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Abstract
We derive a variational inference algorithm for
the HDP-HMM based on the two-level stick
breaking construction. This construction has pre-
viously been applied to the hierarchical Dirich-
let processes (HDP) for mixed membership mod-
els, allowing for efficient handling of the cou-
pled weight parameters. However, the same al-
gorithm is not directly applicable to HDP-based
infinite hidden Markov models (HDP-HMM) be-
cause of extra sequential dependencies in the
Markov chain. In this paper we provide a solu-
tion to this problem by deriving a variational in-
ference algorithm for the HDP-HMM, as well as
its stochastic extension, for which all parameter
updates are in closed form. We apply our algo-
rithm to sequential text analysis and audio signal
analysis, comparing our results with the beam-
sampled iHMM, the parametric HMM, and other
variational inference approximations.

1 Introduction

The hierarchical Dirichlet process (HDP) (Teh et al., 2006)
is a Bayesian nonparametric prior for generating multiple
random measures on the same countably infinite collection
of atoms. This property of the HDP makes it a natural tool
for modeling groups of data that share hidden components
with different mixing proportions. The most well-known
application of the HDP is for handling exchangeable data
through mixed membership modeling (Airoldi et al., 2014),
as well as nonexchangeable data with hidden Markov mod-
els (HDP-HMM) (Fox et al., 2008; Teh et al., 2006).

The hierarchical structure of the HDP makes inference a
significant problem. For example, various sampling strate-
gies have been developed for these models to improve ef-
ficiency: For the mixed membership model, a Chinese
restaurant franchise (Teh et al., 2006) sampling method was
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proposed, while for the HDP-HMM a beam sampling strat-
egy was introduced to enable forward-backward sampling
via slice sampling (Neal, 2003) over a dynamic, truncated
stick-breaking construction (Van-Gael et al., 2008).

Variational inference provides another promising strategy
for inference in Bayesian hierarchical models by restricting
the posterior to a simpler form that is able to be determinis-
tically optimized (Jordan et al., 1999). Moreover, stochas-
tic variational inference (SVI) allows for efficient inference
over large datasets, and has been applied successfully on lo-
cally exchangeable data (Hoffman et al., 2010, 2013; Wang
et al., 2011) and nonexchangeable data (Foti et al., 2014;
Johnson and Willsky, 2014). For the HDP mixed mem-
bership model, batch and stochastic variational inference
algorithms have been derived using a two-level stick break-
ing construction (Wang et al., 2011). However, these algo-
rithms are not immediately transferable to the HDP-HMM
because of sequential dependencies in the local variables.
Alternative, fully conjugate nonparametric priors for the
HMM have also been proposed (Paisley and Carin, 2009).

Previous work has focused on SVI for hidden Markov
models (Foti et al., 2014), but is not directly applicable
to the HDP-HMM. A recent SVI approach to the HDP-
HMM is based on a point estimate strategy to avoid non-
conjugacy (Liang et al., 2007; Johnson and Willsky, 2014).
In this paper we address posterior inference for the HDP-
HMM over all variables by deriving batch and stochastic
variational algorithms using the fully conjugate representa-
tion of Wang et al. (2011) rather than the representation by
Johnson and Willsky (2014), with which we compare.

In Section 2, we present the construction of the HDP-HMM
we use for inference, and derive batch and stochastic vari-
ational inference algorithms in Section 3. We then apply
our model to both artificial data and real data in Section 4,
including a sequential text dataset and a large-scale audio
dataset. Empirical results demonstrate the effectiveness of
our method when compared with the beam-sampled iHMM
(Van-Gael et al., 2008), the HDP-HMM with simpler di-
rect assignment variational approximations (Liang et al.,
2007; Johnson and Willsky, 2014) and its split-merge varia-
tion (Bryant and Sudderth, 2012), as well as the parametric
batch and stochastic HMM (Beal, 2003; Foti et al., 2014).
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Figure 1: Comparison between the transition structure of the HMM and the stick-breaking construction of HDP-HMM.
EachGi represents a transition distribution from state i, and the color of a stick corresponds to one state. Left: In the HMM
the state and the column index are one-to-one. Right: For the stick-breaking construction of the HDP-HMM, multiple sticks
in each row may point to the same state (same color) and there is no one-to-one mapping between column and row. For
example, a transition from state 3 to 5 takes place if s = 5 or s = 6. By holding the sequence sd fixed and changing a
DP indicator ckm for a selected stick (i.e., changing the color of a stick), the state transitions for all subsequent states may
change. This presents an inference challenge for the HDP-HMM not faced by Wang et al. (2011).

