JMLR: Workshop and Conference Proceedings vol 52, 62-73, 2016 PGM 2016

On Bayesian Network Inference with Simple Propagation

Cory J. Butz BUTZ@CS.UREGINA.CA
Jhonatan S. Oliveira OLIVEIRA @CS.UREGINA.CA
André E. dos Santos DOSSANTOS @CS.UREGINA.CA

Department of Computer Science
University of Regina
Regina

Anders L. Madsen ANDERS @HUGIN.COM
HUGIN EXPERT A/S

Department of Computer Science

Aalborg University

Aalborg

Abstract

Simple Propagation (SP) was recently proposed as a new join tree propagation algorithm for exact
inference in discrete Bayesian networks and empirically shown to be faster than Lazy Propagation
(LP) when applied on optimal (or close to) join trees built from real-world and benchmark Bayesian
networks. This paper extends SP in two directions. First, we propose and empirically evaluate eight
heuristics for determining elimination orderings in SP. Second, we show that the relevant potentials
in SP are precisely those in LP.

Keywords: Bayesian networks; inference; join tree propagation; elimination orderings.

1. Introduction

Uncertainty can be managed by exact inference in discrete Bayesian networks (BNs) (Pearl, 1988;
Koller and Friedman, 2009; Darwiche, 2009; Kjerulff and Madsen, 2013). A BN consists of a
directed acyclic graph (DAG), where the vertices in the DAG represent variables in the problem
domain, and a set of conditional probability tables (CPTs) matching the structure of the DAG. One
approach to exact inference is join tree propagation (Shafer, 1996). Here, the DAG of a BN is
transformed via the moralization and triangulation procedures into a join tree (Pearl, 1988). Each
CPT, having been updated with observed evidence and called a potential (Shafer, 1996), is assigned
to precisely one join tree node containing its variables. Messages are systematically propagated
between neighbour nodes such that posterior probabilities can be computed for every non-evidence
variable. Two join tree propagation algorithms of interest are Lazy Propagation and Simple Propa-
gation.

Lazy Propagation (LP) (Madsen and Jensen, 1999) is a sophisticated join tree propagation al-
gorithm. When a node is ready to construct a message, LP first distinguishes between relevant and
irrelevant potentials using graphical methods. Next, with the relevant potentials, LP builds and
uses graphs to determine elimination orderings (Koller and Friedman, 2009), an important practical
consideration. Simple Propagation (SP) (Butz et al., 2016) was recently suggested as another join
tree propagation algorithm. When a node N is ready to construct its message to a neighbour sharing
variables .S, SP recursively identifies those potentials at NV with a “one in, one out” property, namely,
the potential has at least one non-evidence variable in S and another not in S. SP then eliminates

ON BAYESIAN NETWORK INFERENCE WITH SIMPLE PROPAGATION

each “out” variable. SP is often faster than LP in experimental results involving optimal (or close
to) join trees built from numerous real-world and benchmark BNs (Butz et al., 2016).

This paper extends SP in practical and theoretical directions. As there can be more than one
potential satisfying the “one in, one out” property, the order in which these potentials are processed
may affect SP’s performance in practice. We propose and evaluate eight heuristics for determining
elimination orderings in SP. For example, sorting potentials in increasing or decreasing order based
on the number of variables in the potential or, more specifically, in increasing or decreasing order
based on those variables of the potential that happen to be in the separator. Another four heuristics
can be defined by considering variable domains rather than the number of variables in each case,
respectively. Our experimental results, involving optimal (or close to) join trees built from 29 real-
world and benchmark BNs, suggest that determining elimination orderings in SP often is wasteful.
On the theoretical side, we establish that the relevant potentials in SP are exactly those in LP. We
show this by utilizing the precise relationship between variables in LP’s domain graphs and the
“out” variables in SP. This is a stronger result than in (Butz et al., 2016), where it was only shown
that SP is equivalent to LP, namely, the product of the messages are equal.

This paper is organized as follows. Section 2 gives background information. Elimination or-
derings are proposed in Section 3. In Section 4, we establish the equivalence between relevant
potentials in SP and LP. Conclusions are drawn in Section 5.

2. Background

Let U = {v1,v2,...,vy,} be afinite set of variables, each with a finite domain, and V' be the domain
of U. A potential on V is a function ¢ such that ¢(v) > 0 foreach v € V, and at least one ¢(v) > 0.
Henceforth, we say ¢ is on U instead of V. A joint probability distribution is a potential P on U,
denoted P(U), that sums to one. For disjoint X,Y C U, a conditional probability table (CPT)
P(X]Y) is a potential over X UY that sums to one for each value y of Y. For simplified notation,
{v1,v2,...,v,} may be written as v1vg - - v, X UY as XY, and ¢ (X) as ¢.

