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Abstract
One of the issues in tuning an output probability of a Bayesian network by changing multiple
parameters is the relative amount of the individual parameter changes. In an existing heuristic
parameters are tied such that their changes induce locally a maximal change of the tuned probability.
This heuristic, however, may reduce the attainable values of the tuned probability considerably. In
another existing heuristic parameters are tied such that they simultaneously change in the entire
interval 〈0, 1〉. The tuning range of this heuristic will in general be larger then the tuning range
of the locally optimal heuristic. Disadvantage, however, is that knowledge of the local optimal
change is not exploited. In this paper a heuristic is proposed that is locally optimal, yet covers the
larger tuning range of the second heuristic. Preliminary experiments show that this heuristic is a
promising alternative.
Keywords: Bayesian networks; network tuning.

1. Introduction

Parameter tuning is one of the tools used for the construction of a Bayesian network that faithfully
represents a problem domain of interest. An expected output of the network under construction
then is the compared with the actual output and if the actual output deviates one or more of the
network’s parameters are adapted in order to enforce the correct output. In network tuning, chang-
ing multiple parameters may be preferred over a change of just a single parameter probability. In
some cases simply because a desired effect is not attainable by a single parameter change; also a
more levelled change of a network may be achieved when multiple parameters are used for tuning.
When a network is tuned by changing multiple parameters, choices have to be made with respect
to their relative amount of change; there may be several solutions and it may be preferred to use a
combination of changes that disturbs the original distribution as little as possible.

In Bolt and Renooij (2014) a ‘locally optimal’ tuning heuristic was proposed. With this heuristic,
provided that the required change of the output probability is small, approximately the solution
involving the smallest parameter changes is found. A disadvantage of this method, however, is
that the range of attainable values for the tuned probability can be reduced considerably. In the
‘balanced’ heuristic Chan and Darwiche (2004); Bolt and van der Gaag (2015), tuning parameters
simultaneously change in the entire interval 〈0, 1〉 and this heuristic therefore covers in general a
larger tuning range that the locally optimal heuristic. A disadvantage of the balanced heuristic,
however, is that information about the locally optimal change of the parameters is not exploited. In
Bolt and Renooij (2014) and Bolt and van der Gaag (2015) moreover sliced and balanced sensitivity
functions were introduced with which the change of an output probability given the locally optimal
and the balanced heuristic can be described.

In this paper a tuning heuristic is proposed that combines the advantages of locally optimal and
the balanced heuristic. In this combined heuristic the parameter changes are locally optimal, yet,
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the heuristic covers the same tuning range as the balanced heuristic. In preliminary experiments
the heuristics are evaluated using two different distance measures for probability distributions. The
experiments show that the combined heuristic is a promising alternative for network tuning involv-
ing multiple parameters with respect to minimising the distance between the original and the tuned
network.

2. Preliminaries

This paper considers Bayesian networks B representing joint probability distributions over sets of
discrete random variables V = {V1, . . . , Vn}, n ≥ 1. A value of V is indicated by v and a joint
value combination of V is indicated by v. The capitals V and V are also used to indicate the set
of values of V and the set of possible value combinations of V. Given a binary variable, v and v̄
are used to indicate its values. The letters x, y and z are used to indicate individual parameters of a
network and x,y and z are used to indicate sets of parameters.

When a parameter x of B is said to have a guaranteed positive effect on an outcome probabil-
ity Pr(w |u) of B, this entails that increasing (decreasing) the value of x will increase (decrease)
Pr(w |u), whatever the values of the other, non-varied, parameters of B. The meaning of a guaran-
teed negative effect is analogous. Parameters with a guaranteed positive or negative effect will said
to have a guaranteed qualitative effect. The superscript o will be used to indicate parameter values
and probabilities of a network in its original state.

2.1 N-way, Sliced and Balanced Sensitivity Functions

This section discusses n-way, sliced and balanced sensitivity functions. Sliced and balanced sensi-
tivity functions can be considered as ‘constrained’ sensitivity functions which can be derived from
an underlying n-way function. The locally optimal and the balanced tuning heuristic, which are
discussed in Section 3, can be described by sliced and balanced sensitivity functions, respectively.

