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7 Appendix A: Analysis for
Approximate Low-rank
Representation

Theorem 1. Suppose the low-rank approximation D̂
has ‖D̂ − D‖1,∞ ≤ ε, where ‖A‖1,∞ =

∑
i maxj |Aij |.

Then we have

tr(DT Ŵ ) ≤ tr(DTW ∗) + 2ε, (25)

where Ŵ , W ∗ are solutions to (2) with dissimilarity

matrix D̂ and D respectively.

Proof. Since Ŵ is the optimal solution of (2) with ma-

trix D̂, we have

tr(D̂T Ŵ ) ≤ tr(D̂TW ∗).

Therefore,

tr(DT Ŵ )− tr(DTW ∗) ≤
≤ tr(DT (Ŵ −W ∗))

= tr(D̂T (Ŵ −W ∗)) + tr((D− D̂)T (Ŵ −W ∗))

≤ 0 + tr((D− D̂)T (Ŵ −W ∗))

≤
∑
i

(
max
j
|Dij − D̂ij |

)∑
j

|Ŵij −W ∗ij |


≤

(∑
i

max
j
|Dij − D̂ij |

)max
i

∑
j

|Ŵij −W ∗ij |


= ‖D− D̂‖1,∞ ∗ ‖Ŵij −W ∗ij‖max,1

≤ ‖D− D̂‖1,∞
(
‖Ŵij‖max,1 + ‖W ∗ij‖max,1

)
≤ 2ε.

Note we have used notation ‖A‖max,1 = maxi
∑
j |Aij |

to distinguish from ‖A‖∞,1 =
∑
j maxi |Aij |.

Theorem 2. Suppose the low-rank approximation D̂
has ‖D̂ − D‖1,∞ ≤ ε, where ‖A‖1,∞ =

∑
i maxj |Aij |.

Then we have

F (Ŵ ) ≤ F (W ∗) + 2ε, (26)

where F (.) denotes the objective function in (3), Ŵ ,

W ∗ are solutions to (3) with dissimilarity matrix D̂
and D respectively.

Proof. Since Ŵ is the optimal solution of (2) with ma-

trix D̂, we have

tr(D̂T Ŵ ) + λ‖Ŵ‖∞,1 ≤ tr(D̂TW ∗) + λ‖W ∗‖∞,1,

and thus,

F (Ŵ )− F (W ∗) ≤
≤ tr(DT (Ŵ −W ∗)) + ‖Ŵ‖∞,1 − ‖W ∗‖∞,1
= tr(D̂T (Ŵ −W ∗)) + ‖Ŵ‖∞,1 − ‖W ∗‖∞,1
+ tr((D− D̂)T (Ŵ −W ∗))

≤ 0 + tr((D− D̂)T (Ŵ −W ∗)) ≤ 2ε,

where the final inequality follows from the same rea-
soning in proof of Theorem 1.

8 Appendix B: Convergence Analysis
of AL-BCD

In this section, we give an analysis that shows global
linear convergence of both Algorithm 1 and Algorithm
2. In the first part, we show a linear-type convergence
of randomized BCD and Greedy BCD by utilizing the
special structure of the AL subproblem. In the second
part, we show that by choosing a sufficiently small dual
step size η, one can achieve global linear convergence
with one step of randomized or Greedy BCD instead
of solving each AL subproblem exactly.

8.1 Iteration Complexity of Block
Coordinate Descent (BCD)

In this section, we give iteration complexity of inner
loop in Algorithm 1 and Algorithm 2 when performed
on sub-problem (10). Although (10) is not strongly
convex, it has strong convexity when restricted to the
subspaceN⊥, whereN is the Nullspace of linear equal-
ity W1 = 1. This property can be leveraged to prove
exponentially fast convergence [31, 33]. In the follow-
ing, we prove linear convergence of randomized BCD
and Greedy BCD for our AL sub-problem (10).

