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Abstract

In this work we develop and study a novel
online robust principal components’ analy-
sis (RPCA) algorithm based on the recently
introduced ReProCS framework. Our algo-
rithm significantly improves upon the origi-
nal ReProCS algorithm and it also returns
even more accurate offline estimates. The
key contribution of this work is a correct-
ness result for this algorithm under relatively
mild assumptions. By using extra (but usu-
ally valid) assumptions we are able to remove
one important limitation of batch RPCA re-
sults and two important limitations of a re-
cent result for ReProCS for online RPCA. To
the best of our knowledge, this work is among
the first correctness results for online RPCA.

1 INTRODUCTION
Given a matrix of data, Principal Components Anal-
ysis (PCA) computes a small number of orthogonal
directions that contain most of the variability of the
data. PCA for relatively noise-free data is easily ac-
complished via singular value decomposition (SVD).
The robust PCA (RPCA) problem, which is the prob-
lem of PCA in the presence of outliers, is much harder.
In recent work, Candès et al. (2011) posed it as a prob-
lem of separating a low-rank matrix, L, and a sparse
matrix, S, from their sum, M := L + S. They pro-
posed a convex program called principal components’
pursuit (PCP) that provided a provably correct batch
solution to this problem under mild assumptions. The
same program was also analyzed in Chandrasekaran
et al. (2011) and later in Hsu et al. (2011). Since
these works, there has been a large amount of work
on batch RPCA methods and performance guarantees.

Appearing in Proceedings of the 19th International Con-
ference on Artificial Intelligence and Statistics (AISTATS)
2016, Cadiz, Spain. JMLR: W&CP volume 41. Copyright
2016 by the authors.

The noisy case, M := L+S+W , was studied in later
works, e.g., Zhou et al. (2010).

When RPCA needs to be solved in a recursive fashion
for sequentially arriving data vectors it is referred to
as online RPCA. Online RPCA assumes that a short
sequence of outlier-free (sparse component free) data
vectors is available or that there is another way to get
an estimate of the initial subspace of the true data
(without outliers). A key application of RPCA is the
problem of separating a video sequence into foreground
and background layers Candès et al. (2011). We show
an example in Fig. 1. Video layering is an important
first step for automatic video surveillance and many
other streaming video analytics tasks. Other applica-
tions include recommendation system design, anomaly
detection in social network connectivity patterns and
survey data analysis Candès et al. (2011).

Problem Definition. At time t we observe a data
vector mt ∈ Rn that satisfies

mt = `t + xt +wt (1)

for t = ttrain + 1, ttrain + 2, . . . , tmax. For t =
1, 2, . . . , ttrain, xt = 0, i.e., mt = `t +wt. Here `t is a
vector that lies in a low-dimensional subspace that is
fixed or slowly changing in such a way that the matrix
Lt := [`1, `2, . . . , `t] is a low-rank matrix (for all but
very small values of t); xt is a sparse (outlier) vector;
and wt is small modeling error or noise. We use Tt
to denote the support set of xt and we use Pt to de-
note a basis matrix for the subspace from which `t is
generated. For t = 1, 2, . . . , ttrain, the measurements
mt = `t +wt are assumed to be outlier-free so that it
is possible to accurately estimate the initial subspace
via PCA. For video surveillance, this corresponds to
having a short initial sequence of background only im-
ages, which can often be obtained. For t > ttrain, the
goal of online RPCA is to recursively estimate `t and
its subspace range(Pt), and xt and its support, Tt, as
soon as a new data vector mt arrives or within a short
delay. Sometimes, e.g., in video analytics, it is often
also desirable to get an improved offline estimate of xt
and `t when possible. We show that this is an easy
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Video ReProCS ReProCS GRASTA GRASTA PCP PCP RSL RSL
Figure 1: Columns from left to right: a noisy video, foreground and background recovered by automatic ReProCS,
GRASTA, Stable PCP and robust subspace learning (RSL), respectively. The foreground in this video consisted of people
walking somewhat slowly, stopping and writing on the white board and leaving. The background consisted of moving
curtains. Extra i.i.d. Gaussian noise was added to make the separation problem even more difficult. Clearly ReProCS
is able to obtain the best separation. Notice that the person or even his shadow are not visible in any of its background
estimates. GRASTA is another popular online RPCA method that has the best empirical performance compared with
the older online RPCA methods such as adapted iSVD or iRSL. RSL was the best batch RPCA technique before the
work of Candes et al. Stable PCP is the noisy version of PCP.

by-product of our solution approach.

In many applications, such as in video, it is actually
the sparse outlier xt that is the quantity of interest.
The above problem can thus also be interpreted as one
of online sparse matrix recovery in large but struc-
tured noise `t and unstructured small noise wt. The
unstructured noise, wt, often models the modeling er-
ror. For example, when some nonzero entries of xt
are not large enough to be detected (by the proposed
algorithm), these can be included into wt. Another
example is when the `t’s form an approximately low-
rank matrix.

