
Manzil Zaheer, Michael Wick, Jean-Baptiste Tristan, Alex Smola, Guy L Steele Jr

A (Stochastic) EM in General

Expectation-Maximization (EM) is an iterative method for finding the maximum likelihood or maximum a
posteriori (MAP) estimates of the parameters in statistical models when data is only partially, or when model
depends on unobserved latent variables. This section is inspired from lecture of Dr Namrata Vaswani available
at http://www.ece.iastate.edu/∼namrata/EE527 Spring08/emlecture.pdf.

We derive EM algorithm for a very general class of model. Let us define all the quantities of interest.

Table 2: Notation
Symbol Meaning

x Observed data
z Unobserved data

(x, z) Complete data
fX;η(x; η) marginal observed data density
fZ;η(z; η) marginal unobserved data density

fX,Z;η(x, z; η) complete data density/likelihood
fZ|X;η(z|x; η) conditional unobserved-data (missing-data) density.

Objective: To maximize the marginal log-likelihood or posterior, i.e.

L(η) = log fX;η(x; η). (24)

Assumptions:

1. zi are independent given η. So

fZ;η(z; η) =

N∏
i=1

fZi;η(zi; η), (25)

2. xi are independent given missing data zi and η. So

fX,Z;η(x, z; η) =

N∏
i=1

fXi,Zi;η(xi, zi; η). (26)

As a consequence we obtain:

fZ|X;η(z|x; η) =

N∏
i=1

fZi|Xi;η(zi|xi; η), (27)

Now,

L(η) = log fX;η(x; η) = log fX,Z;η(x, z; η)− log fZ|X;η(z|x; η) (28)

or, summing across observations,

L(η) =

N∑
i=1

log fXi;η(xi; η) =

N∑
i=1

log fXi,Zi;η(xi, zi; η)−
N∑
i=1

log fZi|Xi;η(zi|xi; η). (29)

Let us take the expectation of the above expression with respect to fZi|Xi;η(zi|xi; ηp), where we choose η = ηp:

N∑
i=1

EZi|Xi;η [log fXi;η(xi; η)|xi; ηp]

=

N∑
i=1

EZi|Xi;η [log fXi,Zi;η(xi, zi; η)|xi; ηp]−
N∑
i=1

EZi|Xi;η

[
log fZi|Xi;η(zi|xi; η)|xi; ηp

] (30)

ESCA for Massively Parallel Inference

Since L(η) = log fX;η(x; η) does not depend on z, it is invariant for this expectation. So we recover:

L(η) =

N∑
i=1

EZi|Xi;η [log fXi,Zi;η(xi, zi; η)|xi; ηp]−
N∑
i=1

EZi|Xi;η

[
log fZi|Xi;η(zi|xi; η)|xi; ηp

]
= Q(η|ηp)−H(η|ηp).

(31)

Now, (31) may be written as
Q(η|ηp) = L(η) + H(η|ηp)︸ ︷︷ ︸

≤H(ηp|ηp)

(32)

Here, observe that H(η|ηp) is maximized (with respect to η) by η = ηp, i.e.

H(η|ηp) ≤ H(ηp|ηp) (33)

Simple proof using Jensen’s inequality.

As our objective is to maximize L(η) with respect to η, if we maximize Q(η|ηp) with respect to η, it will force
L(η) to increase. This is what is done repetitively in EM. To summarize, we have:

E-step : Compute fZi|Xi;η(zi|xi; ηp) using current estimate of η = ηp.

M-step : Maximize Q(η|ηp) to obtain next estimate ηp+1.

Now assume that the complete data likelihood belongs to the exponential family, i.e.

fXi,Zi;η(xi, zi; η) = exp (〈T (zi, xi) , η〉 − g(η)) (34)

then

Q(η|ηp) =

N∑
i=1

EZi|Xi;η [log fXi,Zi;η(xi, zi; η)|xi; ηp]

=

N∑
i=1

EZi|Xi;η [〈T (zi, xi) , η〉 − g(η)|xi; ηp]

(35)

To find the maximizer, differentiate and set it to zero:

1

N

∑
i

EZi|Xi;η [〈T (zi, xi) , η〉 |xi; ηp] =
dg(η)

dη
(36)

and one can obtain the maximizer by solving this equation.

Stochastic EM (SEM) introduces an additional simulation after the E-step that replaces the full distribution
with a single sample:

S-step Sample zi ∼ fZi|Xi;η(zi|xi; ηp)

(a) Same initialization (b) Bad initialization for SEM

Figure 3: Performance of SEM

Manzil Zaheer, Michael Wick, Jean-Baptiste Tristan, Alex Smola, Guy L Steele Jr

This essentially means we replace E[·] with an empirical estimate. Thus, instead of solving (36), we simply have:

1

N

∑
i

T (zi, xi) =
dg(η)

dη
. (37)

Computing and solving this system of equations is considerably easier than (36).

Now to demonstrate that SEM is well behaved and works in practice, we run a small experiment. Consider the
problem of estimating the parameters of a Gaussian mixture. We choose a 2-dimensional Gaussian with K = 30
clusters and 100,000 training points and 1,000 test points. We run EM and SEM with the following initialization:

• Both SEM and EM are provided the same initialization.
• SEM is deliberately provided a bad initialization, while EM is not.

The log-likelihood on the heldout test set is shown in Figure 3.

ESCA for Massively Parallel Inference

B (S)EM Derivation for LDA

We derive an EM procedure for LDA.

