr,r+1(h

(r), h(r+1)) | 0 ≤ r ≤ R − 1} under
the normalizing constraints,

∑

h(r)

γr(h
(r)) =

∑

h(r),h(r+1)

Γr,r+1(h
(r),h(r+1)) = 1,

(20)

and the marginal constraints,

γr(h
(r)) =

∑

h(r+1)

Γr,r+1(h
(r),h(r+1)), (21)

γr(h
(r)) =

∑

h(r−1)

Γr−1,r(h
(r−1), h(r)), (22)

coincides with the FFE

FDBM(θ)

= min
{γ,Γ}

{
FDBM[ϕ] | constraints in (20)–(22)

}
. (23)

This equality originates from the exactness of the
Bethe approximation (Bethe, 1935), which is the same
as belief propagation (Pearl, 1988), in one-dimensional
chain systems (Welling and Teh, 2003; Pelizzola, 2005).

Here, as an approximation, we neglect the marginal
constraints in Eqs. (21) and (22) in the variational
minimization in Eq. (23), and then, we define a new
quantity as

F †
DBM(θ) := min

{γ,Γ}

{
FDBM[ϕ] | constraints in (20)

}
.

(24)

Obviously, the inequality

F †
DBM(θ) ≤ FDBM(θ) (25)

holds because the number of constraints in the vari-
ational minimization in Eq. (24) is less than that in
Eq. (23). By performing the variational minimization
in Eq. (24), we obtain

F †
DBM(θ) = −

R∑

r=1

lnZ
(r)
RBM(w(r)), (26)

where Z
(r)
RBM(w(r)) is the partition function of the

RBM in Eq. (4). In the derivation of Eq. (26), the
equality

min
γr

{
H[γr] |

∑

h(r)

γr(h
(r)) = 1

}
= 0

is used.

4.3 Derivation of the DBN Type of
Pretraining for DBMs

By using Eqs. (15) and (25), a lower bound of the log-
likelihood function of the DBM in Eq. (8) is expressed
as

LDBM(θ)

≥ Llower
DBM(θ) := −

∑

v

QD(v)FH|V [π†] + F †
DBM(θ).

(27)

From Eqs. (5), (6), (13), and (26), we obtain

Llower
DBM(θ) = L

(1)
RBM(w(1)) +

R∑

r=2

L
(r)
RBM(w(r); θr−1),

(28)

where the equality

Pfp(h(r) | θr, D) =
∑

v

QD(v)Ppost(h
(r) | θr, v)

is used (cf. Eqs. (7) and (14)).
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FDBM[ϕ] =
R−1∑

r=0

∑

h(r),h(r+1)

E
(r+1)
RBM (h(r), h(r+1); w(r+1))Γr,r+1(h

(r), h(r+1)) −
R−1∑

r=0

H[Γr,r+1] +
R−1∑

r=1

H[γr]. (19)

Maximization of the lower bound in Eq. (28) with
respect to all the parameters remains difficult, because
Pfp(h(r) | θr, D) depends on all the parameters in the
lower layers. Hence, we take a greedy maximization
strategy in which we successively maximize the lower
bound starting from the bottom layer, namely,

gmax
θ

Llower
DBM(θ) := max

w(1)
L

(1)
RBM(w(1))

+
R∑

r=2

max
w(r)

L
(r)
RBM(w(r); θ̃r−1), (29)

where θ̃r = {w̃(k) | k = 1, 2, . . . , r} and

w̃(r) =

{
argmaxw(1)L

(1)
RBM(w(1)) (r = 1)

argmaxw(r)L
(r)
RBM(w(r); θ̃r−1) (r ≥ 2)

.

The procedure of the greedy maximization in Eq.(29)
is the same as the pretraining procedure described in
Sec. 3. Obviously, the inequality

max
θ

Llower
DBM(θ) ≥ gmax

θ
Llower

DBM(θ) (30)

holds. From this inequality and Eq. (27), we have

max
θ

LDBM(θ) ≥ max
θ

Llower
DBM(θ) ≥ gmax

θ
Llower

DBM(θ).

(31)

From Eq. (31), we find that the pretraining described
in Sec. 3 greedily improves the lower bound of the true
log-likelihood function.

The arguments in this section showed that two facts
are ensured in general DBMs with discrete variables.
One fact is that the variational approximation of the
MLE procedure can lead to the procedure of the DBN
type of pretraining for a DBM, and the second is
that the pretraining procedure improves the varia-
tional bound of the true log-likelihood function of the
DBM. The first fact seems to be a particularly impor-
tant finding for pretraining, because it probably con-
stitutes the first attempt to understand pretraining as
a certain approximation of MLE.

