
On Convergence of Model Parallel Proximal Gradient Algorithm for
Stale Synchronous Parallel System

Yi Zhou∗ Yaoliang Yu† Wei Dai† Yingbin Liang∗ Eric P. Xing†
∗Syracuse University †Carnegie Mellon University

Abstract

With ever growing data volume and model
size, an error-tolerant, communication effi-
cient, yet versatile parallel algorithm has be-
come a vital part for the success of many
large-scale applications. In this work we pro-
pose msPG, an extension of the flexible proxi-
mal gradient algorithm to the model parallel
and stale synchronous setting. The worker
machines of msPG operate asynchronously as
long as they are not too far apart, and they
communicate efficiently through a dedicated
parameter server. Theoretically, we provide
a rigorous analysis of the various convergence
properties of msPG, and a salient feature of
our analysis is its seamless generality that al-
lows both nonsmooth and nonconvex func-
tions. Under mild conditions, we prove the
whole iterate sequence of msPG converges to
a critical point (which is optimal under con-
vexity assumptions). We further provide an
economical implementation of msPG, com-
pletely bypassing the need of keeping a local
full model. We confirm our theoretical find-
ings through numerical experiments.

1 Introduction

Many machine learning and statistics problems fit into
the general composite minimization framework:

minx∈Rd
1
n

∑n
i=1 fi(x) + g(x), (1)

where the first term is typically a smooth empirical
risk over n training samples and the second term g
is a nonsmooth regularizer that promotes structures.

Appearing in Proceedings of the 19th International Con-
ference on Artificial Intelligence and Statistics (AISTATS)
2016, Cadiz, Spain. JMLR: W&CP volume 51. Copyright
2016 by the authors.

Popular examples under this framework include the
Lasso (least squares loss fi and various sparse regular-
izers g), logistic regression (logistic loss fi), boosting
(exponential loss fi), support vector machines (hinge
loss fi and RKHS norm regularizer g), matrix com-
pletion (least squares loss f and trace norm regular-
izer g), etc. There is also rising interest in using
nonconvex losses (mainly for robustness to outliers)
and nonconvex regularizers (mainly for smaller bias
in feature selection and support estimation), see e.g.
[15, 26, 31, 35, 36, 38–40].

Due to the apparent importance of the composite
minimization framework and the rapidly growing size
in both model dimension and sample volume, there
is a strong need to develop a practical parallel sys-
tem that can solve the problem in (1) efficiently and
in a scale that is impossible for a single machine
[2, 8, 14, 16, 19, 21, 25, 37]. Existing systems can
roughly be divided into three categories: bulk syn-
chronous [14, 34, 37], (totally) asynchronous [8, 25],
and partially asynchronous (also called stale syn-
chronous in this work) [2, 8, 16, 19, 21, 32]. The bulk
synchronous parallel mechanism (BSP) forces synchro-
nization barriers so that the worker machines can stay
on the same page to ensure correctness. However, in a
real deployed parallel system BSP usually suffers from
the straggler problem, that is, the performance of the
whole system is bottlenecked by the slowest worker
machine. On the other hand, asynchronous systems
achieve much greater throughputs, although at the ex-
pense of potentially losing the correctness of the algo-
rithm. The stale synchronous parallel (SSP) mecha-
nism is a compromise between the previous two mech-
anisms: it allows the worker machines to operate asyn-
chronously, as long as they are not too far apart. SSP
is particularly suitable for machine learning applica-
tions, where iterative algorithms robust to small errors
are usually used to find an appropriate model. This
view is also practiced by many recent works building
on the SSP mechanism [2, 16, 19, 21, 24, 27].

Existing parallel systems can also be divided into
data parallel and model parallel. In the former case,

713

Yi Zhou∗, Yaoliang Yu†, Wei Dai†, Yingbin Liang∗, Eric P. Xing†

one usually distributes the computation involving each
component function fi in (1) into different worker ma-
chines. This is suitable when n � d, i.e. large data
volume but moderate model size. A popular algorithm
for this case is the stochastic gradient algorithm and its
proximal versions [2, 16, 19, 21], under the SSP mech-
anism. In contrast, model parallel refers to the regime
where d� n, i.e. large model size but moderate data
volume. This is the case for many computational biol-
ogy and health care problems, where collecting many
samples can be very expensive but for each sample we
can relatively cheaply take a large number of measure-
ments (features). As a result we need to partition the
model x into different (disjoint) blocks and distribute
them among many worker machines. The proximal
gradient [11, 18] or its accelerated version [6] is again
a natural candidate algorithm due to its nice ability
of handling nonsmooth regularizers. However, such
proximal gradient algorithm has not been investigated
under SSP mechanism for model parallelism, although
some other types of asynchronous algorithms are stud-
ied before (see Section 7). The main goal of this work
is to fill in this important gap.

More specifically, we make the following contributions:
1). We propose msPG, an extension of the proximal
gradient algorithm to the new model parallel and stale
synchronous setting. 2). We provide a rigorous anal-
ysis of the convergence properties of msPG. Under a
very general condition that allows both nonsmooth and
nonconvex functions we prove in Theorem 1 that any
limit point of the sequence generated by msPG is a
critical point. Then, inspired by the recent Kurdyka-
 Lojasiewicz (K L) inequality [3, 5, 9, 11, 20], we further
prove in Theorem 2 that the whole sequence of msPG
in fact converges to a critical point, under mild techni-
cal assumptions that we verify for many familiar exam-
ples. Lastly, relating msPG to recent works on inexact
proximal gradient (on a single machine), we provide,
under the new model parallel and SSP setting, a simple
proof of the usual sublinear O(1/t) rate of convergence
(assuming convexity). We remark our technical con-
tributions with comparison to related work after each
main results. 3). Building on the recent parameter
server framework [19, 21], we give an economical im-
plementation of msPG that completely avoids storing
local full models in each worker machine. The resulting
implementation only requires storing the partitioned
data (with size O(ndi) for di assigned parameters) and
communicating a vector of length n in each iteration.
4). We corroborate our theoretical findings with con-
trolled numerical experiments.