B.1 LDA Model

In LDA, we model each document m of a corpus of M documents as a distribution θm that represents a mixture
of topics. There are K such topics, and we model each topic k as a distribution φk over the vocabulary of words
that appear in our corpus. Each document m contains Nm words wmn from a vocabulary of size V , and we
associate a latent variable zmn to each of the words. The latent variables can take one of K values that indicate
which topic the word belongs to. We give each of the distributions θm and φk a Dirichlet prior, parameterized
respectively with a constant α and β. More concisely, LDA has the following mixed density.

p(w, z,θ,φ) =

[
M∏
m=1

Nm∏
n=1

Cat(wmn | φzmn
) Cat(zmn | θm)

][
M∏
m=1

Dir(θm | α)

][
K∏
k=1

Dir(φk | β)

]
(38)

The choice of a Dirichlet prior is not a coincidence: we can integrate all of the variables θm and φk and obtain
the following closed form solution.

p(w, z) =

[
M∏
m=1

Pol
(
{zm′n | m′ = m},K, α

)][K∏
k=1

Pol
(
{wmn | zmn = k}, V, β

)]
(39)

where Pol is the Polya distribution

Pol(S,X, η) =
Γ(η K)

Γ(|S|+ η X)

X∏
x=1

Γ
(∣∣{z | z ∈ S, z = x}

∣∣+ η
)

Γ(η)
(40)

for all j

for all i for all k

α θm zmn wmn φk β

Figure 4: LDA Graphical Model

Algorithm 2 LDA Generative Model

input: α,β

1: for k = 1→ K do
2: Choose topic φk ∼ Dir(β)
3: end for
4: for all document m in corpus D do
5: Choose a topic distribution θm ∼ Dir(α)
6: for all word index n from 1 to Nm do
7: Choose a topic zmn ∼ Categorical(θm)
8: Choose word wmn ∼ Categorical(φzmn

)
9: end for

10: end for

The joint probability density can be expressed as:

p(W,Z, θ, φ|α, β) =

[
K∏
k=1

p(φk|β)

][
M∏
m=1

p(θm|α)

Nm∏
n=1

p(zmn|θm)p(wmn|φzmn)

]

∝

[
K∏
k=1

V∏
v=1

φβ−1kv

][
M∏
m=1

(
K∏
k=1

θα−1mk

)
Nm∏
n=1

θmzmnφzmnwmn

] (41)

Manzil Zaheer, Michael Wick, Jean-Baptiste Tristan, Alex Smola, Guy L Steele Jr

B.2 Expectation Maximization

We begin by marginalizing the latent variable Z and finding the lower bound for the likelihood/posterior:

log p(W, θ, φ|α, β) = log
∑
Z

p(W,Z, θ, φ|α, β)

=

M∑
m=1

Nm∑
n=1

log

K∑
k=1

p(zmn = k|θm)p(wmn|φk)

+

K∑
k=1

log p(φk|β) +

M∑
m=1

log p(θm|α)

=

M∑
m=1

Nm∑
n=1

log

K∑
k=1

q(zmn = k|wmn)
p(zmn = k|θm)p(wmn|φk)

q(zmn = k|wmn)

+

K∑
k=1

log p(φk|β) +

M∑
m=1

log p(θm|α)

(Jensen Inequality) ≥
M∑
m=1

Nm∑
n=1

K∑
k=1

q(zmn = k|wmn) log
p(zmn = k|θm)p(wmn|φk)

q(zmn = k|wmn)

+

K∑
k=1

log p(φk|β) +

M∑
m=1

log p(θm|α)

(42)

Let us define the following functional:

F (q, θ, φ) := −
M∑
m=1

Nm∑
n=1

DKL(q(zmn|wmn)||p(zmn|wmn, θm, φ))

+

M∑
m=1

Nm∑
n=1

p(wmn|θm, φ) +

K∑
k=1

log p(φk|β) +

M∑
m=1

log p(θm|α)

(43)

B.2.1 E-Step

In the E-step, we fix θ, φ and maximize F for q. As q appears only in the KL-divergence term, it is equivalent to
minimizing the KL-divergence between q(zmn|wmn) and p(zmn|wmn, θm, φ). We know that for any distributions
f and g the KL-divergence is minimized when f = g and is equal to 0. Thus, we have

q(zmn = k|wmn) = p(zmn = k|wmn, θm, φ)

=
θmkφkwmn∑K

k′=1 θmk′φk′wmn

(44)

For simplicity of notation, let us define

qmnk =
θmkφkwmn∑K

k′=1 θmk′φk′wmn

(45)

B.2.2 M-Step

In the E-step, we fix q and maximize F for θ, φ. As this will be a constrained optimization (θ and φ must lie on
simplex), we use standard constrained optimization procedure of Lagrange multipliers. The Lagrangian can be

ESCA for Massively Parallel Inference

expressed as:

L(θ, φ, λ, µ) =

M∑
m=1

Nm∑
m=1

K∑
k=1

q(zmn = k|wmn) log
p(zmn = k|θm)p(wmn|φk)

q(zmn = k|wmn)
+

K∑
k=1

log p(φk|β)

+

M∑
m=1

log p(θm|α) +

K∑
k=1

λk

(
1−

V∑
v=1

φkv

)
+

M∑
m=1

µi

(
1−

K∑
k=1

θmk

)

=

M∑
m=1

Nm∑
n=1

K∑
k=1

qmnk log θmkφkwmn +

K∑
k=1

V∑
v=1

(βv − 1) log φkv +

M∑
m=1

K∑
k=1

(αk − 1) log θmk

+

K∑
k=1

λk

(
1−

V∑
v=1

φkv

)
+

M∑
m=1

µm

(
1−

K∑
k=1

θmk

)
+ const.