An n-way sensitivity function Pr(w |u)(z) expresses an output Pr(w |u) of a Bayesian network
B in terms of n of its parameters, z = {z1, . . . , zn} Coupé and van der Gaag (2002). More specifi-
cally, a higher-order sensitivity function in z takes the form of a fractional-multilinear function:

Pr(w |u)(z) =

∑
zk∈P(z)

(
ck ·

∏
zi∈zk zi

)
∑

zk∈P(z)

(
dk ·

∏
zi∈zk zi

)
with U ∩W = ∅, where P(z) is the powerset of the set parameters z, and where the constants ck,
dk are determined by (a subset of) the non-varied parameters of the network at hand. A two-way
sensitivity function in the parameters z1 and z2 for example, has the following general form:

Pr(w |u)(z1, z2) =
c0 + c1 · z1 + c2 · z2 + c3 · z1 · z2
d0 + d1 · z1 + d2 · z2 + d3 · z1 · z2

As is usual, it is supposed that at most one parameter per local distribution is actively varied and that
the other parameters of the distribution, are adjusted according a proportional co-variation scheme.
Moreover, in this paper, it is assumed that parameters with a value of 0 or 1 are not adapted, and
that adapted parameters are not changed to 0 or 1.

If the sign of the partial derivative of Pr(w |u)(z) with respect to zi ∈ z is positive at zo, the
increase of the parameter zi has at zo a positive effect on the output Pr(w |u) and if it is negative,
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the increase of zi has a negative effect. In the remainder zi l zj and zi ��l zj will be used to indicate
that the partial derivatives of Pr(w |u)(z) with respect to zi and zj have an equal, respectively, an
opposite sign at zo. Note that the partial derivative of Pr(w |u)(z) with respect to zi ∈ z at zo

equals the sign of the first derivative of the one-way sensitivity function Pr(w |u)(zi) and therefore
can be established efficiently Kjaerulff and van der Gaag (2000).

In a sliced sensitivity function Bolt and Renooij (2014) all parameters z = {x, y1, . . . , yn−1}
of an n-way sensitivity function are tied linearly. That is, all parameters yi ∈ z are tied to x, by
yi = αi · x+ βi. The constants α1, . . . αn−1 determine a vector −→a = (α1, . . . , αn−1) along which
the parameters are changed. These constants can be chosen freely. The constants β1, . . . βn−1 are
chosen such that the function includes zo. The result is a function in x which takes the form of the
fraction of two polynomials noted as

Pr(w |u)(x‖y)
−→a =

c0 + c1 · x1 + . . .+ cm · xm

d0 + d1 · x1 + . . .+ dm · xm

where each xk, k = 1, . . . ,m, is a polynomial term of degree k withm ≤ n, and y = {y1, . . . , yn−1}.
A sliced sensitivity function can be viewed as a linear section of an underlying n-way sensitivity
function. Note that there are infinite many sliced sensitivity functions with the same underlying
n-way function since −→a can be chosen freely.

Also in a balanced sensitivity function Bolt and van der Gaag (2015) all parameters z =
{x, y1, . . . , yn−1} of the underlying n-way function are tied. Now the parameters yi are tied to
x based on the odds ratio of their original values and new values. The relation between yi can be
chosen to be positive or negative. The relation xo ·(1−x)/(1−xo) ·x = yoi ·(1−yi)/(1−yoi ) ·yi ⇔
yi = x·yo·(1−xo)

x·(yo−xo)+xo·(1−yo) , ties x and yi positively in which case x and y simultaneously vary from 0

to 1. The relation xo · (1− x)/(1− xo) · x = (1− yoi ) · yi/yoi · (1− yi)⇔ yi = xo·yo·(x−1)
yo·(x−xo)+x·(xo−1) ,

ties x and yi negatively in which case yi varies from 1 to 0 where x varies from 0 to 1. The result is
again a function in x which takes the form of the fraction of two polynomials, noted as

Pr(w |u)(x‖y+,y−) =
c0 + c1 · x1 + . . .+ cm · xm

d0 + d1 · x1 + . . .+ dm · xm

where each xk, k = 1, . . . ,m, is a polynomial term of degree k with m ≤ n and where the
parameters yi ∈ y+ are tied positively to x, and the parameters yi ∈ y− are tied negatively to
x, with y+ ∪ y− = {y1, . . . , yn−1}. A balanced sensitivity function is a curved section of the
underlying n-way which has as main characteristic that all parameters simultaneous change in the
entire interval 〈0, 1〉. Note that there are multiple balanced functions with the same underlying
n-way function since each yi can be tied either positively or negatively to x.