N TN .
NN q

N A

] — n

7

i

™~

k— m— o0 — 1

Figure 1: A BN extended from (Madsen and Jensen, 1999).

A Bayesian network (BN) (Pearl, 1988) is a directed acyclic graph (DAG) B on U together
with CPTs P(vi|Pa(v1)), P(v2|Pa(va)), ..., P(vy|Pa(vy,)), where Pa(v;) denotes the parents
(immediate predecessors) of v; in B. For example, Figure 1 depicts a BN, where CPTs P(a),
P(bla), ..., P(r|j,0,q) are not shown. We call B a BN, if no confusion arises. The product of the
CPTs for B on U is a joint probability distribution P(U).

The conditional independence (Pearl, 1988) of X and Z given Y holding in P(U) is denoted
I(X,Y,Z), where X, Y, and Z are pairwise disjoint subsets of U. If needed, the property that

63

BuUTZ, OLIVEIRA, DOS SANTOS, AND MADSEN

I(X,Y,Z)isequivalent to I (X — Y,Y, Z — Y') (Pearl, 1988) can be applied to make the three sets
pairwise disjoint; otherwise, (X, Y, Z) is not well-formed.

A join tree (Pearl, 1988) is a tree with sets of variables as nodes, and with the property that any
variable in two nodes is also in any node on the path between the two. The separator (Shafer, 1996)
S between any two neighbouring nodes IV; and N, is S = N; N N;. A DAG B can be converted
into a join tree via the moralization and triangulation procedures. The moralization (Lauritzen
and Spiegelhalter, 1988) B™ of B is obtained by adding undirected edges between all pairs of
vertices with a common child and then dropping directionality. An undirected graph is triangulated
(Kjerulff, 1990), if each cycle of length four or more has an edge between two nonadjacent variables
in the cycle. Each maximal clique (complete subgraph) (Pearl, 1988) of the triangulated graph is
represented by a node in the join tree.

The BN CPTs are updated by deleting all configurations disagreeing with the observed evidence
E = e, if any. Lastly, each CPT P(v;| Pa(v;)) is assigned to exactly one join tree node N containing
the variables v; U Pa(v;). Now we say the join tree is initialized.

Example 1 Recall the BN B in Figure 1, where all variables are binary. Consider the join tree
for B with three nodes: N1 = {a,b,c}, No = {b,c,d,e, f,g,h,i,j,k,l,m,n 5o0,q}, and
N3 = {j,0,q,7}. Let the observed evidence in B be d = 0 and n = 1. Those CPTs con-
taining d and n are updated by keeping only those configurations with d = 0 and n = 1. Assigning
the CPTs to N1, No, and N3 can yield the following respective factorizations F1, Fo, and F3:

F1 = {P(a), P(bla), P(cla)},

F2 = {P(d=0[b,c), P(e|]d = 0), P(f|d = 0), P(gle), P(h|f), P(i), P(jlg), P(klg, h),
P(l|h, i), P(m|k), P(n = 1), P(o|m), P(qln = 1)},

Fz = {P(r|j,0.q)}.

Simple propagation (SP) (Butz et al., 2016) is a novel JTP algorithm, since its message con-
struction, called Simple Message Construction (SMC) and given in Algorithm 1, exploits the fac-
torization of potentials without building and examining graphs. Doing so allows SP in message
construction to safely remove (without performing numerical computation) some irrelevant poten-
tials from the factorization. Given a factorization , and with respect to a separator .S, the procedure
REMOVEBARREN recursively removes each potential ¢(W|Z), if no variable in W appears in an-
other potential in 7 and W N S = 0.

Algorithm 1 Simple Message Construction.

1: procedure SMC(F, S, F)

2: F = REMOVEBARREN(F, 5)

3 while 3 ¢(X) € F with two variablesv ¢ S — F andv' € S — F do
4:

5

F = SumMOUT(v, F)
return {¢(X) € F| X C S}

In the following example, we emphasize line 3 of SMC. By “one in, one out”, we mean a
potential in F has at least one non-evidence variable in the separator and another non-evidence
variable not in the separator.

64

ON BAYESIAN NETWORK INFERENCE WITH SIMPLE PROPAGATION

Example 2 Recall the initialized join tree of Example I, where the evidence is d = 0 and n = 1.
SP augments each node with the evidence variables d and n. If N3 is chosen as root, messages
will be passed as follows: my from Ny to No; mg from Na to N3; ms from N3 to Na; and, my
from Ny to Ni. Nj calls SMC(F, S, E) with F = {P(a), P(bla), P(cla)}, S = {b,c,d,n},
and E = {d,n}. In line 2, no potentials are removed by REMOVEBARREN. [n line 3, where
S — E = {b,c}, potential P(bla) contains non-evidence variable b in the separator and non-
evidence variable a not in the separator. In line 4, SP only needs to eliminate variable a as:

) = > Pla,b,c) ZP P(bla) - P(cla). (1)

Hence, N sends message P (b, c) to No.
Node Ny calls SMC(F, S, E) to compute its message to node Ns, where S = {d, j,n,o0,q},
E ={d,n}, and F is:

F = FHU{P(b,c)}.)