(46)

Maximising θ Taking derivative with respect to θmk and setting it to 0, we obtain

∂L
∂θmk

= 0 =

Nm∑
j=1

qmnk + αk − 1

θmk
− µm

µmθmk =

Ni∑
j=1

qmnk + αk − 1

(47)

After solving for µm, we finally obtain

θmk =

∑Nm

n=1 qmnk + αk − 1∑K
k′=1

∑Nm

j=1 qmnk′ + αk′ − 1
(48)

Note that
∑K
k′=1 qmnk′ = 1, we reach at the optimizer:

θmk =
1

Nm +
∑

(αk′ − 1)

(
Nm∑
n=1

qmnk + αk − 1

)
(49)

Maximising φ Taking derivative with respect to φkv and setting it to 0, we obtain

∂L
∂φkv

= 0 =

M∑
m=1

Nm∑
n=1

qmnkδ(v − wmn) + βv − 1

φkv
− λk

λkφkv =

M∑
m=1

Nm∑
n=1

qmnkδ(v − wmn) + βv − 1

(50)

After solving for λk, we finally obtain

φkv =

∑M
m=1

∑Nm

n=1 qmnkδ(v − wmn) + βv − 1∑V
v′=1

∑M
m=1

∑Nm

n=1 δ(v
′ − wmn) + βv′ − 1

(51)

Note that
∑V
v′=1 δ(v

′ − wmn) = 1, we reach at the optimizer:

φkv =

∑M
m=1

∑Nm

n=1 qmnkδ(v − wmn) + βv − 1∑M
m=1

∑Nm

n=1 qmnk +
∑

(βv′ − 1)
(52)

B.3 Introducing Stochasticity

After performing the E-step, we add an extra simulation step, i.e. we draw and impute the values for the latent
variables from its distribution conditioned on data and current estimate of the parameters. This means basically
qmnk gets transformed into δ(zmn − k̃) where k̃ is value drawn from the conditional distribution. Then we
proceed to perform the M-step, which is even simpler now. To summarize SEM for LDA will have following
steps:

Manzil Zaheer, Michael Wick, Jean-Baptiste Tristan, Alex Smola, Guy L Steele Jr

E-step : in parallel compute the conditional distribution locally:

qmnk =
θmkφkwmn∑K
k′=1 θmk′φk′wij

(53)

S-step : in parallel draw zmn from the categorical distribution:

zmn ∼ Categorical(qmn1, ..., qmnK) (54)

M-step : in parallel compute the new parameter estimates:

θmk =
Dmk + αk − 1

Nm +
∑

(αk′ − 1)

φkv =
Wkv + βv − 1

Tk +
∑

(βv′ − 1)

(55)

where Dmk =
∣∣∣{ zmn | zmn = k

}∣∣∣,
Wkv =

∣∣∣{ zmn | wmn = v, zmn = k
}∣∣∣, and

Tk =
∣∣∣{ zmn | zmn = k

}∣∣∣ =
V∑
v=1

Wkv.

ESCA for Massively Parallel Inference

C Equivalency between (S)EM and (S)GD for LDA

We study the equivalency between (S)EM and (S)GD for LDA.

C.1 EM for LDA

EM for LDA can be summarized by follows:

E-Step

qmnk =
θmkφkwmn∑K

k′=1 θmk′φk′wmn

(56)

M-Step

θmk =
1

Nm +
∑

(αk′ − 1)

(
Nm∑
n=1

qmnk + αk − 1

)

φkv =

∑M
m=1

∑Nm

n=1 qmnkδ(v − wmn) + βv − 1∑M
m=1

∑Nm

n=1 qmnk +
∑

(βv′ − 1)

(57)

C.2 GD for LDA

The joint probability density can be expressed as:

p(W,Z, θ, φ|α, β) =

[
K∏
k=1

p(φk|β)

][
M∏
m=1

p(θm|α)

Nm∏
n=1

p(zmn|θm)p(wmn|φzmn
)

]

∝

[
K∏
k=1

V∏
v=1

φβ−1kv

][
M∏
m=1

(
K∏
k=1

θα−1mk

)
Nm∏
n=1

θmzmn
φzmnwmn

] (58)

The log-probability of joint model with Z marginalized can be written as:

log p(W, θ, φ|α, β) = log
∑
Z

p(W,Z, θ, φ|α, β)

=
M∑
m=1

Nm∑
n=1

log
K∑
k=1

p(zmn = k|θm)p(wmn|φk)

+

K∑
k=1

log p(φk|β) +

M∑
m=1

log p(θm|α)

=

M∑
m=1

Nm∑
n=1

log

K∑
k=1

θmkφkwmn

+

M∑
m=1

K∑
k=1

(αk − 1) log θmk +

K∑
k=1

V∑
v=1

(βv − 1) log φkv

(59)

Gradient for topic per document Now take derivative with respect to θmk:

∂ log p

∂θmk
=

Nm∑
j=1

φkwmn∑K
k′=1 θmk′φk′wmn

+
αk − 1

θmk

=
1

θmk

(
Nm∑
n=1

qmnk + αk − 1

) (60)

Manzil Zaheer, Michael Wick, Jean-Baptiste Tristan, Alex Smola, Guy L Steele Jr

Gradient for word per topic Now take derivative with respect to φkv:

∂ log p

∂φkv
=

M∑
m=1

Nm∑
n=1

θmkδ(v − wmn)∑K
k′=1 θmk′φk′wmn

+
βv − 1

φkv

=
1

φkv

(
M∑
m=1

Nm∑
n=1

qmnkδ(v − wmn) + βv − 1

) (61)

C.3 Equivalency

If we look at one step of EM:

For topic per document

θ+mk =
1

Nm +
∑

(αk′ − 1)

(
Nm∑
n=1

qmnk + αk − 1

)

=
θmk

Nm +
∑

(αk′ − 1)

∂ log p

∂θmk

Vectorize and can be re-written as:

θ+m = θm +
1

Nm +
∑

(αk′ − 1)

[
diag(θm)− θmθTm

] ∂ log p

∂θm
(62)

For word per topic

φ+kv =

∑M
m=1

∑Nm

n=1 qmnkδ(v − wmn) + βv − 1∑M
m=1

∑Nm

n=1 qmnk +
∑

(βv′ − 1)

=
φkv∑M

m=1

∑Nm

n=1 qmnk +
∑

(βv′ − 1)

∂ log p

∂φkv

Vectorize and can be re-written as:

φ+k = φk +
1∑M

m=1

∑Nm

n=1 qmnk +
∑

(βv′ − 1)

[
diag(φk)− φkφTk

] ∂ log p

∂φk
(63)

C.4 SEM for LDA

We summarize our SEM derivation for LDA as follows:

E-Step

qmnk =
θmkφkwmn∑K

k′=1 θmk′φk′wmn

(64)

S-step

zmn ∼ Categorical(qmn1, ..., qmnK) (65)

M-step

θmk =
Dmk + αk − 1

Nm +
∑

(αk′ − 1)

φkv =
Wkv + βv − 1

Tk +
∑

(βv′ − 1)

(66)

Here Dmk is the total number of tokens that belong to topic k in document m, Wkv is the number of times a

ESCA for Massively Parallel Inference

word v belongs to topic k, i.e.,

Dmk =

Nm∑
n=1

zmnk (67)

Wkv =

Nm∑
n=1

Nd∑
m=1

zmnkδ(wm = v) (68)

However, observe that all our zmn are one-hot categorical random variables and hence, the above sums can be
easily computed without going through the entire dataset. This is where the stochastic nature of SEM helps in
reducing the training time. We next show the equivalency of SEM to SGD.

C.5 Equivalency

In case of LDA, let us begin with θ for which the update over one step stochastic EM is:

θ+mk =
Dmk + αk − 1

Nm +
∑K
k′=1(αk′ − 1)

=
1

Nm +
∑K
k′=1(αk′ − 1)

Nm∑
n=1

δ(zmnk = 1) + αk − 1

Again vectorizing and re-writing as earlier:
θ+i = θi +Mg

where M = 1
Nm+

∑K
k′=1

(αk′−1)

[
diag(θm)− θmθTm

]
and g = 1

θmk

∑Nm

n=1 δ(zmnk = 1) + αk − 1. The vector g can be

shown to be an unbiased noisy estimate of the gradient, i.e.

E[g] =
1

θmk

Nm∑
n=1

E[δ(zmnk = 1)] + αk − 1

=
1

θmk

Nm∑
n=1

qmnk + αk − 1 =
∂ log p

∂θmk

Thus, it is SGD with constraints. We have a similar result for φkv, where we can see that an unbiased, noisy
estimator of the gradient has been used instead of the pure gradient, in the SEM update of parameters. However,
note that stochasticity does not arise from sub-sampling data as usually in SGD, rather from the randomness
introduced in the S-step. But this immediately hints for developing an online/incremental version where we can
subsample data also. This can remove the barrier in current implementation and we can have a revolver like
structure, which would be loved by the hardware.

Manzil Zaheer, Michael Wick, Jean-Baptiste Tristan, Alex Smola, Guy L Steele Jr

D Non-singularity of Fisher Information for Mixture Models

Let us consider a general mixture model:

p(x|θ, φ) =

K∑
k=1

θkf(x|φk) (69)

Then the log-likelihood can be written as:

log p(x|θ, φ) = log

(
K∑
k=1

θkf(x|φk)

)
(70)

The Fisher Information is given by:

I(θ, φ) = E
[
(∇ log p(x|θ, φ))(∇ log p(x|θ, φ))T

]
=

[∂
∂θ log p(x|θ, φ)
∂
∂φ log p(x|θ, φ)

] [∂
∂θ log p(x|θ, φ)
∂
∂φ log p(x|θ, φ)

]T
These derivatives can be computed as follows:

∂

∂θk
log p(x|θ, φ) =

∂

∂θk
log

(
(

K∑
k=1

θkf(x|φk)

)

=
f(x|φk)∑K

k′=1 θk′f(x|φk′)

∂

∂φk
log p(x|θ, φ) =

∂

∂φk
log

(
(

K∑
k=1

θkf(x|φk)

)

=
θk

∂
∂φk

f(x|φk)∑K
k′=1 θk′f(x|φk′)

(71)

For any u, v ∈ RK (with at least one nonzero), then the Fisher Information is positive definite as:

(uT vT)I

(
u
v

)
= (uT vT)E


 ∂

∂θ log
(∑K

k=1 θkf(X|φk)
)

∂
∂φ log

(∑K
k=1 θkf(X|φk)

)  ∂
∂θ log

(∑K
k=1 θkf(X|φk)

)
∂
∂φ log

(∑K
i=1 θkf(X|φk)

) T
(u

v

)

= E

(uT ∂

∂θ
log

(
K∑
k=1

θkf(X|φk)

)
+ vT

∂

∂θ
log

(
K∑
i=1

θkf(X|φi)

))2


= E

(∑K
k=1 ukf(X|φk) + vkθk

∂
∂φk

f(X|φk)∑K
k=1 θkf(X|φk)

)2


This can be 0 if and only if
K∑
k=1

ukf(x|φi) + vkθk
∂

∂φk
f(x;φk) = 0 ∀x. (72)

In case of exponential family emission models this cannot hold if all components are unique and all θk > 0.
Thus, if we assume all components are unique and every component has been observed at least once, the Fisher
information matrix becomes non-singular.

ESCA for Massively Parallel Inference

E Alias Sampling Method

The alias sampling method is an efficient method for drawing samples from a K outcome discrete distribution
in O(1) amortized time and we describe it here for completeness. Denote by pi for i ∈ {1 . . .K} the probabilities
of a distribution over K outcomes from which we would like to sample. If p were the uniform distribution, i.e.
pi = K−1, then sampling would be trivial. For the general case, we must pre-process the distribution p into a
table of K triples of the form (i, j, πi) as follows:

• Partition the indices {1 . . .K} into sets U and L where pi > K−1 for i ∈ U and pi ≤ K−1 for i ∈ L.
• Remove any i from L and j from U and add (i, j, pi) to the table.
• Update pj = pi + pj −K−1 and if pj > K−1 then add j to U , else to L.

