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A Proof of Theorem 1

Theorem 1 (Asymptotic consistency). Let Assumption 1 and 2 hold, and apply msPG to problem (P). If the
step size η < (Lf + 2Ls)−1, then the global model and local models satisfy:

1.
∑∞
t=0 ‖x(t+ 1)− x(t)‖2 <∞;

2. lim
t→∞

‖x(t+ 1)− x(t)‖ = 0, lim
t→∞

‖x(t)− xi(t)‖ = 0;

3. The limit points ω({x(t)}) = ω({xi(t)}) ⊆ critF .

Proof. We start from bounding the difference between the global model x and the local model xi (on any machine
i). Indeed, at iteration t, by the definition of the global and local models in msPG:

‖x(t)− xi(t)‖ =

√√√√ p∑
j=1

‖xj(t)− xj(τ ij(t))‖2 (21)

( triangle inequality ) ≤

√√√√√ p∑
j=1

 t−1∑
k=τ i

j (t)

‖xj(k + 1)− xj(k)‖

2

(22)

( Assumption 2.1 ) ≤

√√√√√ p∑
j=1

 t−1∑
k=(t−s)+

‖xj(k + 1)− xj(k)‖

2

(23)

=

∥∥∥∥∥∥
( t−1∑
k=(t−s)+

‖x1(k + 1)− x1(k)‖, · · · ,
t−1∑

k=(t−s)+

‖xp(k + 1)− xp(k)‖
)∥∥∥∥∥∥ (24)

=

∥∥∥∥∥∥
t−1∑

k=(t−s)+

(
‖x1(k + 1)− x1(k)‖, · · · , ‖xp(k + 1)− xp(k)‖

)∥∥∥∥∥∥ (25)

( triangle inequality ) ≤
t−1∑

k=(t−s)+

∥∥∥(‖x1(k + 1)− x1(k)‖, · · · , ‖xp(k + 1)− xp(k)‖
)∥∥∥ (26)

=

t−1∑
k=(t−s)+

‖x(k + 1)− x(k)‖, (27)

where in the last equality we used the following property of the Euclidean norm:

‖x‖ = ‖(x1, . . . , xp)‖ = ‖(‖x1‖, . . . , ‖xp‖)‖. (28)

Equation (27) bounds the inconsistency between the global model and the local models. We will repeatedly use
it in the following, as it provides a bridge to jump from the global model and the local models back and forth.

Next we bound the progress of the global model x(t). If t ∈ Ti (i.e., machine i updates at iteration t), then using
the definition of the update operator Ui(x

i(t)) in Equation (9) we can rewrite xi(t+ 1) as

xi(t+ 1) = proxηgi
(
xi(t)− η∇if(xi(t))

)
, (29)

where we recall the proximal map proxηgi from Definition 3. Thus, for all z ∈ Rdi :

gi
(
xi(t+ 1)

)
+

1

2η

∥∥xi(t+ 1)− xi(t) + η∇if
(
xi(t)

)∥∥2 ≤ gi
(
z
)

+
1

2η

∥∥z − xi(t) + η∇if
(
xi(t)

)∥∥2
. (30)

Substituting with z = xi(t) and simplifying yields

gi
(
xi(t+ 1)

)
− gi

(
xi(t)

)
≤ − 1

2η
‖xi(t+ 1)− xi(t)‖2 −

〈
∇if

(
xi(t)

)
, xi(t+ 1)− xi(t)

〉
. (31)
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(If gi is convex, we can replace 1
2η with 1

η .) Note that if t 6∈ Ti, then xi(t+ 1) = xi(t) hence Equation (31) still
trivially holds. On the other hand, Assumption 1.2 implies

f
(
x(t+ 1)

)
− f

(
x(t)

)
≤ 〈x(t+ 1)− x(t),∇f

(
x(t)

)
〉+

Lf
2
‖x(t+ 1)− x(t)‖2. (32)

Adding Equation (32) and Equation (31) (for all i) and recalling F (x) = f(x) +
∑
i gi(xi), we have

F
(
x(t+ 1)

)
− F

(
x(t)

)
≤ 1

2 (Lf − 1/η)‖x(t+ 1)− x(t)‖2 +

p∑
i=1

〈
xi(t+ 1)− xi(t),∇if(x(t))−∇if

(
xi(t)

)〉
(33)

( Cauchy-Schwarz ) ≤ 1
2 (Lf − 1/η)‖x(t+ 1)− x(t)‖2 +

p∑
i=1

‖xi(t+ 1)− xi(t)‖ · ‖∇if(x(t))−∇if
(
xi(t)

)
‖

(34)

