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Abstract

It has been observed in a variety of contexts
that gradient descent methods have great
success in solving low-rank matrix factoriza-
tion problems, despite the relevant problem
formulation being non-convex. We tackle a
particular instance of this scenario, where we
seek the d-dimensional subspace spanned by
a streaming data matrix. We apply the nat-
ural first order incremental gradient descent
method, constraining the gradient method to
the Grassmannian. In this paper, we propose
an adaptive step size scheme that is greedy
for the noiseless case, that maximizes the im-
provement of our metric of convergence at
each data index t, and yields an expected im-
provement for the noisy case. We show that,
with noise-free data, this method converges
from any random initialization to the global
minimum of the problem. For noisy data, we
provide the expected convergence rate of the
proposed algorithm per iteration.

1 Introduction

Low-rank matrix factorization is one of the founda-
tional tools of signal processing, numerical methods,
and data analysis. Suppose we wish to factorize a ma-
trix M = UWT , imposing orthogonality constraints
on U or W . Solving for such matrix factorizations can
be computationally burdensome, and many algorithms
that attempt to speed up computation are actually
solving a non-convex optimization problem, therefore
coming with few guarantees.
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The Singular Value Decomposition (SVD) is the so-
lution to a non-convex optimization problem, and
there are several highly successful algorithms for
solving it [Golub and Van Loan, 2012]. Unfortu-
nately, these algorithms cannot easily be extended
to problems with regularizers or missing data. Re-
cently, several results have been published with first-
of-their-kind guarantees for a variety of di↵erent
gradient-type algorithms on non-convex matrix factor-
ization problems [Jain et al., 2013, De Sa et al., 2014,
Armentano et al., 2014, Chen and Wainwright, 2015,
Bhojanapalli et al., 2015, Zheng and La↵erty, 2015].
These new algorithms, being gradient-based, are
well-suited to extensions of the original problem
that include di↵erent cost functions or regulariz-
ers. For example, with gradient methods to solve
the SVD we may be able to solve Robust PCA
[Candès et al., 2011, He et al., 2012, Xu et al., 2010],
Sparse PCA [d’Aspremont et al., 2008], or even `1
PCA [Brooks et al., 2013] with gradient methods as
well.

Our contribution is to provide a global convergence re-
sult for d-dimensional subspace estimation using an in-
cremental gradient algorithm performed on the Grass-
mannian, the space of all d-dimensional subspaces of
Rn. Subspace estimation is a special case of matrix
factorization with orthogonality constraints, where we
seek to estimate only the subspace spanned by the
columns of the left matrix factor U 2 Rn⇥d. Our result
demonstrates that this gradient algorithm converges
globally almost surely, i.e., it converges from any ran-
dom initialization to the global minimizer. To the best
of our knowledge, this is the first global convergence re-
sult for an incremental gradient descent method on the
Grassmannian. When there is no noise, we propose a
greedy step size scheme that maximizes the improve-
ments on the defined metrics of convergence. Given
this, we provide a rate of convergence in two parts:
slower convergence in an initial phase starting from
the random initialization, and then linear convergence
for a local region around the global minimizer, where
our results match those in [Balzano and Wright, 2014].
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For the noisy case, we propose a step-size regimen that
is simply a weighted version of the step size for noise-
free data, where the weights depend on the data and
noise statistics. With this step size, we provide results
guaranteeing monotonic improvements on the metrics
of convergence in terms of expectation.

Incremental gradient descent is our focus, moti-
vated by streaming data applications. There are
many applications of subspace estimation and track-
ing in medical imaging, communications, and envi-
ronmental science; see more in [Edelman et al., 1998,
Balzano and Wright, 2014, Balzano, 2012]. Matrix
factors with orthogonality constraints, such as those
given by the SVD, are also used in several data ap-
plications: they provide a unique collection of low-
dimensional projections for data visualization, capture
directions of maximal variance so as to give useful in-
sights into data structure, and allow compressed stor-
age of massive datasets with a precise notion of loss in
compression.