By construction the algorithm terminates after K steps; moreover, all probability mass is preserved either in the
form of πi associated with i or in the form of K−1 − πi associated with j. Hence, sampling from p can now be
accomplished in constant time:

• Draw (i, j, πi) uniformly from the set of k triples in K.
• With probability Kπi emit i, else emit j.

Hence, if we need to draw from p at least K times, sampling can be accomplished in amortized O(1) time.

Manzil Zaheer, Michael Wick, Jean-Baptiste Tristan, Alex Smola, Guy L Steele Jr

F Applicability of ESCA

We begin with a simple Gaussian mixture model (GMM) with K components. Let x1, ..., xn be i.i.d. observa-
tions, z1, ..., zn be hidden component assignment variable and η = η(θ1, ..., θK , µ1,Σ1, µ2,Σ2, ..., µK ,ΣK) be the
parameters. Then the GMM fits into ESCA with sufficient statistics given by:

T (xi, zi) = [1{zi = 1}, ...,1{zi = K},
xi1{zi = 1}, ..., xi1{zi = K},
xix

T
i 1{zi = 1}, ..., xixTi 1{zi = K}].

(73)

The conditional distribution for the E-step is:

p(zi = k|xi; η) ∝ θkN (xi|µk,Σk) (74)

In the S-step we draw from this conditional distribution and the M-step, through inversion of link function, is:

θ̃k =
1

n+Kα−K

n∑
i=1

(1{zi = k}+ α− 1)

µ̃k =
κ0µ0 +

∑n
i=1 xi1{zi = k}

κ0 +
∑n
i=1 1{zi = k}

Σ̃k =
Ψ0 + κ0µ0µ

T
0 +

∑n
i=1 xix

T
i 1{zi = k} − (κ0 +

∑n
i=1 1{zi = k})µ̃kµ̃Tk

ν0 + d+ 2 +
∑n
i=1 1{zi = k}

(75)

and is only function of the sufficient statistics.

Next, we provide more details on how to employ ESCA for any conditional exponential family mixture model;
i.e., in which n random variables xi, i = 1, . . . , n correspond to observations, each distributed according to a
mixture of K components, with each component belonging to the same exponential family of distributions (e.g.,
all normal, all multinomial, etc.), but with different parameters:

p(xi|φ) = exp(〈ψ(xi), φ〉 − g(φ)). (76)

The model also has n latent variables zi that specify the identity of the mixture component of each observation
xi, each distributed according to a K-dimensional categorical distribution. A set of K mixture weights θk,
k = 1, . . . ,K, each of which is a probability (a real number between 0 and 1 inclusive) and collectively sum
to one. A Dirichlet prior on the mixture weights with hyper-parameters α. A set of K parameters φk, k =
1, . . . ,K, each specifying the parameter of the corresponding mixture component. For example, observations
distributed according to a mixture of one-dimensional Gaussian distributions will have a mean and variance for
each component. Observations distributed according to a mixture of V-dimensional categorical distributions (e.g.,
when each observation is a word from a vocabulary of size V) will have a vector of V probabilities, collectively
summing to 1. Moreover, we put a shared conjugate prior on these parameters:

p(φ;n0, ψ0) = exp (〈ψ0, φ〉 − n0g(φ)− h(m0, ψ0)) . (77)

Then joint sufficient statistics would be given by:

T (zi, xi) = [1{zi = 1}, ...,1{zi = K},
ψ(xi)1{zi = 1}, ..., ψ(xi)1{zi = K}]

(78)

In the E-step of tth iteration, we derive the conditional distribution p(zi|xi, η), namely

p(zi = k|xi, η) ∝ p(xi|φt−1k , zi = k)p(zi = k|θt−1)

=
θt−1k p(xi|φt−1k)∑
k′ θ

t−1
k′ p(xi|φt−1k′)

(79)

In the S-step we draw zti from this conditional distribution and the M-step through inversion of the link function

ESCA for Massively Parallel Inference

yields:

∇g(φ̃k) =
φ0 +

∑
i ψ(xi)1{zi = k})

n0 +
∑
i 1{zi = k}

or φ̃k = ξ−1
(
ψ0 +

∑
i ψ(xi)1{zi = k}

n0 +
∑
i 1{zi = k}

)
θ̃k =

∑
i 1{zi = k}+ αk − 1

n+
∑
k αk − k

.

(80)

This encompasses most of the popular mixture models (and with slight more work all the mixed membership or
admixture models) with Binomial, multinomial, or Gaussian emission model, e.g. beta-binomials for identifica-
tion, Dirichlet-multinomial for text or Gauss-Wishart for images as listed in Table 1.

Note further, ESCA is applicable to models such as restricted Boltzmann machines (RBMs) as well which are
also in the exponential family. For example, if the data were a collection of images, each cell could independently
compute the S-step for its respective image. For RBMs the cell would flip a biased coin for each latent variable,
and for deep Boltzmann machines, the cells could perform Gibbs sampling.

To elabortate, consider 2-layer RBM (1 observed, 1 latent), then ESCA should work as it is. That is, we sample
latent variables conditioned on data and weights. Then optimize weights, given latent variables and observed
data. Now if we have deep RBM, i.e. one with many hidden layers. Then ESCA will have similar problem as
Ising model. But there is a quick fix borrowing ideas from chromatic samplers.

for each iteration

1. Sample all odd layers of the RBM
2. Optimize for weights
3. Sample all even layers of the RBM
4. Optimize for weights

end for

We save a precise derivation and empirical evaluation for future work.

Manzil Zaheer, Michael Wick, Jean-Baptiste Tristan, Alex Smola, Guy L Steele Jr

G More experimental results

In addition to the experiments reported in main paper, we perform another set of experiments. As before, to eval-
uate the strength and weaknesses of our algorithm, we compare against parallel and distributed implementations
of CGS and CVB0.