2.2 Distance Measures

A common measure for comparing two probability distributions Pro and Pr over the same set of
variables V is the Kullback-Leibler (KL) divergence Kullback and Leibler (1951). This divergence
is defined as KL =

∑
v∈V Pro(v) · ln Pro(v)

Pr(v) . The KL-divergence is positive and equals zero if
and only if Pro = Pr. Although the measure is asymmetric and therefore is not a proper distance
measure it is often indicated as the KL-distance.

In Chan and Darwiche (2005) another measure for the distance between two distributions Pro

and Pr over the same set of variables V was proposed, This distance CD is define as CD =
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ln maxv∈V
Pr(v)
Pro(v) − ln minv∈V

Pr(v)
Pro(v) , where 0/0 and∞/∞ are defined to equal 1. The distance

is positive, and equals zero if and only if Pro = Pr. In contrast to the KL-divergence, moreover,
this measure is symmetric. It was shown that the KL-divergence and the CD-distance may result in
a different outcome when used for judging whether a distribution Pr′ or a distribution Pr′′ is closer
to a distribution Pr. 1

3. Tuning Heuristics

In this section first the locally optimal heuristic Bolt and Renooij (2014) and the balanced heuristic
Chan and Darwiche (2004); Bolt and van der Gaag (2015) are described. Then, a heuristic which
combines the advantages of the two former heuristics is proposed. The essence of all three heuristics
is that the parameters used for tuning are tied according a specific scheme. The changes induced
in an output probability then can be described by a corresponding ‘constrained’ n-way sensitivity
function. Note that a network can be tuned without the availability of the appropriate sensitivity
function; the required parameter changes can be found by iterating the tied parameters towards a
desired outcome. In Section 5 the heuristics are experimentally compared with respect to the KL
and CD-distances they induce between original and tuned distributions in a small example network.

Definition 1 (Locally optimal heuristic) Consider a set parameters z = {x, y1, . . . , yn−1} of a
Bayesian network B. In a locally optimal tuning scheme, with respect to an output probability
Pr(w |u) of B, all parameters yi ∈ z are tied to x by:

yi =
syoi
sxo
· (x− xo) + yoi

where sxo and syoi are the values of the partial derivatives of Pr(w |u)(z) with respect to x and yi
at zo, respectively.

In a locally optimal tuning heuristic, parameters yi are tied linearly to x based on the values of the
partial derivatives of the n-way sensitivity function Pr(w |u)(z) at the original parameter values zo.
Note that if syoi /sx

o is positive, yi and x, simultaneously increase/decrease and if syoi /sx
o is nega-

tive, an increase of x results in an decrease of yi and vice versa. Note furthermore that sxo should
be unequal zero, that is, a change of x should have an effect on Pr(w |u). The change of an output
probability given a locally optimal scheme is expressed by a sliced sensitivity function of which the
vector−→a equals the gradient of Pr(w |u)(z) at zo. This implies that as long as the required changes
are small, the changes will be a good approximation of the adjustments which satisfy the required
constrained with a minimal total absolute change of the parameters. A sliced sensitivity function
capturing the locally optimal scheme will be denoted by Pr(w |u)(x‖y1, . . . , yn−1)∇.

Definition 2 (Balanced heuristic) Consider a set parameters z = {x, y1, . . . , yn−1} of a Bayesian
network B. In a balanced tuning scheme, with respect to an output probability Pr(w |u) of B, all
parameters yi ∈ z are tied to x by