Related Work. Solutions for online RPCA have
been analyzed in recent works Qiu et al. (2014), Feng
et al. (2013b). The work of Qiu et al. (2014) intro-
duced the Recursive Projected Compressive Sensing
(ReProCS) algorithmic framework and obtained a par-
tial result for it. Another approach for online RPCA
(defined differently from above) and a partial result
for it were provided in Feng et al. (2013b). We use the
term partial result to refer to a performance guarantee
that depends on intermediate algorithm estimates sat-
isfying certain properties. We will see examples of this
in Sec. 2 when we discuss the above results. In very re-
cent work Lois & Vaswani (2015a,b), a correctness re-
sult for ReProCS was obtained. The term correctness
result refers to a complete performance guarantee, i.e.,
a guarantee that only puts assumptions on the input
data (here mt) and/or on the algorithm initialization,
but not on intermediate algorithm estimates. Other
somewhat related work includes Feng et al. (2013a),
Zhan & Vaswani (2015, to appear) and Qiu & Vaswani
(2011b).

Some other works, such as He et al. (2012)(GRASTA),
Brand (2002) (recursive adaptive-iSVD), Li et al.
(2003) (incremental Robust Subspace Learning) or Xu

et al. (2013) (GOSUS), only provide an online RPCA
algorithm without guarantees. We do not discuss these
here. As demonstrated in Fig. 1 and in detailed exper-
iments in Guo et al. (2014), when the outlier support
is large and changes slowly over time, ReProCS-based
algorithms significantly outperform most of these, be-
sides also outperforming batch methods such as PCP
and robust subspace learning (RSL) Candès et al.
(2011); Torre & Black (2003).

Contributions. In this work we develop and study
Automatic ReProCS-cPCA which is a significantly im-
proved algorithm compared to the original one from
Qiu & Vaswani (2010, 2011a); Qiu et al. (2014); Lois
& Vaswani (2015a). It is able to automatically de-
tect subspace changes within a short delay; is able to
correctly estimate the number of directions added or
deleted; and is also able to correctly estimate the clus-
ters of eigenvalues along the existing directions. More-
over it is able to accurately estimate both the newly
added subspace as well as the newly deleted subspace.
The latter is done by re-estimating the current sub-
space using an approach called cluster-PCA whose ba-
sic idea was first introduced by Qiu et al. (2014).

The main contribution of this work is a correctness re-
sult for the proposed algorithm under relatively mild
assumptions. To the best of our knowledge, this and
Lois & Vaswani (2015a,b) are the first correctness re-
sults for online RPCA. The result obtained here re-
moves two key limitations of Lois & Vaswani (2015a,b).
(1) First, we obtain a result for the case where the
`t’s can be correlated over time (follow an autore-
gressive (AR) model) where as the result of Lois &
Vaswani (2015a,b) needed mutual independence of the
`t’s. This models mostly static backgrounds in which
changes are only due to independent variations at each
time, e.g., light flickers. However, a large class of
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background image sequences often change due to fac-
tors that are highly correlated over time, e.g., mov-
ing waters. This can be better modeled using an AR
model. (2) Second, with one extra assumption – that
the eigenvalues of the covariance matrix of `t are “clus-
tered” for a period of time after the subspace change
has stabilized – we are able to remove another key
limitation of Lois & Vaswani (2015a,b). That result
needed the rank of L to grow as O(log n) while our re-
sult allows it to grow as O(n). The reason for this sig-
nificant relaxation is that, for ReProCS-cPCA, the di-
mension of the estimated subspace does not keep grow-
ing with time. Batch methods such as PCP also allow
the rank to grow almost linearly with n. As explained
later, the clustered eigenvalues assumption is valid for
a large class of data that have multi-scale variations.

Because we use extra (but usually valid) assumptions –
accurate initial subspace knowledge and slow subspace
change – we are able to remove a key limitation of
batch methods Candès et al. (2011); Chandrasekaran
et al. (2011); Hsu et al. (2011). Our result requires
an order-wise looser bound on the number of time in-
stants for which a particular index i can be outlier-
corrupted. In other words, it allows significantly more
gradual changes of the outlier support over time. This
is important in practice, e.g., in video, foreground ob-
jects do not randomly jump around; in social network
data, once an anomalous pattern starts to occur, it
remains on many of the same edges for a while.

Notation. We use the interval notation [a, b] to
mean all of the integers between a and b, inclusive,
and similarly for [a, b) etc. For a set T , |T | denotes its
cardinality and T̄ denotes its complement set. We use
∅ to denote the empty set. Define IT to be an n× |T |
matrix of those columns of the identity matrix indexed
by T . For a matrix A, define AT := AIT . We use
′ to denote transpose. The lp-norm of a vector and
the induced lp-norm of a matrix are denoted by ‖ · ‖p.
We refer to a matrix with orthonormal columns as a
basis matrix. For matrices P , Q where the columns
of Q are a subset of the columns of P , P \ Q refers
to the matrix of columns in P and not in Q. For a

matrix H, H
EVD
= UΛU ′ denotes its reduced eigen-

value decomposition. For basis matrices P̂ and P ,
dif(P̂ ,P ) := ‖(I − P̂ P̂ ′)P ‖2 quantifies error between
their range spaces.

2 DATA MODELS, MAIN RESULT

In this section, we give the data model and correctness
result for the proposed algorithm. The algorithm itself
is explained in Sec 3 and summarized in Algorithm 1.