In the approximation for the FFE in Sec. 4.2, we ne-
glect the two facts: (a) the consistency between two
different RBMs, that is, the marginal distributions
over the upper layer in the lower RBM and over the
lower layer in the upper RBM are the same (cf. Eqs.
(21) and (22)) and, as a result of the approximation

in (a), (b) the consistency for the double-counted en-
tropies (the last term of Eq. (19)). By the approxima-
tion, all the RBMs are completely decoupled (cf. Eq.
(26)). Here, let us consider the pretraining procedure
presented in Eq. (29) in an identical case in which all
the RBMs can perfectly reconstruct the distribution of
the observed data and the distribution of the feature
points. After the pretraining, since all the RBMs per-
fectly reconstruct the distribution of the observed data
and that of the feature points, consistency (a), which is
neglected in the approximation, is recovered. It can be
understood as follows. In this case, the marginal distri-
bution

∑
h(1) Γ0,1(v, h(1)) is equivalent to the empiri-

cal distribution QD(v), and therefore, the distribution
Pfp(h(1) | w̃(1), D) is equivalent to the marginal distri-
bution

∑
v Γ0,1(v, h(1)). Since the second RBM per-

fectly reconstructs the distribution Pfp(h(1) | w̃(1), D),
the marginal distribution over the lower layer in the
second RBM,

∑
h(2) Γ1,2(h

(1),h(2)), is equivalent to
Pfp(h(1) | w̃(1), D). This means that the marginal dis-
tribution over the upper layer in the first RBM and
that over the lower layer in the second RBM are equiv-
alent. This argument can be recursively applied to the
upper RBMs. The above discussion shows that the ne-
glected consistencies (the consistency (a)) are partially
recovered during the pretraining procedure.

Under a specific assumption for the structure, it is
guaranteed that additive stacked RBMs, which deepen
the architecture of the model, improve the variational
bound when pretraining for DBNs (Hinton et al.,
2006). However, the results in this section do not in-
volve such a statement for DBMs.

5 Original Pretraining Procedure for
DBMs

In the original pretraining procedure for DBMs pro-
posed by Salakhutdinov and Hinton (2009), first, we
extend the original DBM in Eq. (2) as

Pex(v1, v2,HR−1, h
(R)
1 ,h

(R)
2 | θ)

∝ PDBM(v1, HR−1, h
(R)
1 | θ)

× PDBM(v2, HR−1, h
(R)
2 | θ), (32)

and after the extension, we perform the DBN type of
pretraining for the extended model. An example of
the extension is shown in Fig. 5. The log-likelihood
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Figure 5: Extension model of the DBM in Fig. 1.

function of the extended model is

Lex(θ) :=
∑

v1,v2

Qex
D (v1,v2) ln Pex(v1,v2 | θ), (33)

where Pex(v1,v2 | θ) is the marginal distribution of the
extended model and Qex

D (v1, v2) := QD(v1)δ(v1, v2) is
the extended empirical distribution.

Because the extended model in Eq. (32) is also the
DBM, we can apply the theoretical results obtained in
the previous section. From Eq. (28), the variational
lower bound of the log-likelihood function in Eq. (33)
is derived as

Llower
ex (θ) := L(1)

ex (w(1)) +
R−1∑

r=2

L
(r)
RBM(2w(r); 2θr−1)

+ L(R)
ex (w(R); 2θR−1), (34)

where

L(1)
ex (w(1)) :=

∑

v1,v2

Qex
D (v1, v2) ln P(1)

ex (v1, v2 | w(1)),

L(R)
ex (w(R); 2θR−1) :=

∑

h(R−1)

Pfp(h(R−1) | 2θR−1, D)

× lnP(R)
ex (h(R−1) | w(R)).

Here, P(1)
ex (v1, v2 | w(1)) and P(R)

ex (h(R−1) | w(R)) are
the distributions defined by

P(1)
ex (v1, v2 | w(1))

∝
∑

h(1)

P
(1)
RBM(v1, h

(1) | w(1))P
(1)
RBM(v2, h

(1) | w(1)),

P(R)
ex (h(R−1) | w(R))

∝
[ ∑

h(R)

P
(R)
RBM(h(R−1), h(R) | w(R))

]2

.