yi =


x · (xo − 1) · yoi

xo · (x− 1 + yoi )− x · yoi
if yi l x

(x− 1) · xo · yoi
−x+ x · xo + x · yoi − xo · yoi

if yi ��l x

1. In Chan and Darwiche (2004) it was proposed that in tuning an output probability, a balanced change of the parameters
involved minimises the CD-distance. This, however, is not true as was recognised in Chan (2005).
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The above relationships imply that if yi l x, we have that yi and x simultaneously increase/decrease
and that if yi ��l x, an increase of x results in an decrease of yi and vice versa. Moreover, x and yi vary
simultaneously in the entire interval 〈0, 1〉. The balanced sensitivity function Pr(w |u)(x‖y+,y−),
with y+ = {yi ∈ z | yi l x} and y− = {yi ∈ z | yi ��l x}, capturing the balanced heuristic, will
be noted as Pr(w |u)(x‖y+,y−)∗. Note that the condition yi l x (yi ��l x) is fulfilled if the partial
derivatives of Pr(w |u)(z) with respect to yi and x have the same (opposite) sign at zo. This implies
that the heuristic results in the same qualitative relationships between x and yi as the locally optimal
heuristic. Now however, in contrast to the locally optimal heuristic, all parameters can vary in the
entire interval 〈0, 1〉. The range of Pr(w |u)(x‖y+,y−)∗ will therefore in general be larger than
the range of Pr(w |u)(x‖y)∇. Under the condition that all parameters involved have a guaranteed
qualitative effect, the range of the balanced sensitivity function Pr(w |u)(x‖y+,y−)∗ will even be
the same as the range of the underlying n-way sensitivity function Pr(w |u)(x,y+,y−). Under this
condition, the balanced heuristic thus covers the maximal tuning range. The function then will be
noted as Pr(w |u)(x‖y+,y−)~. In Bolt et al. (to appear), Bayesian network parameters with such
a guaranteed qualitative were identified.

The advantage of the locally optimal heuristic is that it induces locally the maximal effect on
the tuned output; disadvantage however is that the heuristic will, in general, cover a smaller tuning
range than the balanced heuristic. Disadvantage of the balanced heuristic on the other hand, is that
this heuristic may be quite suboptimal for small network adaptations. Below now a tuning heuristic
is defined which is locally optimal, yet covers the same tuning range as the balanced heuristic.

Definition 3 (Combined heuristic) Consider a set parameters z = {x, y1, . . . , yn−1} of a Bayesian
network B. In a combined tuning scheme, with respect to an output probability Pr(w |u) of B, all
parameters yi ∈ z are tied to x by:

yi =



x · (sxo ·yoi ·(yoi − 1) + syoi ·(1− xo)) + sxo ·yoi ·(1− yoi )− syoi ·xo ·(1− xo)

x·(sxo ·(yoi − 1) + syoi ·(1− xo)) + sxo ·(1− yoi )− syoi ·xo ·(1− xo)
if yi l x, x ≥ xo

x · sxo · yio2

x · (sxo · yoi − syoi · xo) + syoi · xo2
if yi l x, x ≤ xo

x · sxo · yio2 − sxo · yio2

x · (syoi · (1− xo) + sxo · yoi ) + syoi · xo · (xo − 1)− sxo · yoi
if yi ��l x, x ≥ xo

x · (sxo · yoi · (yoi − 1)− syoi · xo) + syoi · xo2

x · (sxo · (yoi − 1)− syoi · xo) + syoi · xo2
if yi ��l x, x ≤ xo

where sxo, syoi , . . . , sy
o
n−1 are the values of the partial derivatives of Pr(w |u)(z) with respect to

respectively x, y1, . . . , yn−1 at zo.

In the combined heuristic the relationship between yi and x is constructed such that changes are
locally optimal, and all parameters change simultaneously in the entire interval 〈0, 1〉, tied either
positively or negatively, depending the sign of their partial derivatives. The values of the first deriva-
tives of the functions above equal syoi /sx

o at xo. This is also the value of the first derivate at xo

given relationship between yi and x as defined for the locally optimal heuristic. The combined
heuristic thus captures, just as the locally optimal heuristic a locally optimal change. Moreover the
sign of the first derivatives of all the functions equals the sign of sxo · syoi . If yi l x, the function
thus is increasing and if yi ��l x the function is decreasing. Furthermore for x = 0, we find yi = 0 if
yi l x and yi = 1 if yi ��l x and for x = 1 we find yi = 1 if yi l x and yi = 0 if yi ��l x. The function
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Figure 1: A small example network.

describing Pr(w |u) given the change of the parameters z in the combined tuning heuristic will be
indicated by Pr(w |u)(x‖y+,y−)?,∇ in which y+ = {yi ∈ z | yi l x} and y− = {yi ∈ z | yi ��l x}.
If the heuristic just involves parameters with a guaranteed qualitative effect, the range of this func-
tion will be the same as the range of the underlying n-way function. The sensitivity function will
then be indicated by Pr(w |u)(x‖y+,y−)~,∇.