Model on the outlier support set, Tt. We give
here one practically relevant special case of the most
general model on Tt. It requires that the outlier sup-

port sets, Tt, have some changes over time and have
size |Tt| ≤ s. An example of this is a video application
consisting of a foreground with an object of length s or
less that remains static for at most β frames at a time.
When it moves, it moves downwards (or upwards, but
always in one direction) by at least s/ρ pixels, and at
most s/ρ2 pixels. Once it reaches the bottom of the
scene, it disappears. The maximum motion is such
that, if the object were to move at each frame, it still
does not go from the top to the bottom of the scene in
a time interval of length α. Anytime after it has dis-
appeared another object could appear. We have used
this example only to explain the idea. One could also
have multiple moving objects and arbitrary motion, as
long as the union of their supports follows the model.

Model 2.1 (model on Tt). Let tk, with tk < tk+1, de-
note the times at which Tt changes and let T [k] denote
the distinct sets. For an integer α,

1. assume that Tt = T [k] for all times t ∈ [tk, tk+1)
with (tk+1 − tk) < β and |T [k]| ≤ s;

2. let ρ be a positive integer so that for any k, T [k]∩
T [k+ρ] = ∅; assume that ρ2β ≤ 0.01α;

3. for any k,
∑k+α
i=k+1

∣∣T [i] \ T [i+1]
∣∣ ≤ n and for any

k < i ≤ k+ α, (T [k] \ T [k+1])∩ (T [i] \ T [i+1]) = ∅
(one way to ensure the first condition is to require
that for all i, |T [i] \ T [i+1]| ≤ s

ρ2
with s

ρ2
α ≤ n).

In this model, k takes values 1, 2, . . . ; the largest value
it can take is tmax. We set α in Theorem 2.7.

Model on `t. A common model for data that lies
in a low-dimensional subspace is to assume that, at
all times, it is independent and identically distributed
(iid) with zero mean and a fixed low-rank covariance
matrix Σ. However this can be restrictive since, in
many applications, data statistics change with time,
albeit slowly. To model this perfectly, one would need
to assume that `t is zero mean with covariance matrix

Σt at time t. If Σt
EV D

= PtΛtP
′
t , this means that both

Pt and Λt can change at each time t, though slowly.
This is the most general model but it has an identifi-
ability problem if the goal is to estimate the subspace
from which `t was generated, range(Pt). The sub-
space cannot be estimated with one data point. So, if
Pt changes at each time, it is not clear how one can
estimate all the subspaces. To resolve this issue, a gen-
eral enough but tractable option is to assume that Pt
is piecewise constant with time and Λt can change at
each time. To ensure that Σt changes “slowly”, we as-
sume that, when Pt changes, the eigenvalues along the
newly added directions are small initially for the first
d frames, and after that they can increase gradually
or suddenly to any large value. One precise model for
this is specified next.
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The model given below assumes boundedness of `t.
This is more practically valid than the usual Gaussian
assumption since most sensor data or noise is bounded.
We also replace independence of `t’s by an AR model
with independent perturbations νt and we place all
the above assumptions on νt. This is a more practical
model and includes independence as a special case.

Model 2.2 (Model on `t). Assume the following.

1. Let `0 = 0 and for t = 1, 2, . . . tmax, assume that

`t = b`t−1 + νt

for a b < 1. Assume that the νt are zero mean,
mutually independent and bounded random vec-
tors with covariance matrix

Cov(νt) = Σt
EVD
= PtΛtPt

′.

Define λ− := λmin

(
1

ttrain

∑ttrain
t=1 Λt

)
, and λ+ :=

λmax

(
1

ttrain

∑ttrain
t=1 Λt

)
.

2. Let t1, t2, . . . tJ denote the subspace change times.
The basis matrices Pt change as

Pt =

{
[(Pt−1Rt \ Pt,old) Pt,new] if t = t1, t2, . . . tJ

Pt−1 otherwise.

Here Rt is a rotation matrix and Ptj ,new and
Ptj ,old are basis matrices of size n × rj,new and
n× rj,old respectively.

3. The eigenvalues’ matrices Λt are such that (i)
λmax(Λt) ≤ λ+ and (ii) the following holds. Let
Λt,new := Ptj ,new

′ΣtPtj ,new for t ∈ [tj , tj+1). As-
sume that

0 < λ− ≤ λ−new ≤ λ+
new ≤ 3λ− (2)

where

λ−new := min
j

min
t∈[tj ,tj+d]

λmin (Λt,new) ,

λ+
new := max

j
max

t∈[tj ,tj+d]
λmax (Λt,new) .

4. Assume that d ≥ (K+2)α and tj+1−tj ≥ d. Here
K and α are algorithm parameters that are set in
Theorem 2.7. This lower bound on tj+1− tj along
with (2) quantifies “slow subspace change”.

5. Other assumptions: (i) define t0 := 1 and
assume that ttrain ∈ [t0, t1); (ii) for j =
0, 1, 2, . . . , J , define rj := rank(Ptj ), rj,new :=
rank(Ptj ,new), rj,old := rank(Ptj ,old) Clearly,
rj = rj−1 + rj,new − rj,old. Assume that rj,new

is small enough compared to rj,old so that rj ≤ r
and rj,new ≤ rnew for all j for constants r and
rnew. Assume that r + rnew < min(n, tj+1 − tj).