This paper proceeds as follows: We first recall some
definitions in §2, followed by the proposed algorithm
msPG in §3. Theoretical findings are reported in §4

(with all proofs deferred to the appendix). An eco-
nomical implementation of msPG is detailed in §5 and
experimentally verified in §6. Finally, we discuss some
related works in §7 and conclude in §8.

2 Preliminaries

We collect here some useful definitions that will be
needed in our later analysis.

Since we consider a proper and closed1 function h :
Rd → (−∞,+∞] that may not be smooth or convex,
we need a generalized notion of “derivative”.

Definition 1 (Subdifferential and critical point, [29]).

The Frechét subdifferential ∂̂h of h at x ∈ domh is the
set of u such that

lim inf
z6=x,z→x

h(z)−h(x)−u>(z−x)
‖z−x‖ ≥ 0, (2)

while the (limiting) subdifferential ∂h at x ∈ domh is

the graphical closure of ∂̂h:

{u : ∃xk → x, h(xk)→ h(x),uk ∈ ∂̂h(xk)→ u}. (3)

The critical points of h are crith := {x : 0 ∈ ∂h(x)}.

Pleasantly, when h is continuously differentiable or
convex, the subdifferential ∂h and critical points crith
coincide with the usual notions.

Definition 2 (Distance and projection). The distance
function to a closed set Ω ⊆ Rd is defined as:

distΩ(x) := miny∈Ω ‖y − x‖, (4)

and the metric projection onto Ω is:

projΩ(x) := argminy∈Ω ‖y − x‖. (5)

Note that projΩ is always a singleton iff Ω is convex.

Definition 3 (Proximal map, e.g. [29]). A natural
generalization of the metric projection using a closed
and proper function h is (with parameter η > 0):

proxηh(x) := argminz h(z) + 1
2η‖z− x‖2, (6)

where ‖ · ‖ is the usual Euclidean norm.

If h decreases slower than a quadratic function (in par-
ticular, when h is bounded below), its proximal map is
well-defined for all (small) η. For convex h, the prox-
imal map is always a singleton while for nonconvex
h, the proximal map can be set-valued. In the latter
case we also abuse the notation proxηh(x) for an ar-
bitrary element from that set. The proximal map is
the key component of the popular proximal gradient
algorithms [6, 11, 18].

1An extended real-valued function h is proper if its do-
main domh := {x : h(x) <∞} is nonempty; it is closed iff
its sublevel sets {x : h(x) ≤ α} is closed for all α ∈ R.

714

Yi Zhou∗, Yaoliang Yu†, Wei Dai†, Yingbin Liang∗, Eric P. Xing†

Definition 4 (K L function, [10, 20]). A function h is
called K L if for all x̄ ∈ dom ∂h there exist λ > 0 and
a neighborhood X of x̄ such that for all x ∈ X ∩ [x :
h(x̄) < h(x) < h(x̄) + λ] the following inequality holds

ϕ′ (h(x)− h(x̄)) · dist∂h(x)(0) ≥ 1, (7)

where the function ϕ : [0, λ)→ R+, 0 7→ 0, is continu-
ous, concave, and has continuous and positive deriva-
tive ϕ′ on (0, λ).

The KL inequality (7) is an important tool to bound
the trajectory length of a dynamical system (see
[10, 20] and the references therein for some historic
developments). It has recently been used to ana-
lyze discrete-time algorithms in [1] and proximal al-
gorithms in [3, 4, 11]. As we shall see, the function
ϕ will serve as a Lyapunov function. Quite conve-
niently, most practical functions, in particular, “de-
finable” functions and convex functions under certain
growth condition, are K L. For a more detailed discus-
sion of K L functions, including many familiar exam-
ples, see [11, Section 5] and [4, Section 4].

3 Problem Formulation

We consider the composite minimization problem:

minx∈Rd F (x), where F (x) = f(x) + g(x). (P)

Usually f is a smooth loss function and g is a reg-
ularizer that promotes structure. We consider the
model parallel scenario, that is, we decompose the
d model parameters into p disjoint groups, and des-
ignate one worker machine for each group. Formally,
consider the decomposition Rd = Rd1×Rd2×· · ·×Rdp ,
x = (x1, x2, . . . , xp), and let ∇if : Rd → Rdi be the
partial gradient of f on the i-th factor space (ma-
chine). Clearly, xi,∇if(x) ∈ Rdi and

∑p
i=1 di = d.

The i-th machine is responsible for the i-th factor
xi ∈ Rdi , however, we also allow machine i to keep
a local copy xi ∈ Rd of the full model parameter.
This is for the convenience of evaluating the partial
gradient ∇if : Rd → Rdi , and we will discuss in Sec-
tion 5 how to implement this in an economical way.
Note that unlike the data parallel setting, we do not
consider explicitly distributing the computation of the
gradient ∇if .

We extend the proximal gradient algorithm [11, 18] to
solve the composite problem (P) under the new model
parallel setting, and we require the following standard
assumptions for our convergence analysis.