2 Formulation and Related Work

We may formulate subspace estimation as a non-
convex optimization problem as follows. Let M 2
Rn⇥N be a matrix that we wish to approximate with
a subspace of rank d, and solve:

minimize
U2Rn⇥d,W2RN⇥d

kUWT � Mk2
F (1)

subject to span (U) 2 G(n, d)

This problem is non-convex firstly because of the prod-
uct of the two optimization variables U and W and sec-
ondly because the optimization is over the Grassman-
nian G(n, d), the non-convex set of all d-dimensional
subspaces in Rn. However, several methods1 can find
the global minimizer of this problem in polynomial
time under a variety of assumptions on M .

In this paper, we are interested in approximating a
streaming data matrix. At each step, we sample a col-
umn of M , denoted xt 2 Rn. We consider the planted
problem, where xt = vt + ⇠t where ⇠t is noise and vt

is drawn from a continuous distribution with support
on the true subspace, spanned by Ū 2 Rn⇥d with or-
thonormal columns; vt = Ūst, st 2 Rd. When ⇠t = 0,

1For example, the power method can solve this
problem if the top d singular values of M are dis-
tinct [Golub and Van Loan, 2012]. Specifically, consider-
ing d = 1, if the desired accuracy of the U output by
the power method to the global minimizer is ✏⇤, and the
first two singular values of M , �1(M) and �2(M) are dis-
tinct with the �1(M) = c�2(M) for c > 1, then the power

method converges in O
⇣

log(1/✏⇤)
log c

⌘
iterations.

we wish to find the U that minimizes

F (U) =

1X

t=1

min
wt

kUwt � xtk2
2 , (2)

i.e., the span of the data vectors or the range of Ū ,
denoted R(Ū). When ⇠t 6= 0 we still discuss re-
sults in terms of the distance from Ū . If we con-
sider only t = 1, . . . , N , Problem (2) is identical to
Problem (1). The GROUSE algorithm (Grassman-
nian Rank-One Update Subspace Estimation) we an-
alyze is shown as Algorithm 1, where we generate a
sequence {Ut}t=0,1,... of n⇥ d matrices with orthonor-
mal columns with the goal that R(Ut) ! R(Ū) as
t ! 1. Each observed vector is used to update
Ut to Ut+1, and we constrain the gradient descent
method to the Grassmannian using a geodesic up-
date [Edelman et al., 1998].

Because of the importance of the problem, it has been
studied for decades, and there is a great deal of related
work. We direct the reader to [Edelman et al., 1998,
Balzano, 2012] for in-depth descriptions of algorithms
and guarantees. We focus here on recent results that
have global convergence guarantees to the global min-
imizer and study either gradient-type algorithms, al-
gorithms that handle streaming data, or algorithms
that maintain orthogonality constraints with manifold
optimization.

First we discuss incremental methods.
[De Sa et al., 2014] established the global conver-
gence of a stochastic gradient descent method for the
recovery of a positive definite matrix M in the under-
sampled case, where the matrix M is not measured
directly but instead via linear measurements. They
propose a step size scheme under which they prove
global convergence results from a randomly generated
initialization. Similarly, [Balsubramani et al., 2013]
invokes a martingale-based argument to show the
global convergence rate of the proposed incremental
PCA method to the single top eigenvector in the
fully sampled case. In contrast, [Arora et al., 2013]
estimates the best d-dimensional subspace in the fully
sampled case and provides a global convergence result
by relaxing the non-convex problem to a convex one.
We seek to identify the d dimensional subspace by
solving the non-convex problem directly. Finally, our
work is most related to [Balzano and Wright, 2014],
which provides local convergence guarantees for
GROUSE in both the fully sampled and undersam-
pled case. Our work focuses on global convergence
but only in the fully sampled case; we will extend the
global convergence results to the undersampled case
in future work.