( Assumption 1.2 ) ≤ 1
2 (Lf − 1/η)‖x(t+ 1)− x(t)‖2 +

p∑
i=1

‖xi(t+ 1)− xi(t)‖ · Li‖x(t)− xi(t)‖ (35)

( Equation (27) ) ≤ 1
2 (Lf − 1/η)‖x(t+ 1)− x(t)‖2 +

p∑
i=1

Li‖xi(t+ 1)− xi(t)‖ ·
t−1∑

k=(t−s)+

‖x(k + 1)− x(k)‖

(36)

( Assumption 1.2 ) ≤ 1
2 (Lf − 1/η)‖x(t+ 1)− x(t)‖2 + L‖x(t+ 1)− x(t)‖ ·

t−1∑
k=(t−s)+

‖x(k + 1)− x(k)‖

(37)

( ab ≤ a2+b2

2 ) ≤ 1
2 (Lf − 1/η)‖x(t+ 1)− x(t)‖2 +

L

2

t−1∑
k=(t−s)+

[
‖x(k + 1)− x(k)‖2 + ‖x(t+ 1)− x(t)‖2

]
(38)

≤ 1
2 (Lf + Ls− 1/η)‖x(t+ 1)− x(t)‖2 +

L

2

t−1∑
k=(t−s)+

‖x(k + 1)− x(k)‖2. (39)

Summing the above inequality from m to n− 1 we have

F
(
x(n)

)
− F

(
x(m)

)
≤ 1

2 (Lf + Ls− 1/η)

n−1∑
t=m

‖x(t+ 1)− x(t)‖2 +
L

2

n−1∑
t=m

t−1∑
k=(t−s)+

‖x(k + 1)− x(k)‖2 (40)

≤ 1
2 (Lf + 2Ls− 1/η)

n−1∑
t=m

‖x(t+ 1)− x(t)‖2. (41)

Therefore, as long as η < 1/(Lf + 2Ls), letting m = 0 we deduce

n−1∑
t=0

‖x(t+ 1)− x(t)‖2 ≤ 2

1/η − Lf − 2Ls
[F
(
x(0)

)
− F

(
x(n)

)
] ≤ 2

1/η − Lf − 2Ls
[F
(
x(0)

)
− inf

z
F (z)]. (42)

By Assumption 1.1, F is bounded from below hence the right-hand side is finite and independent of n. Letting
n goes to infinity completes the proof of item 1.

Item 2 follows immediately from item 1 and (27), whence it is clear that for all i the limit points satisfy
ω({x(k)}) = ω({xi(k)}).

To prove item 3, let x∗ be a limit point of {x(t)}t, i.e., there exists a subsequence x(tm) → x∗. Since the
objective function F is closed we know x∗ ∈ domF . To show x∗ ∈ critF we need to exhibit a sequence say
x(km + 1) such that3

x(km + 1)→ x∗, F (x(km + 1))→ F (x∗), 0← u(km + 1) ∈ ∂F (x(km + 1)). (43)

3Technically, from Definition 1 we should have the Frechét subdifferential ∂̂F in Equation (43), however, a usual
diagonal argument allows us to use the more convenient (limiting) subdifferential.
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This is the most difficult part of the proof, and the argument differs substantially from previous work (e.g. [8]).

We first prove the subdifferential goes to zero. Observe from Assumption 2.3 that the iterations {t, t ∈ Ti} when
machine i updates is infinite. Let t̂ ∈ Ti and by the optimality condition of xi(t̂+ 1) in Equation (29):

− 1
η

[
xi(t̂+ 1)− xi(t̂) + η∇if

(
xi(t̂)

)]
∈ ∂gi(xi(t̂+ 1)), (44)

i.e. there exists ui(t̂+ 1) ∈ ∂gi(xi(t̂+ 1)) such that

‖ui(t̂+ 1) +∇if(x(t̂+ 1))‖ ≤ ‖ui(t̂+ 1) +∇if(x(t̂))‖+ ‖∇if(x(t̂+ 1))−∇if(x(t̂))‖ (45)

( Equation (44), Assumption 1.2 ) ≤
∥∥∥ 1
η (xi(t̂+ 1)− xi(t̂) +∇if

(
xi(t̂)

)
−∇if

(
x(t̂)

)∥∥∥+ Li‖x(t̂+ 1)− x(t̂)‖
(46)

( triangle inequality, Assumption 1.2 ) ≤ 1
η‖xi(t̂+ 1)− xi(t̂)‖+ Li‖xi(t̂)− x(t̂)‖+ Li‖x(t̂+ 1)− x(t̂)‖ (47)

( Equation (27) ) ≤ 1
η‖xi(t̂+ 1)− xi(t̂)‖+ Li

t̂∑
k=(t̂−s)+

‖x(k + 1)− x(k)‖. (48)