Assumption 1. Regarding the functions f, g in (P):

1. They are bounded from below;

2. The function f is differentiable and the gradients
∇f , ∇if are Lipschitz continuous with constant Lf
and Li, respectively. Set L =

∑p
i=1 Li;

3. The function g is closed, and separable, i.e., g(x) =∑p
i=1 gi(xi).

The first two assumptions are needed to analyze the
proximal gradient algorithm even in the convex and
non-distributed setting, and the third assumption is
what makes model parallelism interesting (and feasi-
ble). We remark that the differentiability assumption
on f can be easily relaxed by smoothing, and the sepa-
rability assumption on g can also be relaxed using the
proximal average idea in [36]. For brevity we do not
pursue these extensions here. One salient feature of
our analysis is that we do not assume convexity on ei-
ther f or g (although our conclusions are considerably
stronger under convexity).

The separability assumption above on g implies that

proxηg(x) =
(
proxηg1(x1), . . . , proxηgp(xp)

)
. (8)

Let us introduce the update operator (on machine i):

Ui(x
i)=Ui(x

i, xi) :=proxηgi(xi − η∇if(xi))− xi, (9)

i.e. machine i computes the i-th part of the gradient
using its local model xi, updates its parameter xi in
charge using step size η, and finally applies the proxi-
mal map of the component function gi. In a real large
scale parallel system, the communication delay among
machines and the unexpected shut down of machines
are practical issues that bottlenecks the performance of
the system, and hence a more relaxed synchronization
protocol than full synchronization is needed. Consider
a global clock shared by all machines and denote Ti
the set of active clocks when machine i takes an up-
date, and I{t∈Ti} as the indicator function of the event
t ∈ Ti. Formally, the t-th iteration on machine i can
be written as:

msPG





∀i, xi(t+ 1) = xi(t) + I{t∈Ti}Ui(x
i(t)),

(local) xi(t) =
(
x1(τ i1(t)), . . . , xp(τ

i
p(t))

)
,

(global) x(t) =
(
x1(t), . . . , xp(t)

)
,

where 0 ≤ τ ij(t) ≤ t models the delay among ma-

chines: when machine i conducts its t-th update it only
has access to xj(τ

i
j(t)), a delayed version of the factor

xj(t) on the j-th machine. In the above, we collect
the fresh parameters of all machines to form a global
model x(t), which brings convenience for our analysis.
We will refer to the above updates as msPG (for model
parallel, stale synchronous, Proximal Gradient). Fig-
ure 1 illustrates the main idea of msPG.

Obviously, to establish convergence for msPG we need
some control over the delay τ ij(t) and the active

715

Yi Zhou∗, Yaoliang Yu†, Wei Dai†, Yingbin Liang∗, Eric P. Xing†

Figure 1: The algorithm msPG under model parallelism and stale synchronism. Machine i keeps a local model
xi(t) that contains stale parameters of other machines (due to communication delay and network latency). These
local models are used to compute the partial gradient ∇if(xi) which is then used to update the parameters xi(t)
in each machine. See Section 5 for an economical implementation of msPG.

clocks Ti, for otherwise some machines may not make
progress at all. We first impose the following assump-
tions on the delay and active clocks, and follow by
some explanations.

Assumption 2. The delay and skip frequency satisfy:

1. ∀i, ∀j,∀t, 0 ≤ t− τ ij(t) ≤ s;
2. ∀i, ∀t, τ ii (t) = t;
3. ∀i, ∀t, Ti ∩ {t, t+ 1, · · · , t+ s} 6= ∅.

The first assumption basically says that if machine
i conducts its t-th update, then the information it
gathered from other machines cannot be too obso-
lete (bounded by s iterations). The second assump-
tion simply says that machine i always has the lat-
est information on itself. The third assumption re-
quires each machine to update at least once in ev-
ery s iterations. These assumptions are very natu-
ral and have been widely adopted in previous works
[2, 8, 16, 19, 22, 24, 32]. They are also in some sense
unavoidable: one can construct instances such that
msPG do not converge if these assumptions are vio-
lated. Clearly, when s = 0 (no delay) our framework
reduces to the bulk synchronous proximal gradient al-
gorithm.

4 Convergence Analysis

In this section, we conduct detailed analysis of the
model parallel stale synchronous proximal gradient al-
gorithm msPG. Our first result is as follows:

Theorem 1 (Asymptotic consistency). Let Assump-
tion 1 and 2 hold, and apply msPG to problem (P). If
the step size η < (Lf + 2Ls)−1, then the global model
and local models satisfy:

1.
∑∞
t=0 ‖x(t+ 1)− x(t)‖2 <∞;

2. lim
t→∞

‖x(t+ 1)− x(t)‖ = 0, lim
t→∞

‖x(t)− xi(t)‖ = 0;

3. The limit points ω({x(t)}) = ω({xi(t)}) ⊆ critF .

The proof is a bit involved and can be found
in Appendix A. The first assertion says that the
global sequence x(t) defined in msPG has square
summable successive differences, which we will signif-
icantly strengthen below. The second assertion im-
plies that the successive difference of the global se-
quence diminishes, and the inconsistency between the
local sequences and the global sequence also vanishes.
These two conclusions provide some stability guaran-
tee about our algorithm msPG. The third assertion fur-
ther justifies msPG by showing that any limit point
it produces is necessarily a critical point. Of course,
when F is convex, any critical point is globally opti-
mal.

The closest result to Theorem 1 we are aware of is [8,
Proposition 7.5.3], where essentially the same conclu-
sion was reached but under the much more simplified
assumption that g is an indicator function of a con-
vex set. Thus, our Theorem 1 is new even when g is
a convex function such as the popular `1 norm. Fur-
thermore, we allow g to be nonconvex, which is partic-
ularly interesting due to the rising interest in noncon-
vex penalties in machine learning and statistics (see
e.g. [15, 26, 31, 35, 36, 38–40]). We also note that the
proof of Theorem 1 (for nonconvex g) involves signifi-
cantly new ideas beyond those of [8].