Turning to batch methods, [Keshavan, 2012,
Jain et al., 2013] provided the first theoretical
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guarantee for an alternating minimization al-
gorithm for low-rank matrix recovery in the
undersampled case. Under typical assump-
tions required for the matrix recovery problems
[Recht et al., 2010], they established geometric con-
vergence to the global optimal solution. Earlier
work [Keshavan et al., 2010, Ngo and Saad, 2012]
considered the same undersampled problem for-
mulation and established convergence guarantees
for a steepest descent method (and a precondi-
tioned version) on the full gradient, performed on
the Grassmannian. [Chen and Wainwright, 2015,
Bhojanapalli et al., 2015, Zheng and La↵erty, 2015]
considered low rank semidefinite matrix estimation
problems, where they reparamterized the underlying
matrix as M = UUT , and update U via a first order
gradient descent method. However, all these results
require batch processing and a decent initialization
that is close enough to the optimal point, resulting in a
heavy computational burden and precluding problems
with streaming data. We study random initialization,
and our algorithm has fast, computationally e�cient
updates that can be performed in an online context.

Lastly, several convergence results for optimization
on general Riemannian manifolds, including several
special cases for the Grassmannian, can be found in
[Absil et al., 2009]. Most of the results are very gen-
eral; they include global convergence rates to local
optima for steepest descent, conjugate gradient, and
trust region methods, to name a few. We instead fo-
cus on solving the problem in (2) and provide global
convergence rates to the global minimum.

3 Convergence analysis

We analyze Algorithm 1. At each step, the algorithm
receives a vector xt = vt + ⇠t 2 Rn such that vt = Ūst,
st 2 Rd and ⇠t is zero mean Gaussian noise. The algo-
rithm then outputs an n⇥ d matrix Ut with orthonor-
mal columns at each iteration. We wish to recover Ū ,
i.e., the minimizer of Equation (2) when there is no
noise. We would like to emphasize that in this sce-
nario in a real application one would use the ISVD or
a Gram-Schmidt procedure, but we seek convergence
results for the Grassmannian gradient descent algo-
rithm so that extensions can be made; e.g., we may
regularize the cost function or we may minimize some
other function of the data. Reliable global convergence
of the GROUSE algorithm has been observed empir-
ically, despite the fact that the algorithm is solving
a non-convex problem and operating on a non-convex
manifold.

Algorithm 1 takes each vector xt, forms the gradient
of minw kUw � xtk2

2, and takes a step in the direc-

tion of the negative gradient. The step is taken along
the Grassmannian, the manifold of all d-dimensional
subspaces of Rn, and according to the step size de-
scribed and justified below. In words, the algorithm
works as follows: First we project our data vector onto
the current subspace iterate to get the projection pt.
Then we calculate the residual rt. The update to our
subspace estimate Ut then requires only the addition
of a rank-one matrix, as can be seen in Equation (4).
This update is derived and explained in further detail
in [Balzano et al., 2010, Edelman et al., 1998]. The
rank-one update tilts Ut to no longer contain pt but
instead contain a linear combination of pt and rt; in
other words, it moves Ut towards the observation vt.

Algorithm 1 GROUSE: Grassmannian Rank-One
Update Subspace Estimation

Given U0, an n ⇥ d matrix with orthonormal
columns, with 0 < d < n;
Set t := 0;
repeat

Given observation xt = vt + ⇠t for vt 2 R(Ū);
Define wt := arg minw kUtw � xtk2

2;
Define pt := Utwt; rt := xt � Utwt;
Using step size

✓t = arctan

✓
(1 � ↵t)

krtk
kptk

◆
, (3)

where ↵t = c �2

1+�2

�
1 � d

n

� kxtk2

krtk2 where c > 0 and

�2 denotes the upper bound for the noise level
(Condition 1), update with a gradient step on the
Grassmannian:

Ut+1 := Ut +

✓
yt

kytk
� pt

kptk

◆
wT

t

kwtk
(4)

where

yt

kytk
=


cos(✓t)

pt

kptk
+ sin(✓t)

rt

krtk

�

t := t + 1;
until termination

Before we present our main results on the convergence
of the GROUSE algorithm, we first call out the follow-
ing definitions and condition that will be used through-
out our analysis.