We now use a chaining argument to remove the condition t̂ ∈ Ti above. For each t 6∈ Ti let t̂i be the largest element
in {k ≤ t : k ∈ Ti}. Thanks to Assumption 2.3 t̂i always exists and t − t̂i ≤ s. Therefore, for any t 6∈ Ti, since
xi(t+1) = xi(t̂i+1) we can certainly choose ui(t+1) ∈ ∂gi(xi(t+1)) to coincide with ui(t̂i+1) ∈ ∂gi(xi(t̂i+1)).
Then:

‖ui(t+ 1) +∇if(x(t+ 1))− ui(t̂i + 1)−∇if(x(t̂i + 1))‖ = ‖∇if(x(t+ 1))−∇if(x(t̂i + 1))‖ (49)

( triangle inequality ) ≤
t∑

k=t̂i+1

‖∇if(x(k + 1))−∇if(x(k))‖ (50)

( Assumption 2.3 ) ≤
t∑

k=(t−s+1)+

‖∇if(x(k + 1))−∇if(x(k))‖ (51)

( Assumption 1.2 ) ≤ Li
t∑

k=(t−s+1)+

‖x(k + 1)− x(k)‖. (52)

Combining the two separate cases in Equation (48) and Equation (52) above we have for all t:

‖u(t+ 1) +∇f(x(t+ 1))‖ ≤ (
√
p/η + 2L)

t∑
k=(t−2s)+

‖x(k + 1)− x(k)‖, (53)

where of course u(t + 1) =
(
u1(t + 1), . . . , up(t + 1)

)
∈ ∂g(x(t + 1)) and we artificially introduce

√
p for

convenience of subsequent proof. Therefore, from item 2 we deduce

lim
t→∞

dist∂F (x(t+1))(0)→ 0. (54)

Next we deal with the function value convergence in Equation (43). For any t̂i ∈ Ti, using Equation (30) with
z = x∗i we have

gi(xi(t̂i + 1)) +
1

2η

∥∥xi(t̂i + 1)− xi(t̂i) + η∇if
(
xi(t̂i)

)∥∥2 ≤ gi
(
x∗i
)

+
1

2η

∥∥x∗i − xi(t̂i) + η∇if
(
xi(t̂i)

)∥∥2
, (55)

which, after rearrangement, yields

gi(xi(t̂i + 1)) ≤ gi
(
x∗i
)

+
1

2η
‖x∗i − xi(t̂i)‖2 −

1

2η
‖xi(t̂i + 1)− xi(t̂i)‖2 + 〈x∗i − xi(t̂i + 1),∇if(xi(t̂i))〉 (56)

= gi
(
x∗i
)

+
1

2η
‖x∗i − xi(t̂i)‖2 −

1

2η
‖xi(t̂i + 1)− xi(t̂i)‖2 + 〈x∗i − xi(t̂i + 1),∇if(x∗)〉

+ 〈x∗i − xi(t̂i + 1),∇if(xi(t̂i))−∇if(x∗)〉. (57)
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We wish to deduce from the above inequality that gi(xi(t̂i + 1)) → g(x∗i ), but we need a uniformization device
to remove the dependence on i (hence removing the condition t̂i ∈ Ti). Observing from item 2 that

lim
m→∞

max
t∈[tm−s,tm+s]

‖x(t+ 1)− x∗‖ → 0, lim
m→∞

max
t∈[tm−s,tm+s]

‖xi(t+ 1)− x∗‖ → 0. (58)

By Assumption 2.3, [tm − s, tm + s] ∩ Ti 6= ∅ for all i, using item 2 again and the Lipschitz continuity of ∇f , we
deduce from Equation (57) that

lim sup
m→∞

max
t∈[tm−s,tm+s]∩Ti

gi(xi(t+ 1)) ≤ gi(x∗i ). (59)

Since each machine must update at least once on the intervals [tm − s, tm] and [tm, tm + s], let t̂im be the largest
element of [tm − s, tm] ∩ Ti. Then from the previous inequality we have

lim sup
m→∞

max
t∈[t̂im,tm+s]∩Ti

gi(xi(t+ 1)) ≤ gi(x∗i ). (60)

Since gi(xi(t+ 1)) = gi(xi(t)) if t 6∈ Ti and t̂im ∈ Ti, it follows that

max
t∈[tm,tm+s]

gi(xi(t+ 1)) ≤ max
t∈[t̂im,tm+s]∩Ti

gi(xi(t+ 1)), (61)

hence

lim sup
m→∞

max
t∈[tm,tm+s]

gi(xi(t+ 1)) ≤ gi(x∗i ). (62)

Choose any sequence km such that km ∈ [tm, tm + s]. Since x(tm)→ x∗, from item 2 it is clear that

x(km + 1)→ x∗. (63)

From Equation (62) we know for all i, lim supm→∞ gi(xi(km+1)) ≤ gi(x∗i ) while using closedness of the function
gi we have lim infm→∞ gi(xi(km + 1)) ≥ gi(x

∗
i ), thus in fact limm→∞ gi(xi(km + 1)) = gi(x

∗
i ). Since f is

continuous, we know

lim
m→∞

F (x(km + 1)) = F (x∗). (64)

Lastly, combining Equation (54), Equation (63) and Equation (64), it follows from Definition 1 that x∗ ∈
critF .