6. Since the νt’s are bounded random variables, there
exists a γ <∞ and a γnew ≤ γ such that

max
t
‖Pt′νt‖2 ≤ γ, max

j
max

t∈[tj ,tj+d]
‖Ptj ,new

′νt‖∞ ≤ γnew.

We assume an upper bound on γnew in the Tho-
erem.

Various low-rank and “slow changing” Σt models
are special cases of this model. A particularly rel-
evant special case is one that allows the variance
along new directions to increase slowly: (Λt,new)i,i =
(vi)

t−tjqiλ− for i = 1, . . . , rj,new where qi ≥ 1 and
vi > 1 but not too large. An upper bound on vi of the
form qi(vi)

d ≤ 3 ensures that (2) holds.

The above model requires the directions to get deleted
and added at the same set of times t = tj . This is done
for simplicity. In general directions could get deleted
at any other time as well. Moreover, we can signifi-
cantly relax the lower bound in (2) to the following:
we can let λ−new be the minimum eigenvalue along the
new directions of any α-frame average covariance ma-
trix over the period [tj , tj + d] and we can require this
to be larger than λ−. For video analytics, this trans-
lates to requiring that, after a subspace change, enough
(but not necessarily all) background frames have “de-
tectable” energy along the new directions, so that the
minimum eigenvalue of the average covariance along
the new directions is above a threshold. For the rec-
ommendation systems’ application, the initial set of
users may only be influenced by a few, say five, fac-
tors, but as more users come in to the system, some
(not necessarily all) of them may also get influenced
by a sixth factor (newly added direction).

Eigenvalues’ clustering. In order to be able to
design an accurate algorithm to delete the old direc-
tions by re-estimating the current subspace, we need
one of the following for a period of d2 frames within
the interval [tj , tj+1). We either need the condition
number of Λt (or equivalently of Σt) to be small, or
we need a generalization of it: we need its eigenval-
ues to be “clustered” into a few (at most ϑ) clusters
in such a way that the condition number within each
cluster is small and the distance between consecutive
clusters is large. The problem with requiring a tight
upper bound on the condition number of Σt is that it
disallows situations where the `t’s constitute large but
structured noise. This is why the “clustered” general-
ization is needed.

Validity of clustered eigenvalues assumption. This
is valid for data that has variations at different scales.
For example, for data that has variations at two scales,
there would be two clusters, the large scale variations
would form the first cluster and the small scale ones
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the second cluster. These clusters would naturally be
well separated.

Let ϑ denote the maximum number of clusters. As we
will explain in Sec. 3, the subspace deletion via re-
estimation step is done after the new directions are
accurately estimated. As we will prove, with high
probability (whp), this will not happen until tj +Kα.
Thus, we assume that the above clustering assump-
tion holds for the period [tj + Kα + 1, tj + Kα + d2]
with d2 > (ϑ + 3)α. This implicitly also assumes
tj+1 − tj > Kα+ d2.

Model 2.3. Assume the following.

1. Assume that tj+1 − tj > Kα + d2 for an integer
d2 ≥ (ϑ+3)α (where ϑ is defined below). Assume
that for all t ∈ [tj + Kα, tj + Kα + d2], Λt is
constant; let Λ(j) be this constant matrix; assume
that λmin(Λ(j)) ≥ λ−.

2. Define a partition of the index set {1, 2, . . . rj}
into sets Gj,1,Gj,2, . . . ,Gj,ϑj as follows. Sort the
eigenvalues of Λ(j) in decreasing order of magni-
tude. To define Gj,1, start with the first (largest)
eigenvalue and keep adding smaller eigenvalues
to the set and stop just when the ratio of the
maximum to the minimum eigenvalue first exceeds
g+ = 1.5. Suppose this happens for the i-th eigen-
value. Then, define Gj,1 = {1, 2, . . . i − 1}. For
Gj,2, start with the i-th eigenvalue and repeat the
same procedure. Stop when there are no more
nonzero eigenvalues. Let ϑj denote the number
of clusters and let ϑ := maxj ϑj. Observe that the
above way of defining the partition is one way to
ensure that the condition number of the eigenval-
ues in each set of the partition is below g+ = 1.5.
Assume that the eigenvalues are “clustered” (dis-
tance between the sets Gj,k is large enough), i.e.,

χj,k :=

max
i∈Gj,k+1

λi
(
Λ(j)

)

min
i∈Gj,k

λi
(
Λ(j)

) ≤ χ+ = 0.2 (3)

Remark 2.4. Model 2.3 requires Λt to be constant for
t ∈ [tj+Kα, tj+Kα+d2] while Model 2.3 requires the
eigenvalues along Ptj ,new to be small for t ∈ [tj , tj +d]
with d ≥ (K + 2)α. Taken together, this means that
for all t ∈ [tj , tj + Kα + d2], we are requiring that
the eigenvalues along Ptj ,new be small. However after
this time, there is no constraint on its eigenvalues. By
t = tj+1 + Kα − 1 some or all eigenvalues along it
could have increased to λ+ or decreased to zero or be
anything in between.

Denseness. To separate sparse xt’s from the `t’s,
the basis vectors for the subspace from which the `t’s
are generated cannot be sparse. We quantify this us-
ing an incoherence condition similar to Candès et al.
(2011).