Software & hardware All three algorithms were first implemented in the Java programming language. (We
later switched to C++ for achieving better performance and those results are reported in the main paper.) To
achieve good performance in the Java programming language, we use only arrays of primitive types and pre-
allocate all of the necessary structures before the learning starts. We implement multithreaded parallelization
within a node using the work-stealing Fork/Join framework, and the distribution across multiple nodes using
the Java binding to OpenMPI. We also implemented a version of SCA with a sparse representation for the array
D of counts of topics per documents and Vose’s alias method to draw from discrete distributions. We run our
experiments on a small cluster of 16 nodes connected through 10Gb/s Ethernet. Each node has two 8-core Intel
Xeon E5 processors (some nodes have Ivy Bridge processors while others have Sandy Bridge processors) for a
total of 32 hardware threads per node and 256GB of memory.

Datasets We experiment on two datasets, both of which are cleaned by removing stop words and rare words:
Reuters RCV1 and English Wikipedia. Our Reuters dataset is composed of 806,791 documents comprising
105,989,213 tokens with a vocabulary of 43,962 vocabulary words. Our Wikipedia dataset is composed of
6,749,797 documents comprising 6,749,797 tokens with a vocabulary of 291,561 words. (Note this Wikipedia
dump was collected at a different time than the main paper, hence different numbers.) We also apply the SCA
algorithm to a third larger dataset composed of more than 3 billion documents comprising more than 171 billion
tokens with a vocabulary of about 140,000 words.

Protocol We use perplexity on held-out documents to compare the algorithms. When comparing algorithms
trained on Wikipedia, we compute the perplexity of 10,000 Reuters documents. Vice versa, when comparing
algorithms trained on Reuters, we compute the perplexity of 10,000 Wikipedia documents. We run four sets
of experiment on each dataset: (1) how perplexity evolves for some numbers of training iterations (100 topics);
(2) how perplexity evolves over time (100 topics); (3) perplexity as a function of the number of topics (75
iterations); and (4) perplexity as a function of the value of β (100 topics, 75 iterations). With the exception
of the second experiment, we ran all experiments five times with five different seeds, and report the mean and
standard deviation of these runs. The results are presented in Figure 6. We also ran an experiment to compare
vanilla SCA and its improved version that uses a sparse representation and Vose’s alias method for discrete
sampling. The results are presented in Figure 5.

●●●●●●●●
●
●
●

●

●

●

●

●

●

●

●

●

●
●
●
●
●
●●●

5000

7500

10000

12500

15000

0 5 10 15 20
Minutes

P
er

pl
ex

ity

Algorithm
● Sparse + Alias SCA

Vanilla SCA

(a) Wikipedia, K = 200, α = 0.1, β = 0.1

●●●●●●●●●●
●
●

●

●

●

●

●

●

●

●

●

●

●
●
●
●
●
●
●●

7500

10000

12500

15000

0 10 20 30 40
Minutes

P
er

pl
ex

ity

Algorithm
● Sparse + Alias SCA

Vanilla SCA

(b) Wikipedia, K = 500, α = 0.1, β = 0.1

Figure 5: Evolution of perplexity over time for plain SCA and a sparse one using the alias method.

ESCA for Massively Parallel Inference

●●●●●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●●

8000

10000

12000

14000

0 20 40 60
Iterations

P
er

pl
ex

ity
Algorithm

● CGS
CVB0
SCA

(a) Reuters, K = 100, α = 0.1, β = 0.1

●●●●●●●●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●

8000

10000

12000

14000

16000

0 20 40 60
Iterations

P
er

pl
ex

ity

Algorithm
● CGS

CVB0
SCA

(b) Wikipedia, K = 100, α = 0.1, β = 0.1

●●●●●
●
●

●

●

●

●

●

●

●

●

●
●
●
●
●
●●

7500

10000

12500

15000

0 2 4
Minutes

P
er

pl
ex

ity

Algorithm
● CGS

CVB0
SCA

(c) Reuters, K = 100, α = 0.1, β = 0.1

● ● ● ● ● ● ● ●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●7500

10000

12500

15000

0 10 20 30
Minutes

P
er

pl
ex

ity

Algorithm
● CGS

CVB0
SCA

(d) Wikipedia, K = 100, α = 0.1, β = 0.1

●

●

●

●
●

6500

7000

7500

100 200 300 400 500
Topics

P
er

pl
ex

ity Algorithm
● CGS

CVB0
SCA

(e) Reuters, α = 0.1, β = 0.1

●

●

●
●

●

6500

7000

7500

100 200 300 400 500
Topics

P
er

pl
ex

ity

Algorithm
● CGS

CVB0
SCA

(f) Wikipedia, α = 0.1, β = 0.1

●

●

● ●
●

7000

7500

8000

8500

0.0 0.1 0.2
Beta

P
er

pl
ex

ity

Algorithm
● CGS

CVB0
SCA

(g) Reuters, K = 100, α = 0.1

●

●

●
●

●

7000

7500

0.0 0.1 0.2
Beta

P
er

pl
ex

ity

Algorithm
● CGS

CVB0
SCA

(h) Wikipedia, K = 100, α = 0.1

Figure 6: Evolution of perplexity on Wikipedia and Reuters over number of iterations, time, number of topics,
value of β. Here SCA does not use alias method or sparsity and hence slower.

Manzil Zaheer, Michael Wick, Jean-Baptiste Tristan, Alex Smola, Guy L Steele Jr

Topics

Here are the first five topics inferred via ESCA on LDA from both PubMed and Wikipedia:

PubMed
Topic 0 Topic 1 Topic 2 Topic 3 Topic 4
seizures data local gene state
epilepsy information block transcript change
seizure available lidocaine exon transition
epileptic provide anethesia genes states
temporal lobe regarding anethetic expression occur
anticonvulsant sources acupuncture region process
convulsion literature bupivacaine mrna shift
kindling concerning anaesthesia mouse condition
partial limited under expressed changed
generalized provided anaesthetic human dynamic

Wikipedia
Topic 0 Topic 1 Topic 2 Topic 3 Topic 4
hockey medical von boy music
ice medicine german youth music
league hospital karl boys pop
played physician carl camp music
junior doctor friedrich girl artists
nhl clinical wilhelm scout electronic
professional md johann girls duo
games physicians ludwig guide genre
playing doctors prussian scouts genres
national surgeon heinrich scouting musicians

Comparison

Table 3: Comparison with existing scalable LDA frameworks.