2 The HDP-HMM

The HDP-HMM uses the hierarchical Dirichlet process
for Bayesian nonparametric inference over the number of
states in a hidden Markov model. To review, let G be a
top-level Dirichlet process, written G ∼ DP(a0µ), with
a0 > 0 and µ a non-atomic probability measure. Since
G is a.s. discrete, we can write G =

∑
k η0kδθk . The

HDP uses G as the base distribution of a possibly infi-
nite number of second-level Dirichlet processes, written
Gk ∼iid DP(τ0G).

In the context of the HDP-HMM,Gk is the transition distri-
bution for state k. To generate a sequence of data, one gen-
erates a sequence of parameters (θ′1, . . . , θ

′
n) by first sam-

pling θ′1 from an initial-state distribution G0 followed by
the rest of the sequence. To this end, we introduce the state
index zi, which equals k if θ′i = θk. The next parameter
in the Markov chain is then generated from the DP indexed
by zi, θ′i+1 ∼ Gzi . The observed sequence (x1, . . . , xn) is
generated using these parameters, where xi ∼ p(x|θ′i). In
this paper, we will focus on the discrete HMM.

2.1 Stick-breaking construction

Our inference method is based on the stick-breaking con-
struction for the HDP (Sethuraman, 1994), which we
briefly review. To generate the top-level DP, we let

G =
∑∞
k=1 ζk

∏k−1
j=1 (1− ζj)︸ ︷︷ ︸
≡ η0k

δθk ,

ζk
iid∼ Beta(1, a0), θk

iid∼ Dir(b01). (1)

The infinite number of second-level DP’s are then drawn

Gk =
∑∞
m=1 εkm

∏m−1
j=1 (1− εkj)︸ ︷︷ ︸
≡ ηkm

δφkm
,

εkm
iid∼ Beta(1, τ0), φkm

iid∼ G. (2)

Since G is discrete almost surely, there is a mapping from
φkm to θi, and many φkm will map to the same θi. This in-
troduces additional complexity during inference that makes
learning parameters more complicated than for the para-
metric HMM (Beal, 2003).

For inference we introduce the indicator vector ckm, which
indexes the top-level atom picked for φkm. Therefore
ckm,k′ = 1 if φkm = θk′ and ckm ∼ Mult(η0).1 It turns out
that for the HDP mixed membership model these indicator
variables are especially important for closed-form updates
in variational inference (Wang et al., 2011). Wang et al.
(2011) draw from Gk by first drawing a stick indicator s
and then mapping to the top-level atom associated with the
chosen stick as indicated by cks.

We will use this auxiliary variable for the HDP-HMM as
well. First, for the dth observed sequence, we sample
sd,i|{zd,i−1 = k} ∼ Disc(ηk) and then set zd,i = k′ if
cksd,i,k′ = 1 to index the next state (see Figure 1). This
two-step process of first selecting the stick and then map-
ping to the top level atom works easily for the HDP in
the mixed membership setting, but this algorithm is not
directly applicable to the HDP-HMM because of the non-
exchangeability of the sequence. That is, given a sequence

1We will work only with ckm and ignore φkm from now on.
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Algorithm 1 An outline of VI for the HDP-HMM

Iterate the below updates to the variational distributions

q(zd): Forward-backward (appendix) with Eq. (6) approx.
q(θk): See appendix for discrete HMM case.
q(sd|zd): See Eq. (9). This is used in following updates.
q(ckm): See Eq. (10) and appendix for expectations.
q(εkm) and q(ζi): See appendix.

of stick indicators sd, if we change the value of ckm we may
affect the path of the entire Markov chain zd. This prob-
lem of indicators pointing to indicators constitutes the chal-
lenge of variational inference for the HDP-HMM, which
we illustrate in Figure 1.