Definition 1 (Principal Angles). We use
�i

�
Ū, Ut

�
, i = 1, . . . , d to denote the principal

angles between subspaces R(Ut) and R(Ū), which
are defined [[Stewart and Sun, 1990], Chapter 5] by
cos�i(Ū, Ut) = �i(Ū

T Ut).

Definition 2 (Determinant similarity). Our first met-
ric is ⇣t 2 [0, 1], which measures the similarity between
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two subspaces and is defined as

⇣t := det(ŪT UtU
T
t Ū) =

dY

i=1

cos2 �i(Ū, Ut) . (5)

Definition 3 (Frobenius norm discrepancy). Our sec-
ond metric is ✏t 2 [0, d], which measures the discrep-
ancy between R(Ut) and R(Ū), and is defined as

✏t :=

dX

i=1

sin2 �i(Ū, Ut) = d � kŪT Utk2
F . (6)

Condition 1. The inputs of GROUSE are xt =
vt + ⇠t where vt = Ūst with Est = 0,Cov(st) = Id,
and ⇠t is a Gaussian random vector with entries be-
ing independently normal random variables such that
E
⇥
k⇠tk2/kvtk2

��vt

⇤
 �2. Further, we assume the en-

ergy of the underlying signals are finite, i.e., kvtk2 <
1.

3.1 Optimal Adaptive Step Size

In this section, we first derive a greedy step size scheme
for each iteration t that maximizes the improvement
on the defined metrics (✏t, ⇣t) of convergence for the
noiseless case, i.e., xt = vt. Let vt,k and vt,? denote
the projection and residual of vt onto R(Ut). Then
after each update we have the following (Appendix
C):

⇣t+1

⇣t
=

✓kvt,kk
kvtk

cos ✓t +
kvt,?k
kvtk

sin ✓t

◆2

(7a)

✏t � ✏t+1 =

��ŪT yt

��2

kytk2
� kŪT vt,kk2

kvt,kk2
(7b)

with yt

kytk =
vt,k

kvt,kk cos ✓t +
vt,?

kvt,?k sin ✓t. It follows that

✓⇤t = arg max
✓

⇣t+1

⇣t
= arctan

✓kvt,?k
kvt,kk

◆

This is equivalent to (3) for the noise-free case setting
↵t = 0. Using ✓⇤t , we obtain monotonic improvement

on the determinant increment ⇣t+1

⇣t
= 1 +

kvt,?k2

kvtk2 � 1.

For the Frobenius norm discrepancy, we obtain ✏t+1 �
✏t = 1� kŪT vt,kk2

kvt,kk2 ; that is, ✏t also achieves its maximal

improvement. Therefore, when there is no noise in the
observations, the proposed step size scheme described
by (3) implies greedy learning rates with respect to the
defined metrics (✏t, ⇣t) of convergence.

For the noisy case, we propose a weighted step size
schedule by restricting ↵t 2 (0, 1] with the goal that
↵t ! 1 as our estimated subspace R(Ut) gradually
converges to the true subspace R(Ū). The intuition

behind this strategy is that, choosing the step size in
Equation (3), the update of GROUSE follows as

Ut+1 = Ut +

✓
pt + (1 � ↵t)rt

kpt + (1 � ↵t)rtk
� pt

kptk

◆
wT

t

kwtk
for which we have, if the noise is Gaussian distributed,
krtk2 ⇠ kvt,?k2 + (1 � d/n)k⇠tk2 (where by a ⇠ b
we mean a concentrates around b), hence the noise
part will gradually dominate the projection residual
as R(Ut) ! R(Ū). It is therefore natural for us to
consider incorporating less and less of the residual in-
formation into R(Ut) over time. Therefore, we propose
the following schedule for ↵:

↵t = 1 � kvt,?k2

krtk2
=

c�2

1 + �2

✓
1 � d

n

◆ kxtk2

krtk2
(8)

where c > 0. As we will show in Section 4, with
this weighted learning rate scheme, we obtain improve-
ments in expectation on both ⇣t and ✏t.