Interesting as it is, Theorem 1 has one significant de-
ficiency, though: it does not tell us when there exists
a limit point, and it does not guarantee the whole se-
quence to converge to the limit point. In fact, in the
model parallel setting with delays and skips, it is even
a nontrivial task to argue that the objective values
{F (x(t))} do not diverge to infinity. This is in sharp
contrast with the bulk synchronous setting where it
is trivial to guarantee the objective values to decrease
(by using a sufficiently small step size). This is where
we need some further assumptions.

Assumption 3 (Sufficient Decrease). There exists
α > 0 such that the global model x(t) generated by

716

Yi Zhou∗, Yaoliang Yu†, Wei Dai†, Yingbin Liang∗, Eric P. Xing†

msPG (for problem (P)) satisfies: for all large t,

F (x(t+ 1)) ≤ F (x(t))− α‖x(t+ 1)− x(t)‖2. (10)

We will provide below a sufficient condition in
Lemma 1 and many interesting examples in Example 1
to ensure Assumption 3 to hold.

Assumption 4. F is a K L function.

As we mentioned in the end of Section 2, most practical
functions (including all functions in this work) are K L.
Hence, this is a very mild assumption.

We are now ready to state the much more strengthened
convergence guarantee for msPG:

Theorem 2 (Finite Length). Let Assumption 1, 2,
3 and 4 hold, and apply msPG to problem (P). If the
step size η < (Lf+2Ls)−1 and {x(t)} is bounded, then

∑∞
t=0 ‖x(t+ 1)− x(t)‖ <∞, (11)

∀i = 1, . . . , p,
∑∞
t=0 ‖xi(t+ 1)− xi(t)‖ <∞. (12)

Furthermore, {x(t)} and {xi(t)}, i = 1, ..., p, converge
to the same critical point of F .

The proof, in Appendix B, borrowed some ideas from
the recent works [3, 4, 11], which, however, did not con-
sider the parallel and asynchronous setting. Compared
with the first assertion in Theorem 1, we now have the
successive differences to be absolutely summable (in-
stead of square summable). The former property is
usually called finite length in dynamical systems. It
is a significantly stronger property as it immediately
implies that the whole sequence is Cauchy hence con-
vergent, whereas we cannot get the same conclusion
from the square summable property in Theorem 1.2

We note that local maxima are excluded from being
the limit in Theorem 2, thanks to Assumption 3. Also,
the boundedness assumption on {x(t)} is easy to sat-
isfy, for instance, when F has bounded sublevel sets.
We refer to [4, Remark 3.3] for more conditions that
guarantee the boundedness. Needless to say, if F is
convex, then the whole sequence in Theorem 2 con-
verges to a global minimizer.

The closest result to Theorem 2, to our best knowl-
edge, is [32], which proved an s-step linear rate when
f satisfies a certain error bound condition and g is the
indicator function of a convex set. In contrast, we al-
low any convex or nonconvex function g (as long as
it is K L). Our proof, inspired by [3, 4, 11], differs
substantially from [32].

2A simple example would be the sequence x(t) =∑t
k=1

1
k

, whose successive difference is square summable
but clearly x(t) does not converge. Consequently, x(t) is
not absolutely summable.

We now provide some justifications on Assumption 3
by considering the simplified case where ∀t, i, t ∈ Ti,
i.e., machines do not skip updates. The general case
can also be dealt with but the analysis is much more
complicated. The following condition truns out to be
a good justification for Assumption 3.

Assumption 5 (Eventual Lipschitz). The update op-
erators Ui, i = 1, ..., p are eventually Lipschitz contin-
uous, i.e., for all large t and small learning rate η > 0:

‖Ui(xi(t+1))−Ui(xi(t))‖≤Ciη‖xi(t+1)−xi(t)‖, (13)

where Ci ≥ Li, i = 1, ..., p, are positive constants.

Note that when g ≡ 0, Ui = −η∇if is Lipschitz con-
tinuous (due to Assumption 1.2), thus Assumption 5
is a natural generalization to an arbitrary regularizer
g. Equipped with this assumption, we can now jus-
tify Assumption 3. (Proof is in Appendix C.) In the
sequel, we denote C =

∑p
i=1 Ci ≥ L.

Lemma 1. Assume ∀t, i, t ∈ Ti. Let the step size

η < ρ−1
4Cρ

√
ρ−1√

ρs+1−1
for any ρ > 1 and all Ui, i = 1, ..., p

be eventually Lipschitz continuous, then the sequences
{x(t)} and {xi(t)}, i = 1, ..., p, have finite length.

Hence it is sufficient to further characterize Assump-
tion 5, which turns out to be a mild condition. In-
stead of giving a very technical justification, we give
here some popular examples where Assumption 5 holds
(proof in Appendix D). Some of these will also be
tested in our experiments.

Example 1. Assume ∀t, i, t ∈ Ti, then Assumption 5
holds for the following cases (modulo a technical con-
dition on the 1-norm):

• g ≡ 0 (no regularization), g = ‖ · ‖0 (nonconvex
0-norm), g = ‖ · ‖1 (1-norm), g = ‖ · ‖2 (squared
2-norm);

• elastic net g = ‖ · ‖1 + ‖ · ‖2 and its nonconvex vari-
ation g = ‖ · ‖0 + ‖ · ‖2;

• non-overlapping group norms g = ‖ · ‖0,2 and g =
‖ · ‖0,2 + ‖ · ‖2.

Further for this non-skip case (∀t, i, t ∈ Ti), msPG
can be cast as an inexact proximal gradient algorithm
(IPGA), which, together with the finite length prop-
erty in Theorem 2, provide new insights on the nature
of staleness in real parallel systems. It also allows us
to easily obtain the usual O(1/t) rate of convergence
of the objective value.