4. Example

Consider the example network from Figure 1. In the current network it is found that Pr(st|uvw) =
0.045. Now suppose that Pr(st|uvw) has to be tuned to 0.25 by adapting the parameters v1 =
Pr(v |st) and w2 = Pr(w |vt). The 2-way sensitivity function of Pr(st|uvw) in v1 and w2 is

Pr(st|uvw)(v1, w2) =
2.88 · v1

2.88 · v1 + 7.83 · w2 + 4.54

The extremes of this function are Pr(st|uvw)(0, 1) = 0 and Pr(st|uvw)(1, 0) = 0.388. The
different tuning heuristics from Section 3 now define different relationships between v1 and w2. For
a locally optimal heuristic is found

w2 = −0.128 · v1 + 0.213

As can be established using the results in Bolt et al. (to appear), v1 has a guaranteed positive effect
on Pr(st|uvw) and w2 has a guaranteed negative effect. Since the parameters v1 and w2 have
opposite effects on the output probability, that is, v1 ��l w2, for the balanced heuristic is found

w2 =
0.2 · v1 − 0.2

−7 · v1 − 0.2

And for the combined heuristic is found

w2 =


1.721− 1.722 · v1
8.111− 3.637 · v1

if v1 ≥ vo1
0.055 + 6.334 · v1
0.055 + 33.88 · v1

if v1 ≤ vo1

The different relationships between v1 and w2 are depicted in Figure 2. The figure shows that,
for the combined and the locally optimal heuristic, the functions relating v1 and w2 have the same
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Figure 2: A balanced, a locally optimal
and a combined relationship between the pa-
rameters v1 and w2 given the example net-
work of Figure 1 and the output probability
Pr(st|uvw).

Figure 3: The 2-way sensitivity func-
tion Pr(st|uvw)(v1, w2), the curved
surface determining the function
Pr(st|uvw)(v1‖w−2 )~ and the plane deter-
mining the function Pr(st|uvw)(v1‖w2)

∇.

slope at (vo1, w
o
2) = (0.1, 0.2). Given these heuristics the simultaneous changes of v1 and w2 are

locally optimal. The figure moreover shows that for the combined and the balanced heuristic, the
parameters v1 and w2 both cover the entire interval 〈0, 1〉.

Figure 3 shows the 2-way function Pr(st|uvw)(v1, w2) and shows in addition the two sur-
faces which meet the constraints established for the relationship between v1 and w2 given the
locally optimal and the balanced heuristic, determining the functions Pr(st|uvw)(v1‖w2)

∇ and
Pr(st|uvw)(v1‖w−2 )~. (The surface determining Pr(st|uvw)(v1‖w−2 )~,∇ is not depicted.)
The constrained functions capturing the different heuristics can be derived from the two-way sensi-
tivity function using the relationships between v1 and w2 given above, These functions are

Pr(st|uvw)(v1‖w2)
∇ =

2.880 · v1
6.202 + 1.875 · v1

Pr(st|uvw)(v1‖w−2 )~ =
0.576 · v1 + 20.16 · v21

2.474 + 30.79 · v1 + 20.16 · v21
and

Pr(st|uvw)(v1‖w−2 )~,∇ =


−2.230 · v1 + v21

−4.799 + 0.632 · v1 + v21
if v1 ≥ vo1

−0.163 · v1 − 100 · v21
0.700− 208.5 · v1 − 100 · v21

if v1 ≤ vo1

The desired output Pr(st|uvw) = 0.25 is found for v1 = 0.643 (and w2 = 0.130), for v1 = 0.546
(and w2 = 0.0152) and for v1 = 0.625 (and w2 = 0.111), respectively.