Method Dataset Number
of Topics

Size of Vo-
cabulary

Number of
Documents

Number of
Tokens

Infrastructure Year Processing
Speed

YahooLDA [30] PubMed 1K 140K 8.2M 797M 10 machines
on hadoop

2010 12.87M
tokens/s

lightLDA [39] Bing “web
chunk”

1000K 50K 1.2B 200B 24 machines
(480 cores)

2014 60M
tokens/s

F+LDA [38] Amazon
reviews

1K 1680K 29M 1.5B 32 machines
(640 cores)

2014 110M to-
kens/s

ESCA 100
copies of
Wikipedia

1K 210K 667M 128B 8 Amazon
c4.8x large
(288 virtual
cores)

2015 503M to-
kens/s

ESCA 100
copies of
Wikipedia

1K 210K 667M 128B 20 Amazon
c4.8x large
(288 virtual
cores)

2015 1200M
tokens/s

Manzil Zaheer, Michael Wick, Jean-Baptiste Tristan, Alex Smola, Guy L Steele Jr

References

[1] Arthur Asuncion, Max Welling, Padhraic Smyth,
and Yee Whye Teh. On smoothing and inference
for topic models. In Proc. Twenty-Fifth Con-
ference on Uncertainty in Artificial Intelligence,
UAI ’09, pages 27–34, Arlington, Virginia, USA,
2009. AUAI Press.

[2] David M. Blei, Andrew Y. Ng, and Michael I.
Jordan. Latent Dirichlet allocation. Journal of
Machine Learning Research, 3:993–1022, March
2003.

[3] J. Canny. Gap: a factor model for discrete data.
In Proceedings of the 27th annual international
ACM SIGIR conference on Research and devel-
opment in information retrieval, pages 122–129.
ACM, 2004.

[4] Gilles Celeux and Jean Diebolt. The sem al-
gorithm: a probabilistic teacher algorithm de-
rived from the em algorithm for the mixture prob-
lem. Computational statistics quarterly, 2(1):73–
82, 1985.

[5] Miklós Csűrös. Approximate counting with a
floating-point counter. In M. T. Thai and Sar-
taj Sahni, editors, Computing and Combina-
torics (COCOON 2010), number 6196 in Lec-
ture Notes in Computer Science, pages 358–
367. Springer Berlin Heidelberg, 2010. See also
http://arxiv.org/pdf/0904.3062.pdf.

[6] Rajarshi Das, Manzil Zaheer, and Chris Dyer.
Gaussian lda for topic models with word embed-
dings. In Proceedings of the 53rd Annual Meet-
ing of the Association for Computational Lin-
guistics and the 7th International Joint Confer-
ence on Natural Language Processing (Volume
1: Long Papers), pages 795–804, Beijing, China,
July 2015. Association for Computational Lin-
guistics.

[7] Donald A. Dawson. Synchronous and asyn-
chronous reversible Markov systems. Canadian
mathematical bulletin, 17:633–649, 1974.

[8] Jeffrey Dean and Sanjay Ghemawat. Mapreduce:
Simplified data processing on large clusters. Com-
mun. ACM, 51(1):107–113, January 2008.

[9] Anton K Formann and Thomas Kohlmann. La-
tent class analysis in medical research. Statistical
methods in medical research, 5(2):179–211, 1996.

[10] W. R. Gilks, S. Richardson, and D. J. Spiegel-
halter. Markov Chain Monte Carlo in Practice.
Chapman & Hall, 1995.

[11] Joseph Gonzalez, Yucheng Low, Arthur Gretton,
and Carlos Guestrin. Parallel gibbs sampling:
from colored fields to thin junction trees. In Inter-
national Conference on Artificial Intelligence and
Statistics, pages 324–332, 2011.

[12] T.L. Griffiths and M. Steyvers. Finding scientific
topics. Proceedings of the National Academy of
Sciences, 101:5228–5235, 2004.

[13] Matthew D. Hoffman, David M. Blei, Chong
Wang, and John Paisley. Stochastic variational
inference. Journal of Machine Learning Research,
14:1303–1347, May 2013.

[14] Michael I. Jordan, Zoubin Ghahramani, Tommi S.
Jaakkola, and Lawrence K. Saul. An introduc-
tion to variational methods for graphical models.
Mach. Learn., 37(2):183–233, November 1999.

[15] Joel L. Lebowitz, Christian Maes, and Eugene R.
Speer. Statistical mechanics of probabilistic cel-
lular automata. Journal of statistical physics,
59:117–170, April 1990.

[16] Aaron Q. Li, Amr Ahmed, Sujith Ravi, and
Alexander J. Smola. Reducing the sampling com-
plexity of topic models. In 20th ACM SIGKDD
Intl. Conf. Knowledge Discovery and Data Min-
ing, 2014.

[17] Pierre-Yves Louis. Automates Cellulaires Proba-
bilistes : mesures stationnaires, mesures de Gibbs
associées et ergodicité. PhD thesis, Université des
Sciences et Technologies de Lille and il Politecnico
di Milano, September 2002.

[18] Jean Mairesse and Irène Marcovici. Around prob-
abilistic cellular automata. Theoretical Computer
Science, 559:42–72, November 2014.

[19] David Mimno, Matt Hoffman, and David Blei.
Sparse stochastic inference for latent dirichlet al-
location. In John Langford and Joelle Pineau, ed-
itors, Proceedings of the 29th International Con-
ference on Machine Learning (ICML-12), ICML
’12, pages 1599–1606, New York, NY, USA, July
2012. Omnipress.