In the next section we derive a variational inference algo-
rithm that works with the marginal distribution (integrating
out sd) to perform forward-backward on zd, and then rein-
troduces sd as an auxiliary variable to perform local varia-
tional inference (Bishop, 2006).

3 Variational inference for the HDP-HMM

The variational objective function is formed by integrating
over the model variables in the log joint likelihood using
an approximation to the posterior distribution. Since we
model each sequence as independent, the joint likelihood
of the HDP-HMM can be factorized as

p(x,θ, ζ, ε, c, z) = p(θ)p(ζ)p(ε)p(c|ζ) (3)
×∏d p(zd|ε, c)

∏
i p(xdi|θ, zdi),

with additional factorizations on all variables in p(ζ), p(ε),
p(c|ζ) and p(θ). We approximate the posterior of these
random variables with the distribution

q(θ, ζ, ε, c, z) = q(θ)q(ζ)q(ε)q(c)q(z) (4)

=
∏

k

q(θk)q(ζk)
∏

k,m

q(εkm)q(ckm)
∏

d

q(zd).

We set each variational distribution to be in the same family
as the prior (see below for the explicit form). The goal is
then to maximize the objective function

L = Eq[ln p(w,θ, ζ, ε, c, z)]− Eq[ln q]

over the parameters of q to minimize the KL-divergence
between q and the posterior (Jordan et al., 1999).

In the following batch inference algorithm, we work di-
rectly with L to update q(zd) and q(θk). Using L for the
remaining q distributions is more difficult, and so we intro-
ducing the latent variables sd and variational distributions
q(sd|zd) to locally lower bound L. This allows for closed-
form updates of q(ζ), q(ε) and q(c). We focus on the novel

aspects of our inference algorithm in the following subsec-
tions. The parts of our algorithm that overlap with other
HMM inference algorithms are given in the appendix. We
sketch one batch iteration in Algorithm 1.

3.1 The state transition matrix

The first issue we address is the state transition matrix,
which we use to update q(zd) and q(θk). Let Akk′ be the
probability of transitioning from state k to k′.

The challenge here is in the term

Eq lnAkk′ = Eq ln
∑

m

ckm,k′ηkm (5)

where ηkm = εkm
∏
j(1 − εkj). We recall that this is the

sum over all sticks that have been assigned to atom θk′ for
the stick-breaking construction of atom θk (i.e., state k).
We must account for the possible assignment of each stick
to θk′ since the distribution on ckm is discrete almost surely.
This expectation is not tractable, and so we form a lower
bound and an approximation as follows,

Eq ln
∑
m ckm,k′ηkm ≥ Eq ln

∑

m

ckm,k′e
Eq ln ηkm (6)

≈ ln
∑

m

Eq[ckm,k′ ]eEq ln ηkm ,

We observe that, since we only need the expectation
Eq ln

∑
m ckm,k′ηkm for forward-backward, we could also

have sampled ckm and ηkm from their variational q distri-
butions and formed an unbiased approximation. This re-
sulted in a somewhat slower algorithm and we did not em-
pirically observe any difference in performance. We report
results with the approximation in Eq. (6) in this paper. We
empirically observed that q(ckm) was nearly deterministic
in general, so the approximation to the bound was good.

Making this approximation, we run forward-backward to
find q(zd) and then use this to update q(θk). These are
found as in the parametric HMM (see the appendix).

3.2 A local lower bound using q(sd|zd)

Updating the remaining q distributions on ε, c and ζ is dif-
ficult because our approximation of the expected log state
transition probabilities in Eq. (6) does not yield tractable
variational parameter updates for these variables. We ad-
dress this with a local lower bounding using the sequence
sd. We recall that this latent sequence interacts with zd and
ckm as follows: The pair (zd,i−1 = k, sdi = m) indicates
that the next state zdi can be found by choosing the mth
stick of the kth DP, and setting zdi = k′ if ckm,k′ = 1.

In the variational HMM, the state transition from zd,i−1
to zdi is captured by the marginal q(zd,i−1, zdi), which is
calculated using the output of the forward-backward algo-
rithm. For the variational HDP-HMM, we instead model
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this transition via the triple (zdi, sd,i+1, czdi,sd,i+1
). Intro-

ducing these variables creates the local lower bound

Eq1(zd,i−1 = k, zdi = k′) ln
∑

m

ckm,k′ηkm (7)

≥ Eq
∑

m

ckm,k′1(zd,i−1 = k, sdi = m) ln ηkm.