3.2 Convergence Without Noise

In this section, we consider the noise-free case, that is
xt = vt and vt 2 R(Ū). The step size (Eq (3)) used
in this section has ↵t = 0 for all iterations. We pro-
vide analysis of the algorithm in two separate phases.
In the first phase the GROUSE algorithm will con-
verge to a local region of the global optimal point from
a random initialization within O(d3log(n)) iterations.
From there, in the second phase GROUSE converges
linearly to the optimal point. In each phase we use
a di↵erent metric of convergence, which helps us ob-
tain an overall faster convergence rate as compared to
other work. The convergence rate with respect to only
either determinant [De Sa et al., 2014] or Frobenius
norm discrepancy [Jain et al., 2013] is either much
slower within the local region [De Sa et al., 2014] or
slower in an initial phase from random initialization
[Jain et al., 2013]. This is demonstrated numerically
in Figure 1.

Theorem 1 (Global Convergence of GROUSE). Sup-
pose Condition 1 and that no noise is contained in
the observations, i.e., xt = vt. Let ✏⇤ > 0 be the de-
sired accuracy of our estimated subspace using the met-
ric in Definition 3. Initialize the starting point U0 of
GROUSE as the orthonormalization of an n⇥d matrix
with entries being standard normal variables. Then for
any ⇢, ⇢0 > 0, after

K � K1 + K2

=

✓
d3

⇢0
+ d

◆
µ0 log(n) + 2d log

✓
1

✏⇤⇢

◆
(9)

iterations of GROUSE (Algorithm 1),

P (✏K  ✏⇤) � 1 � ⇢0 � ⇢ . (10)
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where µ0 = 1 +
log

(1�⇢0)
C +d log(e/d)

d log n with C > 0 a con-
stant approximately equal to 1.

The proof of Theorem 1 is a direct combination of
our analysis in two phases of the algorithm, stated in
Theorem 2 and Theorem 3 below.

Theorem 2 (Initial convergence of the determinant
similarity ⇣t to 1

2 ). Under the conditions of Theorem
1, for any ⇢0 2 (0, 1), after

K1 �
✓

d3

⇢0
+ d

◆
µ0 log(n)

iterations of GROUSE (Algorithm 1),

P
✓
⇣K1 � 1

2

◆
� 1 � ⇢0

where µ0 is the same as that in Theorem 1.

Analyzing the determinant similarity turns out to be
the key to proving convergence in this initial phase
of GROUSE. The determinant similarity increases
quickly toward 1 in the first phase. This also gives
insight into how the GROUSE algorithm manages to
seek the global minimum of a non-convex problem
formulation: GROUSE is not attracted to station-
ary points that are not the global minimum. For
our problem, all other stationary points Ustat have
det(ŪT UstatU

T
statŪ) = 0, because they have at least

one direction orthogonal to Ū [Balzano, 2012]. If
the initial point U0 has determinant similarity with
Ū strictly greater than zero, and GROUSE increases
the determinant similarity monotonically (as we men-
tioned in Section 3.1 and prove in Section 4), then
we are guaranteed to stay away from other station-
ary points. Since we initialize GROUSE using U0 uni-
formly from the Grassmannian, as the orthonormal
basis of a random matrix V 2 Rn⇥d with entries being
independent standard Gaussian random variables, we
guarantee ⇣0 > 0 with probability one.

Theorem 3 (Local convergence of the Frobenius norm
discrepancy ✏t to 0). Suppose at iteration k we have
⇣k � 1/2. Then for any ⇢ 2 (0, 1) and given accuracy
✏⇤, after

K2 � 2d log

✓
1

✏⇤⇢

◆

additional iterations of GROUSE Algorithm 1, we
have

P(✏k+K2
 ✏⇤) � 1 � ⇢ .

In the first phase, we require O
�
d3 log(n)/⇢0

�
iter-

ations to reach the local region of the global mini-
mum, where 1 � ⇢0 is the probability with which we’ll

reach the local region. In simulations (Section 5, Fig-
ure 2) with isotropic Gaussian data vectors from the
subspace, we actually see that O(d3 log(n)) iterations
are many more than enough to reach the local re-
gion, without fail. Our analysis, though, only requires
zero-mean uncorrelated identically distributed random
data vectors. Bounds on higher moments may admit
a tighter analysis, which we leave for future work.