Model 2.5 (Denseness). Let µ be the small-
est real number such that maxi ‖Ptj ′Ii‖22 ≤
µrj
n and maxi ‖Ptj ,new

′Ii‖22 ≤ µrj,new
n for all j.

Assume that

2srµ ≤ 0.09n and 2srnewµ ≤ 0.0004n

Assumption on wt. Assume the following.

Model 2.6. wt’s are zero mean, mutually indepen-
dent over time, and bounded with ‖wt‖2 ≤ εw.

Main result. We give below a correctness result
for Automatic ReproCS-cPCA (Algorithm 1). It has
five parameters - α, K, ξ, ω, ĝ+ - that need to be
set appropriately. The parameter α is the number of
consecutive time instants that are used to obtain an
estimate of the new subspace, and K is the total num-
ber of times the new subspace is estimated before we
get an accurate enough estimate of it. The parameter
ξ is the bound on the l2 norm of the noise seen by the
projected sparse recovery step of the algorithm, and ω
is the threshold used to recover the support of xt. The
parameter ĝ+ is used to estimate the eigenvalue clus-
ters automatically from an empirical covariance matrix
computed using an appropriate set of ˆ̀

t’s.

Theorem 2.7. Consider Algorithm 1. As-
sume that mt satisfies (1) with xt = 0 for
t ≤ ttrain. Pick a ζ that satisfies ζ ≤
min

{
10−4

(r+rnew)2 ,
0.03λ−

(r+rnew)2λ+ ,
1

(r+rnew)3γ2 ,
0.05λ−

(r+rnew)3γ2

}
.

Suppose that the following hold.

1. enough initial training data is available: ttrain ≥
32(2rγ2)

(1−b2)(1−b)(0.01rnewζλ−)2 (11 log n+ log 4)

2. algorithm parameters are set as:

ξ = ξcor := εw +
2
√
ζ+
√
rnewγnew

1−b ; ω = 7ξ;

ĝ+ := g++0.25
1−0.25 = 2.33; K =

⌈
log(0.32rnewζ)

log(0.83)

⌉
;

α = max{αadd, αdel} where αadd ≥
32

1.22(2
√
ζ+
√
rnewγnew+2εw)4

(1−b)6
(1−b2)2

(0.01rnewζλ−)2 (11 log n+

log(40(K + 1)J)) and αdel ≥
8·3rγ2

(0.01rnewζλ−)2 (log(6 maxj ϑjJ) + 11 log n);

3. model on Tt: Model 2.1 holds;

4. model on `t:
Model 2.2 holds with b ≤ b0 = 0.1 and
with

√
rnewγnew small enough so that 14ξ ≤

mint mini∈Tt |(xt)i|;
Model 2.3 holds with |Gj,k| ≥ 0.27(r + rnew);
Model 2.5 holds.

5. model on wt: Model 2.6 holds with ε2w ≤ 0.03ζλ−

6. independence: Let T := {Tt̃}t̃=1,2,...,tmax
. As-

sume that T ,w1,w2, . . . ,wtmax
,ν1,ν2, . . . ,νtmax

are mutually independent random variables.
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Then, with probability ≥ 1− 3n−10, at all times t,

1. Tt is exactly recovered, i.e. T̂t = Tt for all t;

2. ‖xt − x̂t‖2 ≤ 1.2
(√
ζ +
√
rnewγnew + 2εw

)
and

‖ ˆ̀
t − `t‖2 ≤ ‖xt − x̂t‖2 + εw;

3. the subspace error SEt := ‖(I − P̂tP̂t′)Pt‖2 ≤
10−2

√
ζ for all t ∈ [tj + d, tj+1);

4. the subspace change time estimates given by Al-
gorithm 1 satisfy tj ≤ t̂j ≤ tj + 2α; and its esti-
mates of the number of new directions are correct:
r̂j,new,k = rj,new for j = 1, . . . , J .

5. eigenvalue clusters are recovered exactly: Ĝj,k =
Gj,k for all j and k; thus the its estimate of num-
ber of deleted directions is also correct.

Proof: See supplementary document.

Remark 2.8. Notice that the lower bound |Gj,k| ≥
0.27(r + rnew) can only hold if the number of clusters
ϑj is at most 3. This is one choice that works along
with the given bounds on other quantities such as ρ2β.
It can be made larger if we assume a tighter bound on
ρ2β for example. But what will remain true is that our
result requires the number of clusters to be O(1).

Offline RPCA. In certain situations, an improved of-
fline estimate is desirable. In many applications, there
is no need for an online solution. We show here that,
with a delay of at most (K + 2)α frames, it is possible
to recover xt and `t with close to zero error.

Corollary 2.9 (Offline RPCA). Consider the esti-
mates given in the last two lines of Algorithm 1. Un-
der the assumptions of Theorem 2.7, with probability
at least 1 − 3n−10, at all times t, ‖xt − x̂offline

t ‖2 ≤
1.2(
√
ζ+2εw), ‖ ˆ̀offline

t −`t‖2 ≤ 1.2(
√
ζ+3εw), and all

its other conclusions hold.

The offline recovery error can be made smaller and
smaller by reducing ζ (this, in turn, will result in an
increased delay between subspace change times).

Discussion.