The distances between the probability distributions represented by the original and the adapted
network given the different heuristics are

locally optimal balanced combined
CD-distance 2.79 3.88 2.71

KL-divergence 0.120 0.127 0.115
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Figure 4: The CD-distance between the orig-
inal and the tuned network from Figure 1 as
a function of Pr(st|uvw) given a balanced,
a locally optimal and a combined tuning of
this probability with v1 and w2.

Figure 5: The KL-distance between the orig-
inal and the tuned network from Figure 1 as
a function of Pr(st|uvw) given a balanced,
a locally optimal and a combined tuning of
this probability with v1 and w2.

For tuning Pr(st|uvw) to 0.25, both with respect to minimising the CD-distance as with respect to
minimising the KL-divergence, the combined heuristic thus is preferred.

To illustrate the relation between the CD-distance and the required value of the tuned proba-
bility, Figure 4 shows the CD-distance between the original and the tuned network as a function
of Pr(st|uvw) given locally optimal, balanced and combined tuning with v1 and w2. The figure
shows that the combined heuristic performs at least as well as both other heuristics with respect to
minimising the CD-distance. Moreover the figure shows that the balanced and the combined heuris-
tic can be used for the entire tuning range 〈0, 0.388〉 whereas the locally optimal heuristic cannot be
applied for new values of Pr(st|uvw) above 0.357.

To conclude the example, Figure 5 shows the KL-divergence as a function of the new value of
Pr(st|uvw) for linear, balanced and combined tuning with v1 and w2. Although less pronounced,
the figure shows similar tendencies as Figure 4.

5. Experiments

To investigate whether the combined tuning heuristic proposed in Section 3 might be a suitable
alternative in tuning a network with multiple parameters, preliminary experiments were performed
with the network from Figure 1. For this small network the CD-distance and the KL-divergence
could be established exactly. The locally optimal (L), balanced (B) and combined (C) heuristic
were compared with respect to the CD-distance and the KL-divergence between original and the
tuned network when tuning the output value Pr(st|uvw). First, 100 sets of parameter values in
the interval 〈0, 1〉 were of randomly generated from a uniform distribution.2 For each of the 100
resulting networks, the original probability Pro(st|uvw) was, using the proposed heuristics, tuned
to new values Pr(st|uvw) such that ln

(
(1−Pro(st |uvw))·Pr(st |uvw)
Pro(st |uvw)·(1−Pr((st |uvw))

)
equaled −2, −1, −0.5, 0.5, 1

2. Since the example network is binary, for each local distribution one parameter value value was generated; the other
parameter of the same distribution was set to 1− value.
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and 2. An output value of 0.2, for example, would be tuned to 0.033, 0.084, 0.132, 0.292, 0.405
and 0.649 an output value of 0.5 would be tuned to 0.119, 0.269, 0.378, 0.622, 0.731 and 0.881.
The heuristics were compared for the following sets of tuning parameters

set1 = {v1, u2, w2}
set2 = {v1, v2, v3, v4}
set3 = {v1, v2, u1, u2, w1, w2}

These sets all include v1. For v1 = 0 is found that Pr(st|uvw) = 0 which implies that including v1
guarantees that tuning to lower values is always feasible when using the balanced or the combined
heuristic. The experiments were repeated with 100 sets of parameter assignments generated from a
distribution biased towards 0 and 1.3

‘uniform’ ‘biased’
set 1 set 2 set 3 set 1 set 2 set 3

ln(OR) = −2 31 35 13 40 43 10
ln(OR) = −1 19 14 6 30 34 5
ln(OR) = −0.5 9 7 3 21 22 3
ln(OR) = 0.5 9 9 6 22 35 9
ln(OR) = 1 24 32 13 32 45 18
ln(OR) = 2 50 68 35 53 58 35

Table 1: The number out of 100 networks with the graph from Figure 1 with parameters generated
randomly from a uniform distribution cq from a distribution biased towards 0 and 1, in which the
output probability Pr(st|uvw) could not be tuned to the desired value.

The results are presented in Tables 1 and 2. Table 1 shows the number of networks for which
the output could not be tuned to the desired value using the locally optimal heuristic. As could be
expected, the larger the difference between the original and the desired output probability, the larger
the number of networks which could not be tuned. Moreover, the ‘biased parameterisation’ resulted
in substantially more networks that could not be tuned than the ‘uniform parameterisation’ when
tuning with set 1 or set 2. This result may be explained by the ‘biased parameterisation’ resulting
in a more diverging impact of the individual parameters on the output. Given the small tuning sets,
then there may be just parameters with a small impact included. For the other two tuning heuristics
was observed that in all cases the desired output probability could be reached.