Let us introduce an error term e(t) =(
e1(t), . . . , ep(t)

)
, with which we can rewrite

the global sequence of msPG as:

∀i, xi(t+1)= proxηgi (xi(t)−η∇if(x(t))+ei(t)) , (14)

717

Yi Zhou∗, Yaoliang Yu†, Wei Dai†, Yingbin Liang∗, Eric P. Xing†

where ei(t) = η[∇if(x(t)) − ∇if(xi(t))]. This alter-
native representation of msPG falls under the IPGA
in [30], where e(t) is the (gradient) error at iteration
t. Note, however, that the error e(t) is not caused by
computation but by communication delay and network
latency, which only presents itself in a real stale syn-
chronous parallel system. For convex functions F , [30]
showed that the convergence rate of the objective value
of IPGA can be controlled by the summability of the
error magnitude ‖e(t)‖. Interestingly, our next result
proves that the finite length property in Theorem 2 im-
mediately implies the summability of the errors ‖e‖,
even for nonconvex functions f and g. Moreover, for
convex F , this also leads to the usual O(1/t) rate of
convergence in terms of the objective value.

Theorem 3 (Global rate of convergence). If the finite
length property in Theorem 2 holds, then

1.
∑∞
t=0 ‖e(t)‖ <∞;

2. F (1
t

∑t
k=1 x(k))− inf F ≤ O

(
t−1
)
.

The proof is in Appendix E. Intuitively, if the error e(t)
decreases (slightly) faster than O(1/t), then the rate
of convergence of msPG is not affected even under the
model parallel and stale synchronous setting (provided
F is convex). To the best of our knowledge, this is
the first deterministic rate of convergence result in the
model parallel and stale synchronous setting.

5 Economical Implementation

In this section, we show how to economically imple-
ment msPG for the widely used linear models:

minx∈Rd f(Ax) + g(x), (15)

where A ∈ Rn×d. Typically f : Rn → R is the like-
lihood function and g : Rd → R is the regularizer
(we absorb the regularization constant into g). Each
row of A corresponds to a sample point and we have
suppressed the labels in classification or responses in
regression. Support vector machines, Lasso, logistic
regression, boosting, etc. all fit under this framework.
Our interest here is when the model dimension d is
much higher than the number of samples n (d can be
up to hundreds of millions and n can be up to mil-
lions). This is the usual setup in many computational
biology and health care problems.

A naive implementation of msPG might be inefficient
in terms of both network communication and param-
eter storage. First, Each machine needs to communi-
cate with every other machine, to exchange the latest
block of parameters. If using a peer-to-peer network
topology, the resulting connections will be too dense
and crowded when the system holds hundreds of ma-
chines. We resolve this issue by adopting the parame-

ter server system advocated in previous works [19, 21],
that is, we dedicate a specific server (which can span a
set of machines if needed) to store the key parameters
(will be specified later) and let each worker machine to
communicate only with the server. There is a second
advantage for this master-slave network topology, as
we shall see momentarily.

Second, each machine needs to keep a local copy of
the full model (i.e. xi(t) in msPG), which can incur
a very expensive storage cost when the dimension is
high. This is where the linear model structure in (15)
comes into help. Note that the local models xi(t) are
kept solely for the convenience of evaluating the partial
gradient ∇if : Rd → Rdi . For some problems such as
the Lasso, a seemingly workaround is to pre-compute
the Hessian H = A>A and distribute the correspond-
ing row blocks of H to each worker machine. This
scheme, however, is problematic in the high dimen-
sional setting: the pre-computation of the Hessian can
be very costly, and each row block of H has a very
large size (di × d).

Instead, we use the column partition scheme [e.g. 12,
28], namely, we partition the matrix A into p column
blocks A = [A1, . . . , Ap] and distribute the block Ai ∈
Rn×di to machine i. Now the local update computed
by machine i at the t-th iteration can be rewritten as

Ui(x
i(t))=proxηgi

(
xi(t)−ηA>i f ′(Axi(t))

)
−xi(t) (16)

Since machine i is in charge of updating the i-th block
xi(t) of the global model, to compute the local update
(16) it is sufficient to have the matrix-vector product
Axi(t). For simplicity we initialize ∀i, xi(0) ≡ 0, then
we have the following cumulative form:

Axi(t) =

p∑

j=1

Aj [x
i(t)]j =

p∑

j=1

τ i
j (t)∑

k=0

AjI{k∈Tj}Uj(x
j(k))

︸ ︷︷ ︸
∆j(k)

,

where recall that when machine i conducts its t-th it-
eration it only has access to a delayed copy xj(τ

i
j(t)) of

the parameters in machine j. Since this matrix-vector
product is needed by every machine to conduct their
local updates in (16), we aggregate ∆j(t) ∈ Rn on the
parameter server whenever it is generated and sent
by the worker machines. In details, the worker ma-
chines first pull this aggregated matrix-vector product
(denoted as N) from the server to conduct the local
computation (16) in an economical way (by replacing
Axi(t) in (16) with N). Then machine i performs the
simple update:

xi(t+ 1) = xi(t) + Ui(x
i(t)). (17)

Note that machine i does not maintain or update other
blocks of parameters xj(t), j 6= i. Lastly, machine i

718

Yi Zhou∗, Yaoliang Yu†, Wei Dai†, Yingbin Liang∗, Eric P. Xing†

Algorithm 1 Economic Implementation of msPG

1: For the server:
2: while recieves update ∆i from machine i do
3: N← N + ∆i

4: end while
5: while machine i sends a pull request do
6: send N to machine i
7: end while
8: For machine i at active clock t ∈ Ti:
9: pull N from the server

10: Ui ← proxηgi
(
xi − ηA>i f ′(N)

)
− xi

11: send ∆i = AiUi to the server
12: update xi ← xi + Ui

computes and sends the vector ∆i(t) = AiUi(x
i(t)) ∈

Rn to the server, and the server immediately performs
the aggregation:

N← N + ∆i(t). (18)

We summarize the above economical implementation
in Algorithm 1, where N denotes the aggregation of in-
dividual matrix-vector products ∆ on the server. The
storage cost for each worker machine is O(ndi) (for
storing Ai). Each iteration requires two matrix-vector
products that cost O(ndi) in the dense case, and the
communication of a length n vector between the server
and the worker machines.