Notice that the AL sub-problem (10) can be expressed
as

min
W,ξ

N∑
i

M∑
j=1

DijWij +

M∑
j=1

λjξj +
ρ

2
‖
M∑
j=1

Wj − q‖2

s.t. Wij ≤ ξj , i ∈ [N ],

W ∈ [0, 1]N×M , ξ ∈ [0, 1]M .
(27)

where q = 1−αt/ρ, and (27) can be further compactly
expressed as

min
x∈X

f(x) = bTx+ g(Ex), (28)

where x = [x1,x2, ...,xM ], xj = (Wj , ξj), g(Ex) =
ρ
2‖
∑M
j=1Wj − q‖2 and X = X1 × X2... × XM is a
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polyhedral set with Xj defined by the constraints that
involves j-th block of variables xj = (Wj , ξj) in (27).

For problem of form (28), [31] shows that the set of
optimal solution x̄ forms a polyhedron satisfying (i)
Ex̄ = t∗, (ii) bT x̄ = s∗ and (iii) x ∈ X . Then we
can bound the distance of any point x̄ to the opti-
mal polyhedral set by the amount of infeasibility to
the three (in)equalities (i)-(iii) using Hoffman’s bound
introduced as follows.

Lemma 1 (Hoffman’s Bound). Let S = {x ∈
Rd | Ax ≤ b, Ex = c} be a polyhedral set. Then
for any point x ∈ Rd,

‖x−ΠS(x)‖22 ≤ θ
∥∥∥∥ [Ax− b]+

Ex− c

∥∥∥∥2

2

(29)

where ΠS(x) = argminy∈S ‖y − x‖ is the projection
of x to the set S, and θ > 0 is a constant depending
on the polyhedral set S.

Proof. The Hoffman’s bound first appears in [10] and a
proof for the `2-norm’s version (29) and the definition
of the constant θ(S) can be found in [31] (lemma 4.3).

Using Lemma 1, we can bound the distance of any
point x̄ to the optimal polyhedral set formed by the
above conditions (i)-(iii) as

‖x−ΠS(x)‖22 ≤ θ(‖Ex− t∗‖2 + (bTx− s∗)2). (30)

Note by norm equivalence, we can also have another
version of the error bound (30) M∑
j=1

‖xj −ΠS(x)j‖2

2

≤ θ1(‖Ex−t∗‖2+(bTx−s∗)2).

(31)
for some θ1 satisfying θ ≤ θ1 ≤Mθ.

Equipped with those bounds on the minimum distance
to an optimal solution, we are ready to show a linear
type of convergence for both randomized and greedy
BCD algorithms.

Both algorithms work by optimizing a column of vari-
ables xj = (Wj , ξj) at a time. In particular, since the
constraints in (27) are column-separable, equation (17)
is derived as the closed-form solution that minimizes
(27) w.r.t. (Wj , ξj). The update can be thus denoted
as xs+1−xs, where xs+1 has W s+1

j = W s
j +d∗j as de-

fined in (17), ξs+1
j = ‖W s+1

j ‖∞, and all other variables
kept the same as xs.

The minimization of (27) w.r.t. j-th block of coordi-
nates yields the following problem

min
Wj∈[0,1]N ,ξj∈[0,1]

fj(xj) = DTj Wj + λjξj

+ ρ(

M∑
k=1

Wk − q)TWj +
ρ

2
‖Wj‖2

s.t. Wij ≤ ξj , i ∈ [N ],
(32)

whose objective has Lipschitz-continuous gradient
with modulus ρ. Therefore, denoting ∆xj = xs+1

j −
xsj , we have

fj(x
s+1
j )− fj(xsj)

≤ min
∆xj

hj(x
s
j + ∆xj) +∇jf(xs)T∆xj +

ρ

2
‖∆xj‖2,

(33)
where

hj(xj) =

{
0 ,xj ∈ Xj ,
∞ , o.w..

(34)

Then the following Theorem gives linear convergence
of Randomized BCD (Algorithm 1) by showing that
the RHS of (33) has magnitude as large as a constant
multiple of suboptimality f(xs) − f∗ in expectation
when j is drawn uniformly from [M ].