B Proof of Theorem 2

Theorem 2 (Finite Length). Let Assumption 1, 2, 3 and 4 hold, and apply msPG to problem (P). If the step
size η < (Lf + 2Ls)−1 and {x(t)} is bounded, then∑∞

t=0 ‖x(t+ 1)− x(t)‖ <∞, (11)

∀i = 1, . . . , p,
∑∞
t=0 ‖xi(t+ 1)− xi(t)‖ <∞. (12)

Furthermore, {x(t)} and {xi(t)}, i = 1, ..., p, converge to the same critical point of F .

Our proof requires the following simple uniformization of the K L inequality in Definition 4:

Lemma 2 (Uniformized K L inequality, [11, Lemma 6]). Let h be a K L function and Ω ⊂ domh be a compact
set. If h is constant on Ω, then there exist ε, λ > 0 and a function ϕ as in Definition 4, such that for all x̄ ∈ Ω
and all x ∈ {x ∈ Rd : distΩ(x) < ε} ∩ [x : h(x̄) < h(x) < h(x̄) + λ], one has

ϕ′(h(x)− h(x̄)) · dist∂h(x)(0) ≥ 1.

The proof of this lemma is the usual covering argument.
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Proof of Theorem 2. We first show that if the global sequence has finite length (i.e. (11)) then the local sequences
also have finite lenggth (i.e. (12)). Indeed,

‖xi(t+ 1)− xi(t)‖ ≤ ‖xi(t+ 1)− x(t+ 1)‖+ ‖x(t+ 1)− x(t)‖+ ‖x(t)− xi(t)‖ (65)

( Equation (27) ) ≤ ‖x(t+ 1)− x(t)‖ +

t∑
k=(t+1−s)+

‖x(k + 1)− x(k)‖ +

t−1∑
k=(t−s)+

‖x(k + 1)− x(k)‖. (66)

Therefore, summing from t = 0 to t = n:

n∑
t=0

‖xi(t+ 1)− xi(t)‖ ≤
n∑
t=0

 t∑
k=(t+1−s)+

‖x(k + 1)− x(k)‖ +

t∑
k=(t−s)+

‖x(k + 1)− x(k)‖

 (67)

≤ (2s+ 1)

n∑
t=0

‖x(t+ 1)− x(t)‖. (68)

Letting n tend to infinity we have (11) =⇒ (12).

From Theorem 1 we know the limit points of {x(t)} and {xi(t)}, i = 1, . . . , p, coincide, and they are critical
points of F .

The only thing left to prove is the finite length property of the global sequence x(t). If for all large t we
have x(t + 1) = x(t) then the conclusion is trivial. On the other hand, we can remove all iterations t with
x(t + 1) = x(t), without affecting the length of the trajectory. Thus, in the following we assume for all (large)
t we have x(t + 1) 6= x(t). Thanks to Assumption 3 and Assumption 1.1, it is then clear that the objective
value F (x(t)) is strictly decreasing to a limit F ∗. Since {x(t)} is assumed to be bounded, the limit point set
Ω := ω({x(t)}) is nonempty and compact. Obviously for any x∗ ∈ Ω we have F (x∗) = F ∗. Fix any ε > 0,
clearly for t sufficiently large we have4 distΩ(x(t)) ≤ ε. We now have all ingredients to apply the uniformized
K L inequality in Lemma 2, which implies that for all sufficiently large t, there exists a continuous and concave
function ϕ (with additional properties listed in Definition 4) such that

ϕ′
(
F (x(t))− F ∗

)
· dist∂F (x(t))(0) ≥ 1. (69)

Since ϕ is concave, we obtain

∆t,t+1 := ϕ
(
F (x(t))− F ∗

)
− ϕ

(
F (x(t+ 1))− F ∗

)
≥ ϕ′

(
F (x(t))− F ∗

)(
F (x(t))− F (x(t+ 1))

)
(70)

( Assumption 3 and Equation (69) ) ≥ α‖x(t+ 1)− x(t)‖2

dist∂F (x(t))(0)
. (71)

It is clear that the function ϕ (composed with F ) serves as a Lyapunov function. To proceed, we need to upper
bound the subdifferential ∂F (x(t)), which has been painstakingly dealt with in the proof of Theorem 1.