To our knowledge, our work and Lois & Vaswani
(2015a,b) are the only correctness results for an on-
line RPCA method. All other results are for batch
techniques. As we explain, our work significantly im-
proves upon Lois & Vaswani (2015a,b). We allow the
`t’s to be correlated over time and model them using a
first order AR model. This is significantly more prac-
tically valid than the independence assumption used
in Lois & Vaswani (2015a,b).

Consider the bounds on rank and sparsity. Let L :=
[`1, `2 . . . `tmax

], S := [x1, x2 . . . xtmax
], rmat := rank(L)

and let smat be the number of nonzero entries in S.

Algorithm 1 Automatic ReProCS-cPCA

Compute λ̂−train as the r0-th eigenvalue of
1

ttrain

∑ttrain
t=1 mtm

′
t and P̂ttrain as its top r0 eigenvec-

tors.

Set thresh =
λ̂−
train

2 . Set P̂t,∗ ← P̂ttrain , P̂t,new ← [.],
̂← 0, phase← detect.
For every t > ttrain, do

• Estimate Tt and xt.

1. compute Φt ← I − P̂t−1P̂t−1
′ and yt ←

Φtmt
2. solve minx ‖x‖1 s.t. ‖yt−Φtx‖2 ≤ ξ and let
x̂t,cs denote its solution

3. compute T̂t = {i : |(x̂t,cs)i| > ω}
4. LS: compute x̂t = IT̂t((Φt)T̂t)

†yt

• Estimate `t: ˆ̀
t ←mt − x̂t

• If t mod α 6= 0 then P̂t,∗ ← P̂t−1,∗, P̂t,new ←
P̂t−1,new, P̂t ← [P̂t,∗ P̂t,new]

• If t mod α = 0 then
if phase = detect then

1. Set u = t
α and compute Du = (I −

P̂uα−1,∗P̂uα−1,∗′)[ ˆ̀(u−1)α+1, . . . ˆ̀
uα]

2. P̂t,∗ ← P̂t−1,∗, P̂t,new ← P̂t−1,new, P̂t ←
[P̂t,∗ P̂t,new]

3. If λmax( 1
αDuDu

′) ≥ thresh then
(a) phase← ppca, ̂← ̂+ 1, k ← 0, t̂̂ = t

else if phase = ppca then

1. Set u = t
α and compute Du = (I −

P̂uα−1,∗P̂uα−1,∗′)[ ˆ̀(u−1)α+1, . . . ˆ̀
uα]

2. P̂t,new ← eigenvectors
(

1
αDuDu

′, thresh
)
,

P̂t,∗ ← P̂t−1,∗, P̂t ← [P̂t,∗ P̂t,new]
3. k ← k + 1, set r̂j,new,k = rank(P̂t,new)
4. If k == K, then

(a) phase← cPCA, reset k ← 0

else if phase = cPCA) then

1. cluster-PCA (summarized in Algorithm 2)

end-if

eigenvectors(M, thresh) returns a basis matrix for the
span of eigenvectors with eigenvalue above thresh.
Offline RPCA: at t = t̂j + Kα, for all t ∈
[t̂j−1 + Kα + 1, t̂j + Kα], compute x̂offline

t ←
IT̂t((Φt̂j+Kα)T̂t)

†Φt̂j+Kαmt and ˆ̀offline
t ←mt − xt

With our models, smat ≤ stmax and rmat ≤ r0 +
Jrnew ≤ r+Jrnew with both bounds being tight. Mod-
els 2.1 and 2.5 constrain s and s, r, rnew respectively.
Using the expression for α, it can be argued that both
definitely hold in two regimes of interest. The first is
r ∈ O(log n), smat ∈ O( ntmax

(logn)8 ) and rmat ∈ O(n). The

second is r ∈ O(1), smat ∈ O(ntmax

logn ) and rmat ∈ O(n).
These requirements are significantly weaker than what
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was needed in Lois & Vaswani (2015a,b) that analyzed
ReProCS without the cluster-PCA based subspace
deletion step: their result needed rmat ∈ O(log n).
In either regime, our requirements are weaker than
those of the PCP results from Chandrasekaran et al.
(2011); Hsu et al. (2011): they need the product
rmatsmat ∈ O(ntmax); thus if smat ∈ O(ntmax), they
would require rmat to be O(1). In the first regime, our
conditions are slightly stronger than those of the PCP
result from Candès et al. (2011) while in the second,
they are comparable: it needs rmat ∈ O( n

(logn)2 ) and

smat ∈ O(ntmax).

An important advantage of our work over PCP and
other batch methods is that we allow much more grad-
ual changes of the set of outliers over time. From the
assumption on Tt, it is easy to see that we allow the
number of outliers per row of L to be O(tmax), as long
as the sets follow Model 2.1. The PCP results from
Chandrasekaran et al. (2011); Hsu et al. (2011) need
this number to be O( tmax

rmat
) which is stronger. The

PCP result from Candès et al. (2011) needs an even
stronger condition – the set ∪tmax

t=1 Tt should be gener-
ated uniformly at random. Moreover, we do not need
any assumption on the right singular vectors of L while
all results for PCP do. Finally, we analyze an online
algorithm that is faster and needs less storage.