We then define the joint variational distribution

q(sd, zd) = q(sd|zd)q(zd) = q(zd)
∏
i q(sdi|zd),

where q(zd) is already calculated using forward-backward.

The RHS of Eq. (7) involves three separate expectations
because of the factorization of q. The expectation of η is
discussed in the appendix. One novelty introduced by our
construction of the HDP-HMM is the term

q(zd,i−1 = k, sdi = m) = Eq1(zd,i−1 = k, sdi = m)

≡ ξdi(k,m), (8)

which is the variational marginal probability of picking the
mth stick from the kth DP in step i of sequence d. This
value serves a similar purpose as the marginal state tran-
sition probability in the parametric HMM, only it is not a
distribution between states, but between a state and a stick
that must be mapped to a top-level DP state. We find ξdi by
calculating

ξdi(k,m) ∝ exp{Eq ln p(xd, zd,i−1 = k, sdi = m,−)},

and normalizing (“−” indicates all other variables). Similar
to the variational HMM, this requires the forward αd and
backward βd calculations found when updating q(zd) (see
the appendix). As a result, we update the marginal

ξdi(k,m) ∝ αd,i−1(k) exp{Eq ln ηkm}× (9)
∏
k′ [exp{Eq[ln θk′,xdi

]}βdi(k′)]ϕkm,k′ .

ϕkm is the variational multinomial parameter for ckm de-
rived later. The difference between this term and the corre-
sponding term for the HMM is the product over the assign-
ment of stick m (which is known a priori in that model).
We obtain ξdi(k,m) by normalizing this matrix.

3.3 Mapping atoms between DP levels

For ckm, being the indicator of the atom associated with
themth stick in the kth DP, we let q(ckm,k′ = 1) ≡ ϕkm,k′
where

ϕkm,k′ ∝ exp{Eq ln η0,k′ +
∑
d,i ξdi(k,m)Eq ln θk′,xdi

}.
(10)

We give the expectations in the appendix. A similar calcu-
lation appears in the HDP mixed membership model (Wang
et al., 2011).

3.4 Stochastic variational inference

For computationally intensive scenarios in which we have
a large collection of sequences over which to learn q, the
proposed inference algorithm can be scaled with stochastic
variational inference (Hoffman et al., 2013). SVI works in
this context by subsampling a set of sequences xd, where
d ∈ Bt ⊂ {1, . . . , D} at iteration t. It then optimizes the
q distributions for these sequences and takes a weighted
step in the direction of the natural gradient of the global
variational parameters.2

Since stochastic inference for q(θk) and q(εkm) are com-
mon calculations, we discuss them in the appendix. The
stochastic update for q(ckm) requires the following new
SVI derivation. First, we restrict the scaled variational ob-
jective function to Bt and terms involving ϕkm,

L(t)
ckm

=
∑

k′

ϕkm,k′Eq ln η0,k′ − ϕkm,k′ lnϕkm,k′ +

ϕkm,k′
D
|Bt|

∑

d∈Bt,i

ξdi(k,m)Eq ln θk′,xdi
. (11)

The natural parameter of q(ckm) is lnϕkm (taking element-
wise logarithm), and so the natural gradient update is

lnϕkm ← lnϕkm + ρtM
−1
km∇lnϕkm

L(t)
ckm

, (12)

Mkm = Eq
[
d ln q(ckm)

d lnϕkm

d ln q(ckm)

d lnϕTkm

]

= diag(ϕkm). (13)

Next, we observe from Eq. (10) that we can write the up-
date of this multinomial distribution in the form

q(ckm,k′ = 1) = ϕkm,k′ ∝ exp{λkm,k′}. (14)

Swapping in this representation, we find that the natural
gradient step over the scale term λ followed by the restric-
tion to the simplex gives the update

ϕkm,k′ ∝ exp{λ(t)km,k′}, (15)

where λ(t)km,k′ is the typical weighted average

λ
(t)
km,k′ = (1− ρt)λ(t−1)km,k′ + ρt λ

′
km,k′ (16)

λ′km,k′ = Eq ln η0,k′ +
D

|Bt|
∑

d∈Bt,i

ξdi(k,m)Eq ln θk′,xdi

4 Experiments

We perform experiments on artificial data, batch inference
experiments using the “Alice” dataset and large-scale ex-
periments using discretized audio sequences. We list the
methods we compare with in Table 1.