6 Experiments

We first test the convergence properties of msPG via a
non-convex Lasso problem with the group regularizer
‖ · ‖0,2, which takes the form

minx
1
2‖Ax− b‖2 + λ

∑20
i=1 I(‖xi‖ = 0), (19)

where A ∈ R1000×2000 and we refer to Appendix F for
the specifications of data generation. We use 4 ma-
chines (cores) with each handling five groups of coor-
dinates, and consider staleness s = 0, 10, 20, 30, respec-
tively. To better demonstrate the effect of staleness,
we let machines only communicate when exceed the
maximum staleness. This can be viewed as the worst
case communication scheme and a larger s brings more
staleness into the system. We set the learning rate to
have the form η(αs) = 1/(Lf +2Lαs), α > 0, that is, a
linear dependency on staleness s as suggested by The-
orem 1. Then we run Algorithm 1 with different stal-
eness and use η(0), η(10), η∗(αs), respectively, where
η∗(αs) is the largest step size we tuned for each s that
achieves a stable convergence. We track the global
model x(t) and plot the results in Figure 2. Note that
with the large step size η(0) all instances (with nonzero

staleness) diverge hence are not presented. With η(10)
(Figure 2, left), the staleness does not substantially
affect the convergence in terms of the objective value.
We note that the objective curves converge to slightly
different minimal values due to the non-convexity of
problem (19). With η∗(αs) (Figure 2, middle), it can
be observed that adding a slight penalty αs on the
learning rate suffices to achieve a stable convergence,
and the penalty grows as s increases, which is intuitive
since a larger staleness requires a smaller step size to
cancel the inconsistency. In particular, for s = 10 the
best convergence is comparable to the bulk synchro-
nized case s = 0. (Figure 2, right) further shows the
asymptotic convergence behavior of the global model
x(t) under the step size η∗(αs). It is clear that a linear
convergence is eventually attained, which confirms the
finite length property in Theorem 2.

Next, we verify the time and communication efficiency
of msPG via an l1 norm Lasso problem with very high
dimensions, taking the form

minx
1
2‖Ax− b‖22 + λ‖x‖1. (20)

We generate A ∈ Rn×d of size n = 1Million and
d = 100Millions. See Appendix F for the specifications
of data generation. We implement Algorithm 1 on
Petuum [13, 19] — a stale synchronous parallel system
which eagerly updates the local parameter caches via
stale synchronous communications. The system con-
tains 100 computing nodes and each is equipped with
16 AMD Opteron processors and 16GB RAM linked
by 1Gbps ethernet. We fix the learning rate η = 10−3

and consider maximum staleness s = 0, 1, 3, 5, 7, re-
spectively. (Figure 3, left) shows that per-iteration
progress is virtually indistinguishable among various
staleness settings, which is consistent with our previ-
ous experiment. (Figure 3, middle) shows that system
throughput is significantly higher when we introduce
staleness. This is due to lower synchronization over-
heads, which offsets any potential loss due to staleness
in progress per iteration. We also track the distribu-
tions of staleness during the experiments, where we
record in N the clocks of the freshest updates that
accumulate from all the machines. Then whenever a
machine pulls N from the server, it compares its lo-
cal clock with these clocks and records the clock dif-
ferences. (Figure 3, right) shows the distributions of
staleness under different maximal staleness settings.
Observe that bulk synchronous (s = 0) peaks at stale-
ness 0 by design, and the distribution concentrates in
small staleness area due to the eager communication
mechanism of Petuum. It can be seen that a small
amount of staleness is sufficient to relax the communi-
cation bottlenecks without affecting the iterative con-
vergence rate much.

719

Yi Zhou∗, Yaoliang Yu†, Wei Dai†, Yingbin Liang∗, Eric P. Xing†

0 100 200 300 400 500 600 700 800 900 1000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

number of iterations

ob
je
ct
iv
e
va
lu
e

learning rate = η(10)

s=0
s=10
s=20
s=30

0 50 100 150 200 250 300 350 400 450 500 550
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

number of iterations

ob
je
ct
iv
e
va
lu
e

learning rate = η
∗(αs)

s=0, αs=0
s=10, αs=0.094
s=20, αs=0.25
s=30, αs=0.45

0 500 1000 1500 2000 2500 3000
−14

−12

−10

−8

−6

−4

−2

0

number of iterations

lo
g(
‖x

c
−
x
∗
‖)

learning rate η
∗(αs)

s=0 αs=0
s=10 αs=0.094
s=20 αs=0.25
s=30 αs=0.45

Figure 2: Convergence curves of msPG under different staleness parameter s and step size η.

0 5 10 15 20 25 30 35
2

4

6

8

10

12

14
x 10

4

number of iterations

ob
je
ct
iv
e
va
lu
e

Objective vs Iteration

s=0

s=1

s=3

s=5

s=7

100 200 300 400 500 600 700 800 900 1000
3

4

5

6

7

8

9

10

11
x 10

4

seconds

ob
je
ct
iv
e
va
lu
e

Objective vs Seconds

s=0
s=1
s=3
s=5
s=7

0 1 2−3 4−5 6−7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

staleness

p
er
ce
n
ta
g
e

Staleness Distributions

s = 0
s = 1
s = 3
s = 5
s = 7

Figure 3: Efficiency of msPG on a large scale Lasso problem.