We get the above advantages over PCP because we use
extra assumptions - accurate initial subspace knowl-
edge, slow subspace change and and clustered eigen-
values after a subspace change has stabilized. Also our
result needs five algorithm parameters to be appropri-
ately set. The actual values used for these parameters
in experiments is much smaller than what our theorem
requires. The PCP results need this for none Candès
et al. (2011) or at most one Chandrasekaran et al.
(2011); Hsu et al. (2011) algorithm parameter.

3 AUTOMATIC REPROCS-CPCA
The Automatic ReProCS-cPCA algorithm is given in
Algorithm 1. Its main idea is as follows. It begins by
estimating the initial subspace as the top r0 left sin-
gular vectors of [m1,m2, . . . ,mttrain ]. At time t, if the

previous subspace estimate, P̂t−1, is accurate enough,
because of the “slow subspace change” assumption,
projecting mt = xt+`t+wt onto its orthogonal com-
plement nullifies most of `t. Specifically, we compute
yt := Φtmt where Φt := I − P̂t−1P̂t−1

′. Clearly,
yt = Φtxt + bt where bt := Φt`t + Φtwt. ‖Φt`t‖2
is small due to slow subspace change and wt is small
by assumption. Thus recovering xt from yt then be-
comes a traditional sparse recovery problem in small
noise Candes (2008). We recover xt by l1 minimiza-
tion and estimate its support by thresholding. We use
the estimated support, T̂t, to get an improved debiased
estimate of xt, denoted x̂t, by least squares (LS) esti-

Algorithm 2 cluster PCA (called from Algorithm 1)

1. If k == 0, estimate the clusters

(a) Set u = t
α and compute Σ̂sample =

1
α

∑uα
t=(u−1)α+1

ˆ̀
t
ˆ̀
t
′ and sort its eigenvalues

in decreasing order.
(b) For Ĝj,1, start with the first (largest) eigen-

value and keep adding smaller eigenvalues to
the set until either the ratio of the maximum
to the minimum eigenvalue first exceeds ĝ+ or
the next eigenvalue is below 0.25λ̂−train. Sup-
pose this happens for the (k1 + 1)-th eigen-
value. Then, define Ĝj,1 = {1, 2, . . . , k1}.
For Ĝj,2, start with the (k1 +1)-th eigenvalue
and repeat the same procedure.
Repeat the above for each new cluster until
the next eigenvalue is below 0.25λ̂−train.

(c) k ← k+1, P̂t,∗ ← P̂t−1,∗, P̂t,new ← P̂t−1,new,

P̂t ← [P̂t,∗ P̂t,new]

2. If 1 ≤ k ≤ ϑ, estimate the k-th cluster’s subspace
by cluster-PCA

(a) Set u = t
α , set Ĝj,0 ← [.].

• let Ĝj,det,k := [Ĝj,0, Ĝj,1, . . . Ĝj,k−1] and

let Ψk := (I − Ĝj,det,kĜj,det,k
′); compute

Mcpca = Ψk

(
1
α

∑uα
t∈(u−1)α+1

ˆ̀
t
ˆ̀
t
′
)

Ψk

• compute Ĝj,k ←
eigenvectors(Mcpca, , |Ĝj,k|)

(b) k ← k+1, P̂t,∗ ← P̂t−1,∗, P̂t,new ← P̂t−1,new,

P̂t ← [P̂t,∗ P̂t,new]

3. If k == ϑ,

• set P̂t ← [Ĝj,1 · · · Ĝj,ϑ], P̂t,∗ ← P̂t, reset

P̂t,new ← [.]
• phase← detect, reset k ← 0.

mation on T̂t. We then estimate of `t as ˆ̀
t = mt− x̂t.

By the denseness assumption given in Model 2.5, it can
be argued that the restricted isometry constant (RIC)
of Φt will be small. Under the theorem’s assumptions,
we can bound it by 0.14. This ensures that a sparse
xt is indeed accurately recoverable from yt. With the
support estimation threshold ω set as in Theorem 2.7,
it can be argued that the support will be exactly re-
covered, i.e., T̂t = Tt. Let et := `t − ˆ̀

t. It can be
shown that et = (x̂t − xt)−wt satisfies

et = ITt [(Φt)Tt
′(Φt)Tt ]

−1ITt
′Φt(`t +wt)−wt.

Using the bound on RIC of Φt, ‖(Φt)Tt
′(Φt)

−1
Tt ‖2 ≤

(1 − 0.14)−1 < 1.2. Thus ‖et‖2 ≤ 1.2‖Φt`t‖2 +
2.2‖wt‖2 (i.e., `t is accurately recovered).

The estimates ˆ̀
t are used in the subspace estimation

step which involves (i) detecting subspace change; (ii)
K steps of projection-PCA, each done with a new set
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of α frames of ˆ̀
t, to get an accurate enough estimate

of the newly added subspace; and (iii) cluster-PCA to
delete the old subspace by re-estimating the current
subspace. At the end of the projection PCA step, the
estimated subspace dimension is at most r+ rnew, and
after cluster-PCA, it comes down to at most r.