Theorem 7 (Linear Convergence of Randomized
BCD). The iterate {xs}∞s=1 produced by Algorithm 1
has

E[f(xs+1)]− f∗ ≤
(

1− 1

Mγ

)
(f(xs)− f∗) .

where f∗ is the optimum of (10) and

γ = max
{

16ρθ(f0 − f∗) , 2θ(1 + 4L2
g) , 6

}
is a constant depending on the initial function differ-
ence f0 − f∗, local Lipschitz-continuous constant Lg
of the augmented term, and Hoffman constant θ of the
optimal (polyhedral) solution set.

Proof. Let x = xs be s-th iterate and x∗ = ΠS(x) be
the projection of xs on the optimal solution set, and
h(x) =

∑M
j=1 hj(xj). Taking expectation w.r.t. j, the

descent amount given by (33) has

E[f(xs+1)]− f(xs)

≤ 1

M

(
min
∆x

h(x+ ∆x) +∇f(x)T∆x+
ρ

2
‖∆x‖2

)
≤ 1

M

(
min
∆x

h(x+ ∆x) + f(x+ ∆x)− f(x) +
ρ

2
‖∆x‖2

)
≤ 1

M

(
min
β∈[0,1]

f(x+ β(x∗ − x))− f(x) +
ρβ2

2
‖x∗ − x‖2

)
≤ 1

M

(
min
β∈[0,1]

−β(f(x∗)− f(x)) +
ρβ2

2
‖x∗ − x‖2

)
(35)
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where the second and fourth inequality follow from
the convexity of f(x), and the third inequality fol-
lows from the fact that both x∗ and xs are feasible
(h(x∗) = h(x) = 0). Let Lg ≥ 1 be a Lipschitz-
continuous constant of the augmented term g(Ex) for
x satisfying ‖Ex−q‖ ≤ Rq (where Lg is at least ρRq).
Based on the error bound inequality (30), we discuss
two cases.

Case 1: 4L2
g‖Ex− t∗‖2 < (bTx− s∗)2.

In this case, we have

‖x− x∗‖2 ≤ θ(‖Ex− t∗‖2 + (bTx− s∗)2)

≤ θ( 1

L2
g

+ 1)(bTx− s∗)2

≤ 2θ(bTx− s∗)2,

(36)

and

|bTx− s∗| ≥ 2Lg‖Ex− t∗‖ ≥ 2|g(Ex)− g(t∗)|

by the definition of Lipschitz constant Lg. Note

bTx− s∗ is non-negative since otherwise, f(x)− f∗ =
g(Ex)− g(t∗) + (bTx− s∗) ≤ |g(Ex)− g(t∗)|− |bTx−
s∗| ≤ −1

2 |b
Tx− s∗| < 0, which leads to contradiction.

Therefore, we have

f(x)− f∗ = g(Ex)− g(t∗) + (bTx− s∗)
≥ −|g(Ex)− g(t∗)|+ (bTx− s∗)

≥ 1

2
(bTx− s∗).

(37)

Combining (35), (36) and (37), we have

E[f(xs+1)]− f(xs)

≤ 1

M
min
β∈[0,1]

−β
2

(bTx− s∗) +
2ρθβ2

2
(bTx− s∗)2

=

{
−1/(16ρθM) , 1/(4ρθ(bTx− s∗)) ≤ 1

− 1
4M (bTx− s∗) , o.w.

Furthermore, we have

− 1

16ρθM
≤ − 1

16ρθM(f0 − f∗)
(f(x)− f∗)

where f0 = f(x0), and

− 1

4M
(bTx− s∗) ≤ − 1

6M
(f(x)− f∗)

since f(x)−f∗ ≤ |g(Ex)−g(t∗)|+bTx−s∗ ≤ 3
2 (bTx−

s∗). In summary, for Case 1 we obtain

E[f(xs+1)]− f∗ ≤ (1− 1

Mγ1
) (E[f(x)]− f∗) (38)

where
γ1 = max

{
16ρθ(f0 − f∗) , 6

}
. (39)

Case 2: 4L2
g‖Ex− t∗‖2 ≥ (bTx− s∗)2.