Using the inequality 2
√
ab ≤ a+ b for positive numbers we obtain from Equation (71): for t sufficiently large,

2‖x(t+ 1)− x(t)‖ ≤ δ
α∆t,t+1 + 1

δdist∂F (x(t))(0), (72)

4This is true for any bounded sequence, and we provide a proof for completeness: Suppose not, then there exists ε > 0
such that for all n there exists a t ≥ n such that distΩ(x(t)) > ε. Thus, we can extract a subsequence {x(tm)} such that
distΩ(x(tm)) > ε. However, since {x(t)} is bounded, we can extract a further subsequence, say {x(tmn)}, that converges,
i.e. distΩ(x(tmn))→ 0, contradiction.
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where δ > 0 will be fixed later. Summing the above inequality over t from m (sufficiently large) to n:

2

n∑
t=m

‖x(t+ 1)− x(t)‖ ≤
n∑

t=m

δ

α
∆t,t+1 +

n∑
t=m

1

δ
dist∂F (x(t))(0) (73)

( telescoping and Equation (53) ) ≤ δ

α
ϕ
(
F (x(m))− F ∗

)
+

n∑
t=m

√
p/η + 2L

δ

t∑
k=(t−2s)+

‖x(k + 1)− x(k)‖ (74)

≤ δ

α
ϕ
(
F (x(m))− F ∗

)
+

(2s+ 1)(
√
p/η + 2L)

δ

m−1∑
k=(m−2s)+

‖x(k + 1)− x(k)‖

+
(2s+ 1)(

√
p/η + 2L)

δ

n∑
t=m

‖x(t+ 1)− x(t)‖. (75)

Setting δ = (2s+ 1)(
√
p/η + 2L) and rearranging:

n∑
t=m

‖x(t+ 1)− x(t)‖ ≤
(2s+ 1)(

√
p/η + 2L)

α
ϕ
(
F (x(m))− F ∗

)
+

m−1∑
k=(m−2s)+

‖x(k + 1)− x(k)‖ (76)

Since the right-hand side is finite and does not depend on n, letting n tend to infinity completes our proof for
Equation (11).

C Proof of Lemma 1

Lemma 1. Assume ∀t, i, t ∈ Ti. Let the step size η < ρ−1
4Cρ

√
ρ−1

√
ρs+1−1

for any ρ > 1 and all Ui, i = 1, ..., p be

eventually Lipschitz continuous, then the sequences {x(t)} and {xi(t)}, i = 1, ..., p, have finite length.

Follow the same argument of equation (27), one can bound ‖xi(t)− xi(t+ 1)‖ similarly as

‖xi(t)− xi(t+ 1)‖ ≤
t∑

k=(t−s)+

‖x(k + 1)− x(k)‖. (77)

For simplicity we omit the details.

Since Assumption 5 holds for all t > tL, we prove the lemma by considering two complementary cases.

Case 1: There exists a t̂ > tL such that

t̂∑
k=(t̂−s)+

‖x(k + 1)− x(k)‖ ≤
√
ρs+1 − 1
√
ρ− 1

‖x(t̂+ 1)− x(t̂)‖

Case 2: For all t > tL case 1 fails.

We will show that case 1 leads to the sufficient decrease property in Assumption 3 for all large t, case 2 leads to
the finite length of the models.

Case 1: t̂ exists.

We start by proving the following lemma.

Lemma 3. With Assumption 5 and the existence of t̂. Set η−1 > 4Cρ
ρ−1

√
ρs+1−1√
ρ−1 , then it holds for all t > t̂ that

‖x(t̂+ 1)− x(t̂)‖ ≤ √ρ‖x(t̂+ 2)− x(t̂+ 1)‖.
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Proof. Using the inequality ‖a‖22 − ‖b‖22 ≤ 2‖a‖‖a− b‖, we have for all t > t̂ > tL

‖x(t+ 1)− x(t)‖22 − ‖x(t+ 2)− x(t+ 1)‖22 ≤ 2 ‖x(t+ 1)− x(t)‖ ‖(x(t+ 1)− x(t))− (x(t+ 2)− x(t+ 1))‖

(no skip of update) = 2 ‖x(t+ 1)− x(t)‖

∥∥∥∥∥
p∑
i=1

Ui(x
i(t))−

p∑
i=1

Ui(x
i(t+ 1))