7 Related Work

The stale synchronous parallel system dates back to
[7, 8, 32, 33], where it is also refered to as partially
asyncrhonous system. These work consider using stale
synchronous systems to solving different kinds of op-
timizations problems with allowing machines to skip
updates during the process. Asymptotic convergence
of partially asynchronous gradient descent algorithm
for solving unconstraint smooth optimizations is es-
tablished in [8], with its stochastic version being an-
alyzed in [33]. Asymptotic convergence of partially
asynchronous gradient projection algorithm for solv-
ing smooth optimizations with convex constraint is es-
tablished in [8], and a “B-step” linear convergence is
further established in [32] with an error bound con-
dition. Linear convergence of partially asynchronous
algorithm for finding the fixed point of maximum norm
contraction mappings is established in [7, 17].

Another series of work focus on SSP systems where
machines are not allowed to skip updates [21–23]. In
their settings, The system imposes an upper bound
on the maximum clock difference between machines.
Asymptotic convergence is established for proximal
gradient algorithm for data parallelism [23] and for
block coordinate descent [22] with a smooth objec-
tive and convex regularizer. Other works consider
stochastic algorithms on stale synchronous system.
[19] proposes an SSP system for stochastic gradient
descent, and establishes O(1/

√
k) regret bound under

bounded diameter and bounded sub-gradient assump-

tion. [16, 27] consider a delayed stochastic gradient
descent algorithm. Linear convergence to a neighbor-
hood of optimum is established with strong convexity
assumption in [16] and with additional bounded gra-
dient assumption in [27]. [2] proposes a distributed
delayed dual averaging and mirror descent algorithm,
and establishes O(1/

√
k) regret bound under standard

stochastic assumptions.

8 Conclusion

We have proposed msPG as an extension of the proxi-
mal gradient algorithm to the model parallel and stale
synchronous setting. msPG allows worker machines to
operate asynchronously as long as they are not too far
apart, hence greatly improves the system throughput.
Theoretically, we provide a rigorous analysis of msPG
that simultaneously covers nonsmooth and nonconvex
functions. In particular, under mild conditions, the
whole iterate sequence generated by msPG converges
to a critical point. We implement msPG using the pa-
rameter server platform, and completely bypass the
need of keeping a local full model. Preliminary nu-
merical experiments confirm the effectiveness of msPG
on solving very high dimensional problems.

Acknowledgement

We thank the reviewers for their valuable com-
ments. This work is supported by NIH R01GM114311,
DARPA FA87501220324 and NSF IIS1447676.

720

Yi Zhou∗, Yaoliang Yu†, Wei Dai†, Yingbin Liang∗, Eric P. Xing†

References

[1] P.-A. Absil, R. Mahony, and B. Andrews. Conver-
gence of the iterates of descent methods for ana-
lytic cost functions. SIAM Journal on Optimization,
16(2):531–547, 2005.

[2] A. Agarwal and J. C. Duchi. Distributed delayed
stochastic optimization. In Advances in Neural Infor-
mation Processing Systems 24, pages 873–881. 2011.

[3] H. Attouch and J. Bolte. On the convergence of the
proximal algorithm for nonsmooth functions involving
analytic features. Mathematical Programming, 116(1-
2):5–16, 2009.

[4] H. Attouch, J. Bolte, P. Redont, and A. Soubeyran.
Proximal alternating minimization and projection
methods for nonconvex problems: An approach based
on the Kurdyka- Lojasiewicz inequality. Mathematics
of Operations Research, 35(2):438–457, 2010.

[5] H. Attouch, J. Bolte, and B. Svaiter. Convergence
of descent methods for semi-algebraic and tame prob-
lems: proximal algorithms, forward-backward split-
ting, and regularized Gauss-Seidel methods. Mathe-
matical Programming, 137(1-2):91–129, 2013.

[6] A. Beck and M. Teboulle. A fast iterative shrinkage-
thresholding algorithm for linear inverse problems.
SIAM J. Img. Sci., 2(1):183–202, 2009.

[7] D. P. Bertsekas and J. N. Tsitsiklis. Convergence rate
and termination of asynchronous iterative algorithms.
In Proceedings of the 3rd International Conference on
Supercomputing, pages 461–470, 1989.

[8] D. P. Bertsekas and J. N. Tsitsiklis. Parallel and Dis-
tributed Computation: Numerical Methods. Prentice-
Hall, Inc., Upper Saddle River, NJ, USA, 1989.

[9] J. Bolte, A. Daniilidis, and A. Lewis. The Lojasiewicz
inequality for nonsmooth subanalytic functions with
applications to subgradient dynamical systems. SIAM
Journal on Optimization, 17:1205–1223, 2007.

[10] J. Bolte, A. Danilidis, O. Ley, and L. Mazet.
Characterizations of Lojasiewicz inequalities and ap-
plications: Subgradient flows, talweg, convexity.
Transactions of the American Mathematical Society,
362(6):3319–3363, 2010.

[11] J. Bolte, S. Sabach, and M. Teboulle. Proximal al-
ternating linearized minimization for nonconvex and
nonsmooth problems. Mathematical Programming,
146(1-2):459–494, 2014.

[12] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eck-
stein. Distributed optimization and statistical learn-
ing via the alternating direction method of multipliers.
Foundations and Trends in Machine Learning, 3(1):1–
122, 2010.