In this case, we have

‖x− x∗‖2 ≤ θ
(
1 + 4L2

g

)
‖Ex− t∗‖2, (40)

and by strong convexity of g(.),

f(x)−f∗ ≥ bT (x−x∗)+∇g(t∗)TE(x−x∗)+ρ

2
‖Ex−t∗‖2.

Adding inequality 0 = h(x)− h(x∗) ≥ 〈δ∗,x−x∗〉 for
some δ∗ ∈ ∂h(x∗) to the above gives

f(x)− f∗ ≥ ρ

2
‖Ex− t∗‖2 (41)

since δ∗+b+∇g(t∗)TE = δ∗+∇f(x∗) = 0. Combining
(35), (40), and (41), we obtain

E[f(xs+1)]− f(xs)

≤ 1

M

(
min
β∈[0,1]

−β(f(x)− f∗) +
θ(1 + 4L2

g)β
2

2
(f(x)− f∗)

)

= − 1

2θ(1 + 4L2
g)M

(f(x)− f∗)

(42)
Combining results of Case 1 (38) and Case 2 (42), and
taking expectation on both sides w.r.t. the history
leads to the result.

A similar linear convergence result can be proved for
Greedy BCD on the AL subproblem (10) with approx-
imate column generation criteria (20), as shown in the
following theorem.

Theorem 8 (Linear Convergence of Approximate
Greedy BCD). Let {xs}∞s=1 denote iterates produced
by Algorithm 2 (without step 2.5) with a fixed α and
let f∗ be the optimum of (10). Then

E[f(xs+1)]− f∗ ≤
(

1− 1

mγ2

)
(f(xs)− f∗) ,

where m = M/R,

γ2 = max
{

16ρθ1(f0 − f∗) , 2θ1(1 + 4L2
g) , 6

}
.

and θ1 is the `2,1-norm version of Hoffman constant
of the optimal solution set satisfying θ ≤ θ1 ≤Mθ.

Proof. Let

Hj(x
s) := min

∆xj

hj(x
s
j+∆xj)+∇jf(xs)T∆xj+

ρ

2
‖∆xj‖2

and

j∗ = argmin
j

Hj(x
s).
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Suppose the Greedy BCD chooses column j∗ to up-
date. We have

f(xs+1)− f(xs) ≤ Hj∗(xs)

= min
∆x:x+∆x∈X

∇f(x)T∆x+
ρ

2
(

M∑
j=1

‖∆xj‖2)2

≤ min
∆x:x+∆x∈X

f(x+ ∆x)− f(x) +
ρ

2
(

M∑
j=1

‖∆xj‖2)2

≤ min
β∈[0,1]

f(x+ β∆x∗)− f(x) +
ρβ2

2
(

M∑
j=1

‖∆x∗j‖2)2

≤ min
β∈[0,1]

−β(f(x∗)− f(x)) +
ρβ2

2
(

M∑
j=1

‖∆x∗j‖2)2

where ∆x∗ = x∗−x. The first equality is from the fact
that linear objective subject to `2,1-norm constraint
has solution on the corner point, which corresponds to
∆x with ∆xj = 0, ∀j 6= j∗.

Now consider the approximate greedy column genera-
tion based on (20). Note that the approximate score
given by (20) is always an underestimate of the true
score, and if a column j is picked for generating ref-
erence vector qj the computed score for column j is
always exact, and therefore the approximate column
generation returns a column that is at least as good
as the best one used as reference vectors. By drawing
R reference vectors, there is R/M probability column
j∗ is picked. As a result, the iterates produced by
approximate column generation have

f(xs+1)− f(xs) ≤ 1

m
Hj∗(xs)

≤ 1

m

 min
β∈[0,1]

−β(f(x∗)− f(x)) +
ρβ2

2
(

M∑
j=1

‖∆x∗j‖2)2

 ,

where m = M/R. Then following the same reasoning
as in Theorem 7 with (30) replaced by the `2,1-norm
version of the Hoffman bound (31) gives the result.