[20] Robert Morris. Counting large numbers of events
in small registers. Commun. ACM, 21(10):840–
842, October 1978.

[21] R. Neal. Markov chain sampling methods for
dirichlet process mixture models. Technical Re-
port 9815, University of Toronto, 1998.

[22] Radford M Neal and Geoffrey E Hinton. A view
of the em algorithm that justifies incremental,
sparse, and other variants. In Learning in graph-
ical models, pages 355–368. Springer, 1998.

ESCA for Massively Parallel Inference

[23] A. U. Neumann and B. Derrida. Finite size scaling
study of dynamical phase transitions in two di-
mensional models: Ferromagnet, symmetric and
non symmetric spin glasses. J. Phys. France,
49:1647–1656, 08 1988.

[24] David Newman, Arthur Asuncion, Padhraic
Smyth, and Max Welling. Distributed algo-
rithms for topic models. J. Machine Learn-
ing Research, 10:1801–1828, December 2009.
http://dl.acm.org/citation.cfm?id=1577069.1755845.

[25] Søren Feodor Nielsen. The stochastic em al-
gorithm: estimation and asymptotic results.
Bernoulli, pages 457–489, 2000.

[26] Sam Patterson and Yee Whye Teh. Stochastic
gradient riemannian langevin dynamics on the
probability simplex. In Advances in Neural In-
formation Processing Systems, pages 3102–3110,
2013.

[27] B. Recht, C. Re, S.J. Wright, and F. Niu.
Hogwild: A lock-free approach to parallelizing
stochastic gradient descent. In Peter Bartlett,
Fernando Pereira, Richard Zemel, John Shawe-
Taylor, and Kilian Weinberger, editors, Advances
in Neural Information Processing Systems 24,
pages 693–701, 2011.

[28] Herbert Robbins and Sutton Monro. A stochas-
tic approximation method. Ann. Math. Statist.,
22(3):400–407, 09 1951.

[29] Ruslan Salakhutdinov, Sam Roweis, and Zoubin
Ghahramani. Relationship between gradient and
em steps in latent variable models.

[30] Alexander Smola and Shravan Narayanamurthy.
An architecture for parallel topic models. Proc.
VLDB Endowment, 3(1-2):703–710, September
2010.

[31] Whye Yee Teh, David Newman, and Max Welling.
A collapsed variational Bayesian inference algo-
rithm for latent Dirichlet allocation. In Advances
in Neural Information Processing Systems 19,
NIPS 2006, pages 1353–1360. MIT Press, 2007.

[32] Jean-Baptiste Tristan, Joseph Tassarotti, and
Guy L. Steele Jr. Efficient training of LDA on a
GPU by Mean-For-Mode Gibbs sampling. In 32nd
International Conference on Machine Learning,
volume 37 of ICML 2015, 2015. Volume 37 of
the Journal in Machine Learning Research: Work-
shop and Conference Proceedings.

[33] Gérard Y. Vichniac. Simulating physics with cel-
lular automata. Physica D: Nonlinear Phenom-
ena, 10(1-2):96–116, January 1984.

[34] Michael D Vose. A linear algorithm for gen-
erating random numbers with a given distribu-
tion. Software Engineering, IEEE Transactions
on, 17(9):972–975, 1991.

[35] Max A Woodbury, Jonathan Clive, and Arthur
Garson. Mathematical typology: a grade of mem-
bership technique for obtaining disease definition.
Computers and biomedical research, 11(3):277–
298, 1978.

[36] Lei Xu and Michael I Jordan. On convergence
properties of the em algorithm for gaussian mix-
tures. Neural computation, 8(1):129–151, 1996.

[37] Limin Yao, David Mimno, and Andrew McCal-
lum. Efficient methods for topic model inference
on streaming document collections. In Proc. 15th
ACM SIGKDD Intl. Conf. Knowledge Discovery
and Data Mining, KDD ’09, pages 937–946, New
York, 2009. ACM.

[38] Hsiang-Fu Yu, Cho-Jui Hsieh, Hyokun Yun, SVN
Vishwanathan, and Inderjit S Dhillon. A scal-
able asynchronous distributed algorithm for topic
modeling. In Proceedings of the 24th International
Conference on World Wide Web, pages 1340–
1350. International World Wide Web Conferences
Steering Committee, 2015.

[39] Jinhui Yuan, Fei Gao, Qirong Ho, Wei Dai, Jin-
liang Wei, Xun Zheng, Eric Po Xing, Tie-Yan Liu,
and Wei-Ying Ma. Lightlda: Big topic models
on modest computer clusters. In Proceedings of
the 24th International Conference on World Wide
Web, pages 1351–1361. International World Wide
Web Conferences Steering Committee, 2015.

[40] Ke Zhai, Jordan Boyd-Graber, Nima Asadi, and
Mohamad L Alkhouja. Mr. lda: A flexible large
scale topic modeling package using variational in-
ference in mapreduce. In Proceedings of the 21st
international conference on World Wide Web,
pages 879–888. ACM, 2012.

	Introduction
	Exponential SCA
	Latent Variable Exponential Family
	Stochastic EM
	ESCA for Latent Variable Models
	Wide Applicability of ESCA
	Understanding the limitations of ESCA
	Convergence

	ESCA for LDA
	Existing systems
	An ESCA Algorithm for LDA
	Advantages of ESCA for LDA
	Connection to SGD

	Experiments
	Discussion
	(Stochastic) EM in General
	(S)EM Derivation for LDA
	LDA Model
	Expectation Maximization
	E-Step
	M-Step

	Introducing Stochasticity

	Equivalency between (S)EM and (S)GD for LDA
	EM for LDA
	GD for LDA
	Equivalency
	SEM for LDA
	Equivalency

	Non-singularity of Fisher Information for Mixture Models
	Alias Sampling Method
	Applicability of ESCA
	More experimental results