[13] W. Dai, A. Kumar, J. Wei, Q. Ho, G. Gibson, and
E. P. Xing. High-performance distributed ml at
scale through parameterserver consistency models. In
AAAI, 2014.

[14] J. Dean and S. Ghemawat. Mapreduce: Simplified
data processing on large clusters. Communications of
ACM, 51(1):107–113, 2008.

[15] J. Fan and R. Li. Variable selection via nonconcave
penalized likelihood and its oracle properties. Journal
of the American Statistical Association, 96(456):1348–
1360, 2001.

[16] H. Feyzmahdavian, A. Aytekin, and M. Johansson. A
delayed proximal gradient method with linear conver-
gence rate. In 2014 IEEE International Workshop on
Machine Learning for Signal Processing.

[17] H. Feyzmahdavian and M. Johansson. On the con-
vergence rates of asynchronous iterations. In 2014
IEEE 53rd Annual Conference on Decision and Con-
trol, pages 153–159, 2014.

[18] M. Fukushima and H. Mine. A generalized proximal
point algorithm for certain non-convex minimization
problems. International Journal of Systems Science,
12(8):989–1000, 1981.

[19] Q. Ho, J. Cipar, H. Cui, S. Lee, J. K. Kim, P. B.
Gibbons, G. A. Gibson, G. Ganger, and E. P. Xing.
More effective distributed ml via a stale synchronous
parallel parameter server. In Advances in Neural In-
formation Processing Systems 26, pages 1223–1231.
2013.

[20] K. Kurdyka. On gradients of functions definable in
o-minimal structures. Annales de l’institut Fourier,
48(3):769–783, 1998.

[21] M. Li, D. G. Andersen, J. W. Park, A. J. Smola,
A. Ahmed, V. Josifovski, J. Long, E. J. Shekita, and
B.-Y. Su. Scaling distributed machine learning with
the parameter server. In 11th USENIX Symposium on
Operating Systems Design and Implementation (OSDI
14), pages 583–598, 2014.

[22] M. Li, D. G. Andersen, and A. Smola. Distributed de-
layed proximal gradient methods. Big Learning NIPS
Workshop, 2013.

[23] M. Li, L. Zhou, Z. Yang, A. Li, F. Xia, D. G. An-
dersen, and A. Smola. Parameter server for dis-
tributed machine learning. Big Learning NIPS Work-
shop, 2013.

[24] J. Liu and S. J. Wright. Asynchronous stochastic co-
ordinate descent: Parallelism and convergence prop-
erties. SIAM Journal on Optimization, 25(1):351–376,
2015.

[25] Y. Low, D. Bickson, J. Gonzalez, C. Guestrin, A. Ky-
rola, and J. M. Hellerstein. Distributed graphlab: A
framework for machine learning and data mining in
the cloud. Proc. VLDB Endow., 5(8):716–727, 2012.

[26] R. Mazumder, J. H. Friedman, and T. Hastie.
Sparsenet: Coordinate descent with nonconvex penal-
ties. Journal of the American Statistical Association,
106(495):1125–1138, 2011.

[27] B. Recht, C. Re, S. Wright, and F. Niu. Hogwild: A
lock-free approach to parallelizing stochastic gradient
descent. In Advances in Neural Information Process-
ing Systems 24, pages 693–701. 2011.

[28] P. Richtárik and M. Takáč. Distributed Coordinate
Descent Method for Learning with Big Data. arXiv,
2013.

[29] R. Rockafellar and R. Wets. Variational Analysis.
Springer, 1997.

[30] M. Schmidt, N. L. Roux, and F. R. Bach. Conver-
gence rates of inexact proximal-gradient methods for
convex optimization. In Advances in Neural Informa-
tion Processing Systems 24, pages 1458–1466. 2011.

[31] Y. She. Thresholding-based iterative selection proce-
dures for model selection and shrinkage. Electronic
Journal of Statistics, 3:384–415, 2009.

721

Yi Zhou∗, Yaoliang Yu†, Wei Dai†, Yingbin Liang∗, Eric P. Xing†

[32] P. Tseng. On the rate of convergence of a partially
asynchronous gradient projection algorithm. SIAM
Journal on Optimization, 1(4):603–619, 1991.

[33] J. Tsitsiklis, D. Bertsekas, and M. Athans. Distributed
asynchronous deterministic and stochastic gradient
optimization algorithms. IEEE Transactions on Au-
tomatic Control, 31(9):803–812, 1986.

[34] L. G. Valiant. A bridging model for parallel computa-
tion. Communications of ACM, 33(8):103–111, 1990.

[35] Z. Wang, H. Liu, and T. Zhang. Optimal computa-
tional and statistical rates of convergence for sparse
nonconvex learning problems. The Annals of Statis-
tics, 42(6):2164–2201, 2014.

[36] Y. Yu, X. Zheng, M. Marchetti-Bowick, and E. P.
Xing. Minimizing nonconvex non-separable functions.
In The 17th International Conference on Artificial In-
telligence and Statistics (AISTATS), 2015.

[37] M. Zaharia, M. Chowdhury, M. J. Franklin,
S. Shenker, and I. Stoica. Spark: Cluster computing
with working sets. pages 10–10, 2010.

[38] C.-H. Zhang. Nearly unbaised variable selection un-
der minimax concave penalty. Annals of Statistics,
38(2):894–942, 2010.

[39] C.-H. Zhang and T. Zhang. A general theory of con-
cave regularization for high-dimensional sparse esti-
mation problems. Statistical Science, 27(4):576–593,
2012.

[40] Y. Zhu, X. Shen, and W. Pan. Simultaneous group-
ing pursuit and feature selection over an undirected
graph. Journal of the American Statistical Associa-
tion, 108(502):713–725, 2013.

722