8.2 Iteration Complexity of AL-BCD

In this section, we show global linear convergence of
both randomized AL-BCD (Algorithm 1) and AL-
BCD with column generation (Algorithm 2).

Recall that L(W ;α) is the Augmented Lagrangian
function. The dual objective of the exemplar cluster-
ing problem is

d(α) := min
W≥0

L(W,α)

and
d∗ := max

α
d(α)

is the optimal dual objective.

Then we measure the sub-optimality of iterates
{(W t,αt)}Tt=1 given by our algorithms in terms of the
dual function difference

∆t
d = d∗ − d(αt)

and the primal function difference:

∆t
p = L(W t+1,αt)− d(αt).

It is clear that any (W t+1,αt) satisfying ∆t
d = ∆t

p = 0
is an optimal solution to our original problem (3).

Lemma 2 (Dual Progress). Each dual update (11)
leads to

∆t
d −∆t−1

d ≤ −η(W t1M − 1N )T (W̄ t1M − 1N ), (43)

where W̄ t is the projection of W t to the optimal solu-
tion set of AL function

argmin
W

L(W,αt).

Proof.

∆t
d −∆t−1

d = d∗ − d(αt)− d∗ − d(αt−1)

= L(W̄ t−1,αt−1)− L(W̄ t,αt)

≤ L(W̄ t,αt−1)− L(W̄ t,αt)

= 〈αt−1 −αt, W̄ t1M − 1N 〉
= −η〈W t1M − 1N , W̄

t1M − 1N 〉

where the first inequality follows from the optimal-
ity of W̄ t−1 for the function L(W,αt−1), and the last
equality follows from the dual update (11).

the following lemma gives an expression on the primal
progress that is independent of the algorithm used for
minimizing Augmented Lagrangian

Lemma 3 (Primal Progress). Each iteration of Algo-
rithm 1 and Algorithm 2 satisfies

∆t
p −∆t−1

p ≤L(W t+1,αt)− L(W t,αt)

+ η‖W t1M − 1N‖2

− η〈W t1M − 1N , W̄
t1M − 1N 〉

Proof.

∆t
p −∆t−1

p

=L(W t+1,αt)− L(W t,αt−1)− (d(αt)− d(αt−1))

≤L(W t+1,αt)− L(W t,αt) + L(W t,αt)− L(W t,αt−1)

+ (d(αt−1)− d(αt))

≤L(W t+1,αt)− L(W t,αt) + η‖W t1M − 1N‖2

− η〈W t1M − 1N , W̄
t1M − 1N 〉

where the last inequality uses Lemma 2 on d(αt−1)−
d(αt) = ∆t

d −∆t−1
d .
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By combining results of Lemma 2 and 3, we can obtain
a joint progress of the form

∆t
d −∆t−1

d + ∆t
p −∆t−1

p

≤ L(W t+1,αt)− L(W t,αt) + η‖W t1M − W̄ t1M‖2

− η‖W̄ t1M − 1N‖2
(44)

Note the only positive term in (44) is the term
η‖W t1M−W̄ t1M‖2. To guarantee descent of the joint
measure of suboptimality ∆t

d + ∆t
p, we bound the sec-

ond term of (44) with the primal gap L(W t,αt)−d(αt)
given by the following lemma.

Lemma 4.

‖W t1M − W̄ t1M‖2 ≤
2

ρ
(L(W t,αt)− L(W̄ t,αt))

(45)

Proof. Let

L̃(W,α) = h(W ) + g(W1M ),

where
g(W1M ) =

ρ

2
‖W1M − 1N‖2

and

h(W ) = tr(DTW ) + λ‖W‖∞,1 +αT (W1M − 1N ),

, ifW ≥ 0 and h(W ) =∞ ifW is infeasible. According
to the definition of d(α), we know that

0 ∈ ∂W L̃(W̄ t,α) = ∂h(W̄ t) +∇W g(W1M ).