The heuristics were then pairwise compared with respect to the distances between the original
and tuned networks. Table 2 indicates which heuristic most often resulted in the smallest CD/KL-
distance for the different tuning values, different tuning sets and different parameterisations. When
an output probability could not be tuned to the desired value, the distance was supposed to be∞.
With t a 50/50 result is indicated. The underlying numbers are given in the appendix.

3. The biased parameters were sampled from an U-quadratic distribution, with lower limit 0 and upper limit 1.
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CD-distance, ‘uniform parameterisation’
L vs B L vs C B vs C

set 1 set 2 set 3 set 1 set 2 set 3 set 1 set 2 set 3
ln(OR) = −2 L L L C C L C C C
ln(OR) = −1 L L L C C L C C C
ln(OR) = −0.5 L L L C C L C C C
ln(OR) = 0.5 L B L C C C C C C
ln(OR) = 1 L B L C C C C C C
ln(OR) = 2 B B B C C C C B C

CD-distance, ‘biased parameterisation’
L vs B L vs C B vs C

set 1 set 2 set 3 set 1 set 2 set 3 set 1 set 2 set 3
ln(OR) = −2 B B L C C L C C C
ln(OR) = −1 L L L C C L C C C
ln(OR) = −0.5 L L L C C L C C C
ln(OR) = 0.5 L B L C C C C C C
ln(OR) = 1 L B L C C C C C C
ln(OR) = 2 B B L C C C C C C

KL-divergence, ‘uniform parameterisation’
L vs B L vs C B vs C

set 1 set 2 set 3 set 1 set 2 set 3 set 1 set 2 set 3
ln(OR) = −2 L L L C t t C C C
ln(OR) = −1 L L L C L C C C C
ln(OR) = −0.5 L L L C L t C C C
ln(OR) = 0.5 L L L C C C C C C
ln(OR) = 1 B B L C C C C C C
ln(OR) = 2 B B B C C C C C C

KL-divergence, ‘biased parameterisation’
L vs B L vs C B vs C

set 1 set 2 set 3 set 1 set 2 set 3 set 1 set 2 set 3
ln(OR) = −2 B B L C C L C C C
ln(OR) = −1 L B L C C L C C C
ln(OR) = −0.5 L B L C C L C C C
ln(OR) = 0.5 L B L C C C C C C
ln(OR) = 1 L B L C C C C C C
ln(OR) = 2 B B L C C C C C C

Table 2: Pairwise comparison of the balanced (B), locally optimal (L) and combined (C) tuning
heuristic, for six different tuning values, three different tuning sets and two types of parameteri-
sation. The indicated heuristic resulted in the majority of 100 networks in the smallest distance
between the original and the tuned distribution.

The results are quite similar for as well the CD/KL-distance as for two types of parameterisation.
In comparing the locally optimal and the balanced heuristic it is observed that, using set 1 or set 2,
the locally optimal heuristic more often induced the smallest distance for tuning to values closer to
the original probability, whereas the balanced heuristic more often induced the smallest distance for
the more extreme tuning values, especially in tuning to higher values. Using set 3, tuning with the
locally optimal heuristic was most favourable in almost all cases. In comparing the locally optimal
with the combined heuristic, it is observed that the combined heuristic most often resulted in the
smallest distance/divergence in most cases. Tuning with the locally optimal heuristic was only most
favourable for tuning to lower values given the larg(er)(est) tuning sets 2 and 3. In comparing
the balanced and the combined heuristic, to conclude, it is observed that for almost all cases the
combined heuristic resulted most often in the smallest CD/KL-distance.