2We note that our algorithm will scale with the number of se-
quences, not the length of the sequence as in Foti et al. (2014). We
compare with SVI for the parametric HMM in this many short se-
quences setting, but still reference Foti et al. (2014) in this case.
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Table 1: Methods compared with in our experiments. Top half are batch methods and bottom half are stochastic methods.

Method Notation Reference
Batch variational HMM HMM Beal (2003)
Beam sampling HDP-HMM Beam Van-Gael et al. (2008)
Direct assignment variational HDP-HMM HDPHMM-p Liang et al. (2007)
Direct assignment variational HDP-HMM + mean-field assumption HDPHMM-p-mf Liang et al. (2007)
Two-level stick breaking for variational HDP-HMM HDPHMM-sb Our method
Stochastic variational HMM oHMM Foti et al. (2014)
Direct assignment stochastic variational HDP-HMM oHDPHMM-p Johnson and Willsky (2014)
Direct assignment stochastic variational HDP-HMM + split-merge oHDPHMM-sm Bryant and Sudderth (2012)
Two-level stick breaking for stochastic variational HDP-HMM oHDPHMM-sb Our method

4.1 Artificial data

In this subsection we demonstrate the effectiveness of our
variational HDP-HMM on artificial data. We generate
discrete training data of length 1,000 from two four-state
HMMs with transition matrices Apos, Aneg and emission
matrix B set to,

Apos =

[
.99 .01 0 0
0 .99 .01 0
0 0 .99 .01
.01 0 0 .99

]
, Aneg =

[
.01 .99 0 0
0 .01 .99 0
0 0 .01 .99
.99 0 0 .01

]
,

B =
1

3

[
1 0 0 0 0 0 1 1
1 1 1 0 0 0 0 0
0 0 1 1 1 0 0 0
0 0 0 0 1 1 1 0

]
.

For each scenario we ran 20 experiments with a newly gen-
erated sequence and average the results. For the variational
HDP-HMM, we truncate the posterior to 10 states and set
a0 = 1, τ0 = 1, b0 = 1. For beam sampling we use the
same setting, and we randomly assign each observation to
an initial state between 1 and 10. We initialize the varia-
tional parameter (see appendix) to θ̂k/100 ∼ Dir(10× 1).
For larger state truncations the results were the same, but
converged over a longer timescale.

We analyze the convergence of both methods using their re-
spective approximations of the log marginal likelihood on
the top of Figure 2. For this small-scale problem, the vari-
ational method converges in less than 2.5 seconds (∼0.03s
per iteration) while beam sampling converges in a longer
time (∼0.02s per iteration). Since beam sampling requires
multiple samples after the burn-in phase, it requires signif-
icantly more computation time. However, the constrained
posterior q distribution is restrictive for variational infer-
ence, while beam sampling learns a slightly better model
in terms of the log marginal likelihood.

We also compare the accuracy of the number of posterior
states recovered by both methods. For variational infer-
ence we count the minimum number of occupied states k
to cover 99.5% of the data. For beam sampling we record
the number of states used per iteration. On the bottom of
Figure 2, we can see that it takes more than 2,000 iterations
(∼40 seconds) for beam sampling to find the true number
of states. For variational inference, this requires less than
100 iterations (∼3 seconds).

4.2 Alice’s Adventures in Wonderland

We also compare our HDP-HMM algorithm with the para-
metric HMM and the direct assignment approach to the
HDP-HMM. We recall that the direct assignment learns a
point estimate of the top-level truncated DP and represents
each second level with a finite Dirichlet distribution.