Automatically setting algorithm parameters.
The algorithm has five parameters. As explained in
Guo et al. (2014), one can set ξt = ‖Φt

ˆ̀
t−1‖2. One

can either set ωt = 7ξt or, in the video application,
one can use the average image pixel intensity to set it.
In Guo et al. (2014), they used ω = q

√
‖mt‖22/n with

q = 1 when it was known that ‖xt‖2 is of the same
order as ‖`t‖2; and q = 0.25 when ‖xt‖2 was known
to be much smaller (the case of foreground moving
objects whose intensity is very similar to that of back-
ground objects). There is no good heuristic to pick α
except that αadd should be large enough compared to
rnew and αdel should be large enough compared to r.
We used α = 100 and K = 12 in our experiments. We
need K to be large enough so that the new subspace is
accurately recovered at the end of K projection-PCA
iterations. Thus, one way to set K indirectly is as fol-
lows: do projection-PCA for at least Kmin times, but
after that stop when there is not much difference be-
tween P̂j,new,k

′ ˆ̀
t and P̂j,new,k+1

′ ˆ̀
t Qiu et al. (2014);

Guo et al. (2014). This, along with imposing an upper
bound on K works well in practice Guo et al. (2014).
We can set ĝ+ as suggested in Qiu et al. (2014); by ap-
plying any clustering algorithm from literature, e.g.,
k-means, to the empirical covariance matrix used in
the clustering step of cluster-PCA.

4 PROOF OUTLINE: THEOREM 2.7
Consider the j-the subspace change interval. Let
P∗ := Ptj−1

, Pnew := Ptj ,new and let P̂∗ := P̂tj−1
.

Assume that at t = tj − 1, the subspace, range(P∗), is
accurately recovered, i.e., SEt ≤ rζ. Conditioned on
this, we use the following steps to show that the same
bound holds for SEt at t = tj+1 − 1 as well.

1. First, we show that the subspace change is de-
tected within a short delay of tj . We show that
tj ≤ t̂j ≤ tj + 2α whp.

2. At t = t̂j + α, the first projection-PCA step

is done to get the first estimate, P̂new,1, of
range(Pnew). This computes the top singular vec-

tors of [ ˆ̀̂tj+1,
ˆ̀̂
tj+2, . . . ,

ˆ̀̂
tj+α] projected orthogo-

nal to range(P̂∗). Before t̂j + α, the noise seen
by the projected sparse recovery step, bt, is the
largest. Hence the error et is also the largest for
the ˆ̀

t’s used in this step. However due to slow
subspace change, even this error is not too large.
Because of this and because et is approximately
sparse with support Tt and Tt follows Model 2.1,
we can argue that P̂new,1 is a good estimate. We

show that dif([P̂∗ P̂new,1],Pnew) ≤ 0.6 < 1. Thus,
at this time the subspace error SEt ≤ rζ + 0.6.

3. At t = t̂j + kα, for k = 1, 2, . . . ,K, the
k-th projection-PCA (p-PCA) step is done to

get P̂new,k. After the first p-PCA step, P̂t =

[P̂∗ P̂new,1] and this reduces bt and hence et for

the ˆ̀
t’s in the next α frames. This fact and the

approximate sparseness of et and Model 2.1 on Tt,
in turn, imply that the perturbation seen by the
second p-PCA step will be even smaller. So P̂new,2

will be a more accurate estimate of range(Pnew)

than P̂new,1. Repeating the same argument, the
third estimate will be even better and so on. We
can show that dif([P̂∗ P̂new,k],Pnew) ≤ 0.83k +
0.84rnewζ and so SEt ≤ rζ + 0.83k + 0.84rnewζ.

4. We set the value of K in the theorem to ensure
that by t = t̂j +Kα, SEt ≤ (r + rnew)ζ.

5. In the interval [t̂j +Kα+ 1, t̂j +Kα+ (ϑ+ 1)α],
cluster-PCA is done to delete range(Ptj ,old). At
the end of this step, we can show the bound on
SEt has reduces from (r + rnew)ζ to rζ.

6. Finally, we also argue that there are no false sub-
space change detects for any t ∈ (t̂j +Kα+ (ϑ+
1)α+ 1, tj+1). This ensures t̂j+1 ≥ tj+1.

To prove the theorem, we first show that the initial
subspace is recovered accurately enough, i.e., SEt ≤ rζ
at t = ttrain +1, whp. Then, repeating the above argu-
ment for each subspace change period, we can obtain
the subspace error bounds of the theorem. The sparse
recovery error bounds can be obtained by using these
and quantifying the discussion of Sec. 3.
The main part of the proof is the analysis of the
projection-PCA steps (for subspace addition) and the
cluster-PCA steps (for subspace deletion). To analyze
the k-th projection-PCA step, we first use a lemma
based on the sin θ theorem Davis & Kahan (1970) to
bound the subspace error in recovering range(Ptj ,new).
This upper bound consists of three terms. We then
bound these terms using the matrix Azuma inequality
from Tropp (2012). The matrix Azuma is significantly
harder to apply than matrix Hoeffding used in Lois &
Vaswani (2015a,b). This is because we need to get the
sums of conditional expectations of the quantities in
each term in a form that their spectral norm can be
bounded easily. The obvious way of doing this can lead
to very loose bounds. To get the desired bounds, one
need to rewrite `t in terms of past νt’s and use the fact
that the contribution of very old νt’s is negligible and
the contribution due to the last α νt’s is only slightly
larger than that of one νt (because b ≤ b0 = 0.1).

The analysis of cluster-PCA is a significant general-
ization of the above ideas. The slow subspace change
assumption is replaced by the clustering assumption
at various places in its proof.
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