∥∥∥∥∥
≤ 2 ‖x(t+ 1)− x(t)‖

p∑
i=1

∥∥Ui(xi(t))− Ui(xi(t+ 1))
∥∥

(Assumption 5) ≤ 2 ‖x(t+ 1)− x(t)‖

(
p∑
i=1

Ciη‖xi(t)− xi(t+ 1)‖

)

(equation (77)) ≤ 2 ‖x(t+ 1)− x(t)‖

 p∑
i=1

Ciη

 t∑
k=(t−s)+

‖x(k + 1)− x(k)‖


= 2Cη ‖x(t+ 1)− x(t)‖

 t∑
k=(t−s)+

‖x(k + 1)− x(k)‖

 . (78)

Now we use an induction argument. Since there exists t̂ > tL such that
∑t̂
k=(t̂−s)+ ‖x(k + 1) − x(k)‖ ≤

√
ρs+1−1√
ρ−1 ‖x(t̂+ 1)− x(t̂)‖, then set t = t̂ in the above inequality, we obtain

∥∥x(t̂+ 1)− x(t̂)
∥∥2

2
−
∥∥x(t̂+ 2)− x(t̂+ 1)

∥∥2

2
≤ 2Cη

√
ρs+1 − 1
√
ρ− 1

∥∥x(t̂+ 1)− x(t̂)
∥∥2

2

(choice of η) ≤
(

1− 1

ρ

)∥∥x(t̂+ 1)− x(t̂)
∥∥2
. (79)

After rearranging terms we conclude ‖x(t̂+1)−x(t̂)‖ ≤ √ρ‖x(t̂+2)−x(t̂+1)‖. Now we assume this relationship

holds up to t (t > t̂), then (78) becomes

‖x(t+ 1)− x(t)‖22 − ‖x(t+ 2)− x(t+ 1)‖22 ≤ 2Cη

√
ρs+1 − 1
√
ρ− 1

‖x(t+ 1)− x(t)‖22

(choice of η) ≤
(

1− 1

ρ

)
‖x(t+ 1)− x(t)‖22

we obtain ‖x(t+ 1)− x(t)‖ ≤ √ρ‖x(t+ 2)− x(t+ 1)‖. This completes the lemma.

With this bound, inequality (37) can be further bounded for t > t̂ as

F
(
x(t+ 1)

)
− F

(
x(t)

)
≤ 1

2 (Lf − 1/η)‖x(t+ 1)− x(t)‖2 + L‖x(t+ 1)− x(t)‖ ·
t−1∑

k=(t−s)+

‖x(k + 1)− x(k)‖.

≤ −α‖x(t+ 1)− x(t)‖2, (80)

where

α ≥ η−1 − Lf
2

−
L
√
ρ(1−√ρs)
1−√ρ

(C > L, ρ > 1) ≥ 2Lρ

ρ− 1

√
ρs+1 − 1
√
ρ− 1

−
L(
√
ρs+1 − 1)
√
ρ− 1

− Lf
2

≥
L(
√
ρs+1 − 1)
√
ρ− 1

(
2ρ

ρ− 1
− 1)− Lf

2

(L > Lf , ρ > 1) > 0,
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This proves the sufficient decrease for all t > t̂ of the objective value. Hence, the finite length property of the
models follows from Theorem 2.

Case 2: t̂ does not exist

In this case we have for all t > tL it holds that
∑t
k=(t−s)+ ‖x(k + 1) − x(k)‖ ≥

√
ρs+1−1√
ρ−1 ‖x(t + 1) − x(t)‖. Set

D =
√
ρs+1−1√
ρ−1 and sum the inequality over t from tL to n yields

n∑
k=tL

‖x(k + 1)− x(k)‖ < 1

D

n∑
t=tL

t∑
k=(t−s)+

‖x(k + 1)− x(k)‖

<
s+ 1

D

n∑
t=(tL−s)+

‖x(t+ 1)− x(t)‖ ,

which after rearranging terms becomes

(1− s+ 1

D
)

n∑
t=tL

‖x(t+ 1)− x(t)‖ ≤ s+ 1

D

tL−1∑
t=(tL−s)+

‖x(t+ 1)− x(t)‖ .

Since D =
√
ρs+1−1√
ρ−1 > s + 1 for ρ > 1 and tL is finite, the right hand side of the above inequality is finite, and

the left hand side has positive coefficient. Thus the above inequality implies

n∑
t=0

‖x(t+ 1)− x(t)‖ < +∞.

Enlarge n→∞ gives the finite length property of the global model. By the proof of Appendix B, we know the
finite length of global model implies the finite length of all local models.

D Proof of Example 1

We proof case by case, and the scaled version γg(x), γ > 0 trivially follows from the same argument.

Cases g = 0, g = 1
2‖ · ‖

2:

When g = 0, the update operator in eq. (9) becomes Ui(x
i(t)) = −η∇if(xi(t)), which is ηLi Lipschitz due to

Assumption 1.2 .