We consider a sequential text analysis problem in which we
collect 12 chapters in “Alice’s Adventures in Wonderland”
and filter out all the symbols other than the 26 characters
and whitespace. We use these symbols as codewords giving
a codebook of size of 27. The entire text sequence was en-
coded as a sequence of these codewords. For each chapter,
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Figure 2: Top: Log likelihood for our variational HDP-
HMM and beam sampling. Bottom: Number of posterior
states inferred by variational HDP-HMM and beam sam-
pling. Results are averaged over 20 random experiments.
“pos” indicates Apos and “neg” indicates Aneg was used.
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Figure 3: Posterior variational bound for each chapter (×104). The black plots represents results for HMM with various
number of states. The red, blue, green bars separately show the average result for the HDP-HMM, HDP-HMM with direct
assignment, and HDP-HMM with direct assignment and fully-factorized mean-field assumption in variational posterior,
all with a truncation level of 50. The standard deviation is shown on the left hand side, for each HDP-HMM model. The
dashed lines are the number of states used in the posterior of according models averaged over multiple runs.

we truncate the entire sequence into small chunks of size
200. This gave 663 sequences in total and 55 sequences
per chapter on average. We pick 537 sequences for training
and hold out the remaining 126 for testing, modeling each
chapter separately. For the HMM we use variational in-
ference (Beal, 2003) and tried various number of states K
ranging from 5 to 50 with the transition Dirichlet parameter
set to 5/K. For the HDP-HMM we truncate the posterior
to 50 states and set the first-level scale parameter a0 = 5
and second-level scale parameter τ0 = 3. For all models
we set the emission Dirichlet scale parameter b0 = 1/27.
We ran 20 trials for each experiment. For the performance
criterion, we use the predictive variational bound on the test
data (using sampling in Eq. (5) rather than lower bound).

In Figure 3 we show the predictive variational bounds for
the HMM (black lines) as a function of state number, and
for our HDP-HMM (red lines). For all experiments we
show both the mean and standard deviation. From the fig-
ure we can see that when the model grows too large, the
HMM may overfit the training data, resulting in a drop
in predictive performance. For different chapters, the best
performance in the HMM varies, which makes model se-
lection more time consuming. For every chapter, our HDP-
HMM out performs HMM in predictive performance and
learns roughly the ideal number of states according to the
HMM. We mark the average number of occupied states in
our HDP-HMM posterior with a red vertical line. The num-
ber of states varies from 21.4 (Chap. 3) to 26.4 (Chap. 8),
which shows flexibility when the data complexity varies.

We also show the result for the HDP-HMM with direct as-
signment (blue lines). In general, our algorithm converges
to a better solution that uses slightly fewer states, indicating
the benefit of our representation. In addition to the direct

assignment model, we also made a mean-field assumption
in which q(zd) =

∏
i q(zdi) (green lines). This factoriza-

tion is required in the split-merge stochastic model we com-
pare with (Bryant and Sudderth, 2012) in the next section.
We see that a mean-field assumption on q(zd) significantly
overestimates the number of states.

4.3 Million Song dataset

We also conduct large-scale experiments on discretized au-
dio sequences extracted from the Million Song dataset. We
first extract audio features from 371K songs and learn a
codebook of size 256 using K-means. We split all the se-
quences into small chunks of length 50 and learn a single
HMM on all sequences.

We compare with the beam-sampled iHMM (Van-Gael
et al., 2008), for which we initialized all experiments
by randomly assigning observations to one of 500 hid-
den states, and trained with the same parameter setting as
the variational HDP-HMM. For the stochastically-learned
parametric HMM models (Foti et al., 2014) we set the
transition Dirichlet parameter to 20/K and the emission
Dirichlet parameter to b0 = 0.1. For the HDP-HMM mod-
els, including ours and Johnson and Willsky (2014), we
truncated to 500 states and set a0 = 20, τ0 = 3, b0 = 0.1.

In addition, we compare with the stochastic HDP-HMM
using a direct assignment and a split-merge strategy during
online learning (Bryant and Sudderth, 2012). The split-
merge method, originally introduced for stochastic vari-
ational HDP, can adaptively create (split) new states or
merge old states during each learning iteration in a data-
driven manner. In practice we can start with a few states
and let the algorithm gradually learn more states. We
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Figure 4: (a). Comparison between stochastic HMM and stochastic HDP-HMM. (b). Comparison between stochastic
HDP-HMM and beam sampling. (c). Comparison between the two-level stick-breaking stochastic HDP-HMM with the
direct assignment stochastic HDP-HMM with and without split-merge updates. (d). Comparison of time cost per iteration
among various methods. (e). Comparison among our stochastic HDP-HMM with various learning rate. (f). Comparison
among our stochastic HDP-HMMs with various mini-batch sizes and batch HDP-HMMs trained with 10k sequences.

adapt this method to the HDP-HMM and compare with our
method.