From Eq. (27), the inequality

Lex(θ) ≥ Llower
ex (θ) (35)

is ensured. The original pretraining procedure for the
DBM corresponds to greedily improving Eq. (34),

which is the variational lower bound of the log-
likelihood function in Eq. (33).

A theoretical relationship between the variational
bound in Eq. (34) and the true log-likelihood func-
tion, which is the most important issue that we wish
to resolve, has not been revealed. In the following,
we numerically compare the log-likelihoods with their
variational lower bounds. Let us consider a DBM
with R hidden layers in which each layer randomly

takes two or three variables and each w
(r)
ij is indepen-

dently drawn from the Gaussian distribution N (0, σ2).
All the variables in the DBM are the binary variable:

vi, h
(r)
j ∈ {0, 1}.

In the DBM, we numerically evaluated the true log-
likelihood, the variational lower bound of the true log-
likelihood, the log-likelihood of the extended DBM,
and the variational lower bound of the log-likelihood
of the extended DBM. In the evaluation, N = 1000
data points, the elements of which randomly take 0
or 1, were used. For a fair comparison, the log-
likelihoods were divided by the number of visible
variables, namely, they are the log-likelihoods per
data. Fig. 6 shows the log-likelihoods for vari-
ous R. In the figure, “true,” “ext,” “lower bound
(true),” and “lower bound (ext)” show LDBM(θ)/|V|,
Lex(θ)/(2|V|), Llower

DBM(θ)/|V|, and Llower
ex (θ)/(2|V|), re-

spectively. In the figure, Llower
ex (θ) is always closer

to the true log-likelihood than Llower
DBM(θ). Thus, from

the numerical results, we can expect Llower
ex (θ) to be

a better lower bound of the true log-likelihood than
Llower

DBM(θ):

LDBM(θ) ≥ Llower
ex (θ)

2
≥ Llower

DBM(θ). (36)

This could imply that the original pretraining proce-
dure is more effective than the DBN type of pretrain-
ing described in Sec. 3. Note that Eq.(36) is not the
theoretical result but the prediction obtained from the
numerical results.

It was noted that adding layers to a DBM yields di-
minishing improvements in a certain variational bound
(Salakhutdinov and Hinton, 2012). A similar finding
can be obtained in the presented results. From Eq.
(28), it is ensured that an additive layer decreases the
lower bound Llower

DBM(θ), because a log-likelihood func-
tion for discrete variables is non-positive. In fact, in
Fig. 6, the difference between LDBM(θ) and Llower

DBM(θ)
rapidly increases with the increase in the number of
hidden layers. This would suggest that an additive
layer impairs the performance of the pretraining in
DBMs.
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Figure 6: Log-likelihoods for various R. The left, center, and right panels show the log-likelihoods when σ = 1,
2, and 4, respectively. Each plot is the average over 1000 trials.

6 Conclusion

In the first part of this paper, the DBN type of
pretraining for DBMs was discussed. The true log-
likelihood function of a DBM can be decomposed into
two different free energies, the CFE and FFE. By ap-
proximating the two free energies by using the differ-
ent types of variational approximation, the replacing
approximation by using a BN for the CFE and the
Bethe-type of approximation based on the CVM for
the FFE, respectively, the pretraining procedure is de-
rived. We saw that the pretraining procedure greed-
ily improves the variational lower bound of the true
log-likelihood function. The theoretical results can be
applied to general DBMs with discrete variables and
will help deepen our understanding of deep learning.

In the latter part, we applied the obtained theoreti-
cal results to the original pretraining procedure for a
DBM and demonstrated that the original procedure
greedily improves the variational lower bound of the
log-likelihood function for the extended DBM. More-
over, we numerically compared the log-likelihoods with
their variational lower bounds. In the numerical re-
sults, we observed that the variational bound that the
original pretraining procedure optimizes is a tighter
bound of the true log-likelihood function than one that
the DBN type of pretraining optimizes, and that the
variational bounds rapidly depart from the true log-
likelihood function with the increase in the number of
hidden layers.

A theoretical connection between the true log-
likelihood function and the variational bound that the
original pretraining procedure optimizes, such as Eq.
(36), is not revealed. It should be considered in fu-
ture studies. More effective pretraining procedures for
DBMs were proposed by several researchers (Hinton
and Salakhutdinov, 2012; Cho et al., 2013). The Anal-
ysis of these procedures on the basis of the results ob-
tained in this paper is also an important future issue.
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