When g = 1
2‖ · ‖

2, the update operator becomes for i = 1, ..., p

Ui(x
i(t)) = proxη1

2‖·‖
2
2
(xi(t)− η∇if(xi(t)))− xi(t) = − 1

1 + η−1

(
xi(t) +∇if(xi(t))

)
.

With which we have

‖Ui(xi(t+ 1))− Ui(xi(t))‖ ≤
1

1 + η−1
‖(xi(t+ 1)− xi(t)) + (∇if(xi(t+ 1))−∇if(xi(t)))‖

≤ η(1 + Li)‖xi(t+ 1)− xi(t)‖

Cases g = ‖ · ‖0, ‖ · ‖0 + ‖ · ‖2, ‖ · ‖0,2, ‖ · ‖0,2 + ‖ · ‖2: For the non-overlapping group norms, we assign each
machine a subset of groups of coordinates.

Consider g = ‖ · ‖0, its proximal map on i-th coordinate can be expressed as

proxηgi(zi) =

{
zi, if |zi| >

√
2η

0, otherwise

The mapping contains a hard threshold, i.e., it filters out those coordinates with magnitude less than
√

2η. This
implies that any change of the support set of proxηgi(zi) will induce a jump of magnitude of at least

√
2η. On
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the other hand, the second assertion of Theorem 1 imply that lim
t→∞

‖xi(t + 2) − xi(t + 1)‖ = 0, which by local

update can be expressed as

lim
t→∞

‖proxηgi(xi(t+ 1)− η∇if(xi(t+ 1)))− proxηgi(xi(t)− η∇if(xi(t)))‖ = 0.

Hence by the above equation and the jump of proximal map, the support Ω of proxηgi(xi(t)− η∇if(xi(t))) (i.e.,
xi(t+1)) must remain stable for all t sufficiently large. Moreover, the proximal map reduces to identity operator
on the support set Ω. Thus, for all t sufficiently large we have

‖Ui(xi(t+ 1))− Ui(xi(t))‖ = ‖proxηgi(xi(t+ 1)− η∇if(xi(t+ 1)))− xi(t+ 1)− proxηgi(xi(t)− η∇if(xi(t)))− xi(t)‖
(support on Ω) = ‖[proxηgi(xi(t+ 1)− η∇if(xi(t+ 1)))− xi(t+ 1)− proxηgi(xi(t)− η∇if(xi(t)))− xi(t)]Ω‖

(proxηg is identity on Ω) ≤ ‖η∇if(xi(t))− η∇if(xi(t+ 1))‖
≤ ηLi‖xi(t+ 1)− xi(t)‖.

Hence the operator is eventually O(η) Lipschitz.

Next we consider (without loss of generality) g = ‖ · ‖0 + λ
2 ‖ · ‖

2 where λ > 0. The proximal map on i-th
coordinate is

proxηgi(zi) =

{
zi, if |zi| >

√
2(η + η2λ)

0, otherwise

Thus, the mapping also contains a hard threshold. Following similar argument as previous case, we conclude
that the support Ω of proxηgi(xi(t)− η∇if(xi(t))) (i.e., xi(t + 1)) must remain stable for all t sufficiently large,

and the proximal map reduces to identity operator on Ω. Consequently, the operator Ui(x
i(t)) is O(η) Lipschitz

for all t large.

The proof of group norms g = ‖ · ‖0,2, ‖ · ‖0,2 + ‖ · ‖2 then follows by realizing that the proximal maps have hard
threshold on group support.

Cases g = ‖ · ‖1, ‖ · ‖1 + ‖ · ‖2 with eventual stable support set of {x(t)}:

For these two cases we assume that the support set of {x(t)} remains unchanged for all large t.

We just need to consider g = ‖ · ‖1 + λ
2 ‖ · ‖

2, λ ≥ 0. Its proximal map on vector zi has the form

proxηg(zi) = 1
1+ηλ sgn(zi) (|zi| − η)+ .

Since the support set Ω of x(t) (i.e. proxηg
(
xi(t)− η∇if(xi(t))

)
) is assumed to be stable after some tL, the

above soft-thresholding operator ensures that |xi(t)− η∇if(xi(t))|Ω > η for all large t, and we obtain

Ui(x
i(t)) = [xi(t+ 1)− xi(t)]Ω = [proxηg

(
xi(t)− η∇if(xi(t))

)
− xi(t)]Ω

= (1 + ηλ)−1
[
−η∇if(xi(t))− ηsgn

(
xi(t)− η∇if(xi(t))

)]
Ω
− ηλ

1 + ηλ
[xi(t)]Ω (81)

On the other hand, Theorem 1.2 and the Lispchitz gradient of f implies

lim
t→∞

∥∥[xi(t+ 1)− η∇if(xi(t+ 1))
]
−
[
xi(t)− η∇if(xi(t))

]∥∥ = 0.