For all experiments we ran the algorithms for 3× 105 sec-
onds (∼3.5 days), during which stochastic HDP-HMM can
process around 1 million sequences. We also held out 634
sequences for testing and use the predictive log marginal
likelihood on this test set as a performance measure. We
use ρt = (100+ t)−0.6 as the learning rate and |Bt| = 256
as mini-batch size.

In Figure 4(a) we show the comparison between the para-
metric stochastic HMM and the nonparametric stochas-
tic HDP-HMM. The predictive log marginal likelihood for
stochastic HMM will stop increasing at around 200 to
250 states. The performance for stochastic HDP-HMM is
roughly equal to the best of the stochastic HMM.

In Figure 4(b) we also compare the stochastic HDP-HMM
with beam sampling. Since there is no stochastic solution
for beam sampling, we performed batch inference with var-
ious amounts of data and present experiments as a function
of time in order to compare the efficiency of the algorithms.
As shown, stochastic HDP-HMM outperforms beam sam-
pling because it uses more data. When beam sampling is
trained with a limited amount of data (for example, 1K
sequences) it will converge more quickly, but the perfor-
mance will suffer. On the other hand, using too much data
for beam sampling will be computationally inefficient. For
instance, if we use 10K sequences for training, beam sam-
pling can only draw 70 samples in three days. Beam sam-
pling also did not efficiently infer the number of states. In

our experiments, beam sampling will use more than 500
states, while the HDP-HMM occupies around 250 states in
its posterior.

In Figure 4(c) we compare our stochastic HDP-HMM with
the direct assignment method and the split-merge meth-
ods. The predictive likelihood for our method outperforms
the direct assignment method. For the split-merge method
we do three trials by starting with {50, 100, 300} states.
All three of these cases converged to around 270 states.
However, split-merge is restricted to using the fully factor-
ized mean-field assumption over q(zd) as discussed previ-
ously. Also, we cannot try all split-merge candidates during
each online iteration, otherwise split-merge will be compu-
tationally prohibitive.3 Considering all these factors, the
split-merge method performs slightly better than the di-
rect assignment method without split-merge, but still worse
than our method.

In Figure 4(d) we show the time per iteration as a func-
tion of state number. HMM is the fastest. Direct as-
signment also performs fast for large numbers of states
since the point estimate of the top-level DP significantly re-
duces the complexity during learning. Our two-level stick-
breaking method is slightly slower than the direct assign-
ment method because of the additional of the posterior
complexity. The split-merge method is clearly the slow-

3The split-merge strategy requires more computation in ad-
dition to the direct assignment method by applying a “restricted
iteration” for the split part, and a checking over K(K − 1)/2 po-
tential candidates (K is the number of states) for the merge part.
For details, see Bryant and Sudderth (2012).
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est, even when we reduce the computation by not checking
all possible split-merge moves (green solid). When check-
ing all split-merge options, the algorithm is much slower
(green dashed line).

In Figure 4(e) we compare our stochastic HDP-HMM as a
function of learning rate. For batch size |Bt| = 256, we
set ρt = (100 + t)−κ with κ ∈ {0.6, 0.75, 0.9}. When
κ = 0.6, the learning rate decays more slowly, which gives
the best result in our experiments. In Figure 4(f) we com-
pare our stochastic HDP-HMM with various batch sizes
|Bt| ∈ {64, 256, 1024} and κ = 0.6, as well as the batch
HDP-HMM trained with 10K sequences. Similar to beam
sampling, batch HDP-HMM is inefficient in processing
large amounts of data. For stochastic algorithms, choosing
small mini-batch sizes will result in fast convergence. On
the other hand, choosing larger mini-batch sizes can give
better performance, but with slower convergence speed.