By the convexity of h(·) and the strong convexity of
g(·), we have

h(W t)− h(W̄ t) ≥ 〈δ∗,W t − W̄ t〉

for any δ∗ ∈ ∂h(W̄ t). and

g(W t1M )− g(W̄ t1M ))

≥〈∇W g(W t1M ),W t − W̄ t〉+
ρ

2
‖W t1M − W̄ t1M‖2

The the above two together implies

L(W t,αt)− L(W̄ t,αt) ≥ ρ

2
‖W t1M − W̄ t1M‖2

which leads to our conclusion.

Now the joint progress can be written as

∆t
d −∆t−1

d + ∆t
p −∆t−1

p

≤ L(W t+1,αt)− L(W t,αt)

+
2η

ρ
(L(W t,αt)− L(W̄ t,αt))

− η‖W̄ t1M − 1N‖2,

(46)

which indicates that as long as the primal update
leads to a descent of AL function L(W t+1,αt) −
L(W t,αt) proportional to the current primal subopti-
mality L(W t,αt)−L(W̄ t,αt), one can choose a small
enough constant step size η to guarantee descent of the
joint suboptimality ∆t

d + ∆t
p.

Note the term W̄ t1M −1N is actually gradient of dual
objective ∇d(αt), and since problem (3) satisfies the
Assumption A(a)-A(e) in [11], the error bound

∆d(α) ≤ τ‖∇d(α)‖2 (47)

in Lemma 3.1 of [11] applies to our dual objective d(α)
with compact domain α ∈ R(α0), where τ > 0 is a
constant that depends on geometry of solution set S.

Now we are ready to give the convergence results for
Randomized ALBCD and Greedy ALBCD.

Theorem 9 (Linear Convergence of Randomized AL-
BCD). The iterates {(W t,αt)}∞t=1 produced by Algo-
rithm 1 has

∆t
d + ∆t

p ≤
1

1 + min( 1
2Mγ ,

η
τ )

(
∆t−1
d + ∆t−1

p

)
,

for any 0 < η ≤ ρ/4Mγ, where τ > 0 is a constant
depending on the geometry of optimal solution set.

Proof. By (46), (47) and Theorem 7, we have

∆t
d −∆t−1

d + ∆t
p −∆t−1

p

≤ − 1

Mγ
(L(W t,αt)− L(W̄ t,αt))

+
2η

ρ
(L(W t,αt)− L(W̄ t,αt))

− η

τ
∆t
d.

Setting η ≤ ρ/4Mγ, we have

∆t
d −∆t−1

d + ∆t
p −∆t−1

p

≤ − 1

2Mγ
(L(W t,αt)− L(W̄ t,αt))− η

τ
∆t
d

≤ − 1

2Mγ
∆t
p −

η

τ
∆t
d,

which leads to the result.

Theorem 10 (Linear Convergence of Greedy AL-
BCD). The iterates {(W t,αt)}∞t=1 produced by Algo-
rithm 2 has

∆t
d + ∆t

p ≤
1

1 + min( 1
2mγ2

, ητ )

(
∆t−1
d + ∆t−1

p

)
,

for any 0 < η ≤ ρ/4mγ2.
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Proof. By (46), (47) and Theorem 8, we have

∆t
d −∆t−1

d + ∆t
p −∆t−1

p

≤ − 1

mγ2
(L(W t,αt)− L(W̄ t,αt))

+
2η

ρ
(L(W t,αt)− L(W̄ t,αt))

− η

τ
∆t
d.

Setting η ≤ ρ/4mγ2, we have

∆t
d −∆t−1

d + ∆t
p −∆t−1

p

≤ − 1

2mγ2
(L(W t,αt)− L(W̄ t,αt))− η

τ
∆t
d

≤ − 1

2mγ2
∆t
p −

η

τ
∆t
d,

which leads to the result.