The second phase only requires O(d log(1/✏⇤⇢)) itera-
tions to converge to ✏⇤ accuracy in the Frobenius norm
discrepancy metric given in Definition 3. This result
is true to what we see in practice, as you can see in
Figure 2. The analysis behind this result provides a
tighter version of [[Balzano and Wright, 2014], Theo-
rem 3.2] that both grows the local region of conver-
gence and (slightly) improves the rate to be less de-
pendent on the current value of ✏t.

3.3 Convergence With Noise

In this section, we study the convergence behavior of
GROUSE with noise in each observation. Unlike the
noise-free case, here we only provide expected mono-
tonic improvements of our convergence metrics. As we
prove in the appendix, the results we present here also
imply the corresponding ones for the noiseless data.

Theorem 4 (Expected convergence rate of the deter-
minant similarity ⇣t). Given Condition 1 is satisfied,
after one iteration of GROUSE we have the following
improvement of the determinant similarity in expecta-
tion:

E

⇣t+1

����Ut

�
�
 

1 + �0
1 � ⇣t

d

 
1 � �2

1�⇣t

d + �2

!!
⇣t

where �0 = 1
1+ d

n�2 .

This theorem implies that the expected conver-
gence rate of determinant similarity is damped
by the presence of noise. To be more specific,
rewrite the expected improvement as E

⇥
⇣t+1

��Ut

⇤
�✓

1 + �0

(1�⇣t)/d+�2

⇣
1�⇣t

d

⌘2
◆
⇣t. We can see that, com-

paring with the noiseless case, for small SNR (large
�2), the expected increment on ⇣t is approximately
scaled by 1�⇣t

d < 1
d . Hence the theoretical bound on

the iterations necessary to achieve given accuracy ⇣⇤

in the small SNR case should roughly be at least d
times that required by the noiseless case. For large
SNR (small �2), the expected convergence rate is close
to that of the noise-free case, as long as ⇣t is not too
close to 1. Therefore, the required iterations to arrive
at the local region of the true subspace should be close
to that in the noiseless case. We show the correspond-
ing numerical illustrations in Figure 1 and Figure 3.
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Theorem 5 (Expected convergence rate of the Frobe-
nius norm discrepancy ✏t). Under Condition 1, we
obtain the following upper bound on the decrease of
Frobenius norm discrepancy ✏t in expectation:

E
⇥
✏t+1

��Ut

⇤

✓

1 � �0

d

✓
cos2 �t,d � �1�

2

✏t

d + �1�2

◆◆
✏t

where �0 = 1
1+ d

n�2 , �1 = 1 � d
n , and �t,d is the largest

principal angle between R(Ut) and R(Ū).

As indicated by Theorem 4, the expected conver-
gence rate will slow down as ⇣t increases. However,
the above theorem implies that for large SNR (small
�2), once we enter the local region of the true sub-
space, the convergence rate of the Frobenius discrep-
ancy will take over. Specifically, when cos2 �t,d > 1/2,
the convergence rate of ✏t can be bounded from be-
low by 1 �

�
1
2 � 1

d

�
1
d as long as ✏t � d2�2. There-

fore, an implication of Theorem 5 is that GROUSE
will converge to a ball centered on the true subspace
whose radius is determined by the noise level and sub-
space dimension. The convergence rate will slow as
GROUSE approaches this ball. On the other hand,
since 1� ✏t  cos2 �t,d  1� ✏t/d, by a simple calcula-
tion we can see that for small SNR (large �2), the fast
local convergence never kicks in. In that case, we only
study the convergence behavior of GROUSE in terms
of the determinant similarity ⇣t.

As we mentioned previously, with noise the improve-
ment is not monotonic for either determinant similar-
ity (⇣t) or Frobenius norm discrepancy (✏t). This is
a hurdle to pass before we can provide similar global
convergence results as we obtained for the noise-free
case (Theorem 1). However, by leveraging techniques
in stochastic process theory, it might be possible to
establish asymptotic convergence results or even non-
asymptotic convergence results in terms of the number
of iterations required before GROUSE first achieves a
given accuracy. We leave this as future work.