5 Conclusion

We have presented a scalable variational inference algo-
rithm for the HDP-HMM. Using a two-level stick-breaking
construction, we were able to infer approximate posteri-
ors of all model variables with closed form updates. We
compared our algorithm with beam sampling of the HDP-
HMM, the parametric HMM, and the direct assignment
methods, showing that our inference algorithm is compet-
itive in batch inference settings, and often better in large
scale settings using stochastic variational inference. We
observe that this algorithm can be applied more generally
to extend other latent Markov modeling frameworks to the
nonparametric setting (Zhang and Paisley, 2015).

6 Appendix

Updating q(zd) and q(θk): For the forward-backward
algorithm we define

p̃(xdi|θk) = exp{Eq ln p(xdi|θk)}, (17)

Ãkk′ = exp{Eq lnAkk′}. (18)

For discrete HMMs we let q(θk) = Dir(θ̂k). In this case we
have the same variational expectation as for the parametric
model, Eq ln p(xdi|θk) = ψ(θ̂k,xdi

)−ψ(∑j θ̂k,j). For Eq.
(18) we use the approximation in Sec. 3.1. We recall that
for the variational forward-backward algorithm, αdi(k) is
the variational joint probability of zdi = k and the sequence
xd up to step i, and βdi(k) is the variational probability of
the sequence xd after step i conditioned on zdi = k (Beal,
2003). We then iterate forward over αdi and backward over
βdi as follows,

αdi(k) = p̃(xdi|θk)
∑∞
j=1 αd,i−1(j)Ãjk, (19)

βdi(k) =
∑∞
j=1 Ãkj p̃(xd,i+1|θj)βd,i+1(j). (20)

Having these values, we can make the following update to
the marginal of zdi for q(zd),

γdi(k) =
αdi(k)βdi(k)∑
j αdi(j)βdi(j)

. (21)

The variational marginal on the state transition (zdi, zd,i+1)
used for the parametric HMM is not used by our algorithm.
Given each γdi, we can update θ̂k,v in q(θk) = Dir(θ̂k)
exactly as in the parametric HMM,

θ̂k,v = b0 +
∑
d,i γdi(k)1(xdi = v). (22)

Updating q(c), q(ε) and q(ζ): The update of q(c) uses
Eq ln η0,k′ = Eq ln ζk′ +

∑
j<k′ Eq ln(1 − ζj). Using the

variational distribution q(ζk) = Beta(ck, dk), these expec-
tations are

Eq ln ζk = ψ(ck)− ψ(ck + dk),

Eq ln(1− ζj) = ψ(dj)− ψ(cj + dj). (23)

Also, Eq ln ηkm = Eq ln εkm +
∑
j Eq ln(1 − εkj) used

elsewhere is similarly calculated as above, only using
q(εkm) = Beta(akm, bkm).

To update q(εkm) = Beta(akm, bkm), we have

akm = 1 +
∑
d,i ξdi(k,m), (24)

bkm = τ0 +
∑
d,i

∑
m′>m ξdi(k,m

′). (25)

As is evident, given the allocations ξdi (defined in Eq.(8)),
this is simply the expected counts used for updating ex-
changeable stick-breaking mixture models (Blei and Jor-
dan, 2006).

Finally, we have the top-level stick-breaking construction
update q(ζk) = Beta(ck, dk). We have

ck = 1 +
∑
k′,m ϕk′m,k, (26)

dk = a0 +
∑
k′,m

∑
j>k ϕk′m,j . (27)

where ϕk′m,k = Eqck′m,k.

Stochastic inference: For the HDP-HMM, the global q
distributions (whose parameter updates are linked to the
data size) are on ckm, θk and εkm. Though ζk is also a
global parameter, it is conditionally independent of the data
given c, and so stochastic inference isn’t necessary for this
q distribution.

The stochastic updates for q(θk) and q(εkm) are the same
as those used by similar models (Hoffman et al., 2013).
First, form the scaled closed form updates restricted to Bt,
denoted θ̂′k,v , a′km and b′km, and then average with the pre-
vious variational parameters,

q(θk) : θ̂
(t)
k,v = (1− ρt)θ̂(t−1)k,v + ρtθ̂

′
k,v, (28)

q(εkm) : a
(t)
km = (1− ρt)a(t−1)km + ρta

′
km,

b
(t)
km = (1− ρt)b(t−1)km + ρtb

′
km. (29)
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