Then [sgn(xi(t) − η∇if(xi(t))]Ω must eventually remain constant, since otherwise the condition |xi(t) −
η∇if(xi(t))|Ω > η will induce a change of |xi(t)−η∇if(xi(t)| to be at least 2η and violate the above asymptotic
condition. In summary, for all large t we have

Ui(x
i(t)) = (1 + ηλ)−1

[
−η∇if(xi(t))− Const

]
Ω
− ηλ

1 + ηλ
[xi(t)]Ω

which further implies that

‖Ui(xi(t+ 1))− Ui(xi(t))‖ ≤ ‖(1 + ηλ)−1
[
η∇if(xi(t+ 1))− η∇if(xi(t))

]
Ω

+
ηλ

1 + ηλ
[xi(t+ 1)− xi(t)]Ω‖

≤ ηLi‖xi(t+ 1)− xi(t)‖+ ηλ‖xi(t+ 1)− xi(t)]‖
≤ η(Li + λ)‖xi(t+ 1)− xi(t)‖.



Yi Zhou∗, Yaoliang Yu†, Wei Dai†, Yingbin Liang∗, Eric P. Xing†

E Proof of Theorem 3

Theorem 3 (Global rate of convergence). If the finite length property in Theorem 2 holds, then

1.
∑∞
t=0 ‖e(t)‖ <∞;

2. F ( 1
t

∑t
k=1 x(k))− inf F ≤ O

(
t−1
)
.

Proof. For the first assertion, note that for any n:

n∑
t=0

‖e(t)‖ = η

n∑
t=0

∥∥(∇1f(x1(t))−∇1f(x(t)), . . . , ∇pf(xp(t))−∇pf(x(t))
)∥∥
(82)

( triangle inequality, Assumption 1.2 ) ≤ η
n∑
t=0

p∑
i=1

Li‖x(t)− xi(t)‖ (83)

( Equation (27) ) ≤ η
n∑
t=0

(
p∑
i=1

Li

)
t−1∑

k=(t−s)+

‖x(k + 1)− x(k)‖

= Lη

n∑
t=0

t−1∑
k=(t−s)+

‖x(k + 1)− x(k)‖ (84)

≤ Lsη
n−1∑
t=0

‖x(t+ 1)− x(t)‖ . (85)

Letting n tend to infinity we obtain

∞∑
t=0

‖e(t)‖ ≤ Lsη
∞∑
t=0

‖x(t+ 1)− x(t)‖ <∞. (86)

For the second assertion, we first recall from [30] that the inexact proximal gradient algorithm in Equation (14)
has the following bound, provided that F is convex:

F

(
1

t

t∑
k=1

x(k)

)
− F ∗ ≤ (‖x(0)− x∗‖+ 2At)

2

2tη
, where At =

t∑
k=0

η‖e(k)‖. (87)

The second assertion thus follows from the first one (assuming convexity).

F Experiments Specifications

Specifications for ‖ · ‖0,2 Lasso:

min
x∈Rd

1

2
‖Ax− b‖22 +

20∑
i=1

γiI(‖xi‖).

Here A ∈ R1000×2000,b ∈ R1000, and x ∈ R2000 is divided into 20 equal groups of features. Matrix A is
generated from N (0, 1) with normalized columns. We set b = Ax̃ + ε, where ε is generated from N (0, 10−2) and
x̃ is a normalized vector with 8 non-zero groups of features generated from N (0, 1). For the non-zero groups of
x̃, we set the corresponding γi = 10−4, and for the remaining groups we set γi = 10−2.

We implement msPG on four cores with each core assigned five group of features. Each core stores the corre-
sponding column blocks of A.

Specifications for ‖ · ‖1 Lasso:

minx
1

2
‖Ax− b‖22 + γ‖x‖1.
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Data Generation

We generate the data column-wise. Starting from first column, we randomly pick 104 samples to have non-zero
in column 1 and sample each value from Uniform(−1, 1). We normalize it such that the `2-norm of the column
is 1. We denote these values as v1 ∈ Rn. To generate column i, with probability 0.5 we randomly pick a new
set of samples to have non-zero values at column i (otherwise we use the same samples from column i− 1). This
simulates the correlations between each column. Once the samples are chosen, we assign values from Unif(−1, 1).
vi is again normalized. We generate ground truth regressor β ∈ Rd from N (0, 1) with 1% non-zero entries, and
obtain the regressed value from b = Aβ where A is the design matrix.