4 Supporting Theory

We first call out the following lemma to quantify the
expectation of the determinant similarity between our
random initialization and the true subspace. For con-
venience, we will drop the subscript of all terms except
✏t, ⇣t and Ut hereafter.

Lemma 1. [Nguyen et al., 2014] Initialize the start-
ing point U0 of GROUSE as the orthonormalization
of an n⇥ d matrix with entries being standard normal
variables. Then

E[⇣0] = E
⇥
det(UT

0 Ū ŪT U0)
⇤

= C

✓
d

ne

◆d

where C > 0 is a constant approximately equal to 1.

As we mentioned in Section 3.1, both the determi-
nant similarity ⇣t and the Frobenius discrepancy ✏t
improve monotonically in the noiseless case. We for-
mally present this in the following lemma.

Lemma 2 (Monotonic results for the noiseless case).
When there is no noise, given the step size in Eq (3),
after one update of GROUSE we obtain

⇣t+1

⇣t
= 1 +

kv?k2

kvkk2
, and ✏t � ✏t+1 = 1 � kŪ ŪT vkk2

kvkk2

where vk and v? denote the projection and residual of
v onto R(Ut).

For the noisy case, we provide the following lemmas,
which are the intermediate results that allow us to
establish the expected improvements on both ⇣t and
✏t in Section 3.3.

Lemma 3. Given Condition 1 is satisfied, after one
update of GROUSE we obtain the following

E
⇥
⇣t+1

��Ut

⇤
�
✓

1 + E

(1 � ↵)2

krk2

kpk2

����Ut

�◆
⇣t

Lemma 4. After one iteration of the GROUSE algo-
rithm, we have the following

E
⇥
✏t � ✏t+1

��Ut

⇤
= E


1 � R � kŪ ŪT pk2

kpk2

����Ut

�

where R = k(I�ŪŪT )(⇠�↵r)k2

kv+⇠�↵rk2 .

According to our definition of ↵ in Section 3.1, we can
see that when R(Ut) is not close to R(Ū), 1�↵ is large,
as is krk2/kpk2. Therefore, Lemma 3 implies that the
expected convergence rate of the determinant similar-
ity (⇣t) is faster in the first phase. For the Frobenius
norm discrepancy (✏t), comparing to the noiseless case
where p = vk, Lemma 4 implies that we obtain mono-
tonic expected decrease in Frobenius norm discrepancy
as long as we are outside a ball centered on the true
subspace. This ball shrinks as �2 ! 0, with no such
constraint for �2 = 0. As we approach this ball, the
expected convergence rate slows.

5 Numerical Results

With our plots we illustrate why the two analysis ap-
proaches allow us to prove rates in both phases of
GROUSE. For each numerical result in this section,
we initialize GROUSE with orthonormalized Gaussian
matrices with entries iid N (0, 1). The underlying sub-
space of each trial is set to be a sparse subspace, as
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Figure 1: Illustration of expected convergence bounds
given by Theorem 5 (top) and Theorem 4 (bottom)
over 100 trials. In this simulation, n = 2000, d = 20
and �2 2 {0, 1e � 5, 1e � 3, 1e � 1, 1}. The red dashed
line indicates the linear convergence rate, while the
diamonds denote the lower bound on expected conver-
gence rate in Theorem 4. We can see that the conver-
gence rate of each phase slows down in the noisy case.
However, when �2 is small, the convergence behavior
of GROUSE similar to that of the noise-free case. We
get a faster convergence rate of ⇣t in the initial phase
an almost linear convergence of ✏t in the local region
of R(Ū).

the range of an n ⇥ d matrix Ū with sparsity on the

order of log(n)
n . We generate the coe�cient matrix W

with entries i.i.d N (0, 1). For the noisy case, we then
normalize the columns of the underlying matrix ŪW
and add a noise matrix N , with Nij ⇠ N (0, �2/n). In
the noisy case, we run GROUSE with the step size de-
scribed in Equation (8), where we set c to its expected
value 1.