All in all, the preliminary experiments with the combined tuning heuristic show that this heuris-
tic is a promising alternative in tuning networks with multiple parameters with respect to minimising
the CD/KL-distance between the distributions represented by the original and the tuned networks.
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6. Conclusions

One of the issues in tuning an output probability of a Bayesian network by changing multiple pa-
rameters is the relative amount of change of the individual parameters; a combination of parameter
changes which disturbs the original network as little as possible may be preferred. An existing
‘locally optimal’ heuristic induces a locally optimal combination of parameter changes; another ex-
isting ‘balanced’ heuristic has as advantage that it covers, in general, a larger range of attainable
values than the locally optimal heuristic. In this paper a new tuning heuristic was proposed that is
locally optimal, yet covers the same tuning range as the balanced heuristic. In preliminary experi-
ments with a small example network, this combined heuristic often outperformed the two existing
heuristics with respect to minimising the CD/KL-distance between the original and the tuned net-
work in tuning one of its output values. The combined heuristic thus is a promising alternative for
network tuning with multiple parameters.

More research is required to refine the results of this paper. A subject for future research, is
the effect of the inclusion of parameters without a guaranteed qualitative effect in the tuning set. In
that case, although the tuning range will in general still be larger than the tuning range given the
locally optimal heuristic, also the balanced and the combined heuristic are not guaranteed to cover
the maximal tuning range any more. Also the effect of the choice of the tuning parameters needs
more research. Selecting just parameters with an individual high local influence will favour the
locally optimal heuristics; other criteria for parameter selection, for example, the selection of the
parameters which were based on just a few data, may have a different effect on the performance of
the heuristics. Yet another interesting subject for future research is the relation between the solutions
found by using the proposed heuristics and the solution that minimises the distance between the
distributions represented by the original and the tuned network.
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Appendix

CD-distance, ‘uniform parameterisation’
L−B> 0 L−C> 0 B−C> 0

set 1 set 2 set 3 set 1 set 2 set 3 set 1 set 2 set 3
ln(OR) = −2 46 43 23 62 84 34 75 79 78
ln(OR) = −1 33 38 23 62 82 33 79 78 83
ln(OR) = −0.5 28 34 22 60 83 38 77 73 80
ln(OR) = 0.5 32 52 25 69 94 70 77 54 77
ln(OR) = 1 39 63 31 70 99 73 80 55 76
ln(OR) = 2 64 88 57 83 99 84 69 33 71

CD-distance, ‘biased parameterisation’
L−B> 0 L−C> 0 B−C> 0

set 1 set 2 set 3 set 1 set 2 set 3 set 1 set 2 set 3
ln(OR) = −2 53 76 74 59 76 64 17 31 84
ln(OR) = −1 40 72 78 46 77 68 13 31 84
ln(OR) = −0.5 37 69 74 48 74 64 17 32 84
ln(OR) = 0.5 39 72 69 57 95 52 25 64 76
ln(OR) = 1 45 76 70 57 95 54 31 64 74
ln(OR) = 2 60 82 67 71 99 55 44 71 71

KL-divergence ‘uniform parameterisation’
L−B> 0 L−C> 0 B−C> 0

set 1 set 2 set 3 set 1 set 2 set 3 set 1 set 2 set 3
ln(OR) = −2 49 48 25 51 50 50 66 87 87
ln(OR) = −1 41 36 21 54 49 51 67 84 86
ln(OR) = −0.5 37 31 22 52 47 50 69 81 83
ln(OR) = 0.5 48 48 25 62 66 65 60 67 81
ln(OR) = 1 51 60 36 66 77 69 60 58 81
ln(OR) = 2 65 80 53 79 90 79 58 53 80

KL-divergence, ‘biased parameterisation’
L−B> 0 L−C> 0 B−C> 0

set 1 set 2 set 3 set 1 set 2 set 3 set 1 set 2 set 3
ln(OR) = −2 54 65 69 57 61 73 21 38 84
ln(OR) = −1 46 61 71 57 59 70 18 42 87
ln(OR) = −0.5 42 60 68 51 58 68 16 44 86
ln(OR) = 0.5 36 62 76 56 62 62 26 60 80
ln(OR) = 1 46 65 75 59 68 65 31 65 81
ln(OR) = 2 60 76 76 71 82 64 41 70 79

Pairwise comparison of the balanced (B), locally optimal (L) and combined (C) tuning heuristic,
for six different tuning values, three different tuning sets and two types of parameterisation. The
number indicates the number of times out of 100 that distance concerned was larger than zero.
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