As is demonstrated in Figure 1, when there is no noise
in the observations or the SNR is large enough, the
determinant similarity (⇣t) increases quickly in the ini-
tial phase, while the Frobenius norm discrepancy (✏t)
decreases slowly. Then in a local region of the true
subspace, our accurate bound on the fast convergence
of the Frobenius norm discrepancy takes over. How-
ever, if the SNR is small, the convergence rate of the
Frobenius norm discrepancy slows down; in this sce-
nario we only study the convergence of GROUSE in

terms of the determinant similarity. In Figure 1, we
show that the convergence rate of determinant similar-
ity will also slow down as we increase the magnitude
of �2, however, the convergence rate described in The-
orem 4 is still tight. This allows us to obtain a good
enough approximation of the number of iterations re-
quired to reach a ball around R(Ū), which is captured
by K1 alone in this case.

We next examine the tightness of our theoretical val-
ues of K1 and K2 for noiseless convergence in Figure 2.
We run GROUSE to convergence for a required accu-
racy ✏⇤ = 1e � 4 and divide the iterations into K1,
the number to reach ⇣t > 1

2 , and K2, the remaining
number to reach ✏t < ✏⇤. We show the ratio of K1 to
the bound d3 log(n) in the initial phase (top plot) and
the ratio of K2 to the bound d log(1/✏⇤) in the local
phase (bottom plot). We run 50 trials and show the
mean and variance. We can see that the value for K1

is very loose. On the other hand, the value for K2 is
very accurate; O(d log(1/✏⇤)) iterations are required to
get to accuracy ✏⇤.

Finally, we examine the tightness of approximated K1

and K2 for the noisy case in Fig 3. As we men-
tioned in Section 3.3, for small SNR (large �2), the
necessary number of iterations to achieve the given
accuracy should be roughly d times that required by
the noise-free case, while for large SNR (small �2),
this ratio would be less. For large SNR, we first run
GROUSE to reach the local region of the true sub-
space, i.e., ⇣K1 � 1

2 , and record K1; from this point

we run GROUSE to converge to ✏⇤ = ⌧1
d2

n �2 and then
record K2 and compare it with that required by the
noise-free case. For small SNR (large �2), we only
numerically examine the convergence rate of the first
phase, i.e., necessary iterations to achieve the given

accuracy ⇣K1
�
�
1 � ⌧2

d
n�

2
�d ⇡ e�⌧2d2�2/n. As we

can see in Figure 3, we test K1 versus O(d3 log(n)),
and as in noiseless case the bound on K1 is loose. For
small noise, the bound on K2 is tight and stable.

6 Conclusion

This paper has provided the first global convergence
result for an incremental gradient descent method
on the Grassmannian for noise-free data. For op-
timizing a particular cost function (2) in the noise-
less case, we showed that the gradient algorithm con-
verges from any random initialization to the global
minimizer. Our novel analysis shows the convergence
happens in two phases: the initial convergence and
the local convergence. In the initial phase, we pro-
vided a very loose bound on the number of iterations
K1 = O(d3 log(n)/⇢0) required to get to a local region
of the global minimizer from the random initialization
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Figure 2: Illustration in the noise-free case of the
bounds on K1 and K2 compared to their values in sim-
ulation, averaged over 50 trials with di↵erent n and d.
We show the ratio of K1 to the bound d3 log(n) in the
initial phase (left) and the ratio of K2 to the bound
d log(1/✏⇤) in the local phase (right).

with probability 1�⇢0. In fact, this phase usually takes
many fewer iterations and reaches the local region in
all empirical trials. In the local phase for the noiseless
case, we provided a very tight bound for the required
iterations K2 = O(d log(1/✏⇤) to achieve a final desired
accuracy of ✏⇤.

When the observations contain noise, we establish a
rate of expected improvement of both of our metrics
⇣t and ✏t for all iterations t. Establishing the global
convergence result remains as future work.
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