In line 2, REMOVEBARREN does not remove any potentials.
In line 3, where S — E = {j,0,q}, P(jlg), for instance, has non-evidence variable j in the
separator and a non-evidence variable g not in the separator. Thus, in line 4, g is eliminated as

P(j, kle, h) = ZP (gle) - P(jlg) - P(klg, h), 3)

vielding the new factorization:
= {P(b,c), P(d=0[b,c), Pe|ld = 0), P(f|d = 0), P(h|f), P(i), P(j, kle,h), (4)
P(llh, i), P(ml|k), P(n = 1|I), P(olm), P(q|n = 1)} .

In potential, say P(j,k|e, h), j is a non-evidence variable in the separator and h is a non-evidence
variable not in the separator. Thus, SP eliminates h, giving:

h

vielding the following factorization:

= {P(b,c),P(d =0|b,c), P(eld = 0), P(f|d =0), P(i), P(j, k,lle, f, 1),
P(mlk), P(n = 1|l), P(o|m), P(q|n = 1)}.

Similarly, in the potential, say P(j,k,l|e, f,1), j is a non-evidence variable in the separator and f
is a non-evidence variable not in the separator. Thus, SP eliminates f, yielding:

P(j,k,1|d = 0,e,i) = > P(j,k,lle, f,i) - P(f|d =0). (©6)
f

Similarly, SP eliminates 1, e, k, I, and m. Thus, SP sends message
= {P(j,n=1,0/d =0),P(qln=1)}

to N3 in line 5.

In the outward phase, it can be verified that N5 sends an empty message to No, while No sends
P(d =0|b,c) to Nj.

65

BuUTZ, OLIVEIRA, DOS SANTOS, AND MADSEN

3. Elimination Orderings in SP

When a node is ready to construct a message in SP, there may be more than one potential satisfy-
ing the “one in, one out” property. The order in which these potentials are processed may affect
SP’s performance in practice. In this section, we propose and empirically evaluate 8 heuristics for
determining elimination orderings in SP. Four elimination ordering heuristics that can be used for
evaluating a potential on X with respect to a separator S in SP are:

o [Increasing variables in X (Inc X): order potentials satisfying the “one in, one out” property
based on increasing number of variables in X .

e Decreasing variables in X (Dec X): order potentials satisfying the “one in, one out” property
based on decreasing number of variables in X.

e Increasing variables of X in S (Inc in S): order potentials satisfying the “one in, one out”
property based on increasing number of variables of both X and S.

e Decreasing variables of X in S (Dec in S): order potentials satisfying the “one in, one out”
property based on decreasing number of variables of both X and S.

Four additional elimination ordering heuristics can be respectively defined by replacing the
number of variables with their size, where size is the product of the domain cardinalities of the
variables under consideration: Increasing variables in X size (Inc X Size), Decreasing variables in
X size (Dec X Size), Increasing variables of X in S size (Inc in S Size), and Decreasing variables
of X in S size (Dec in S Size).

Example 3 Consider the factorization in (4) of Example 2. There are two potentials in F with the
“one in, one out” property of line 3 of SMC, namely P(j, k|e, h) and p(o|m). The Inc X heuristic
would order these potentials as < P(o|m), P(j, kle, h) >, since the former has 2 variables, while
the latter has 4. The Dec X heuristic would use the reverse ordering of the Inc X.

The heuristics Inc S and Dec S would have no preference between the two potentials, since both
have 1 variable in the separator S.

Considering the size of the potential, that of P(o|m) is 2 x 2 = 4, while that of P(j, kle, h) is
16. Hence, the Inc X Size heuristic orders the potentials as < P(o|m), P(j, k|e, h) >, while Dec
X Size uses the reverse ordering of Inc X Size.

Lastly, P(j,k|e, h) and P(o|m) have both I variable in S with size 2 when sorting by Inc in S
Size or Dec in S Size.

We now report on an empirical evaluation of using elimination ordering heuristics in SP. The
experiments were performed on the 29 benchmark BNs listed in column 1 of Table 1. Column 2
shows the number of variables in each BN. The heuristics used in our investigation are listed in
the last eight columns of Table 1. Column 3 records the time taken to eliminate variables from
those potentials satisfying the “one in, one out” property according to the arbitrary order that these
potentials happens to have in computer memory. Join trees were generated using the fotal weight
heuristic (Jensen, 2014). The experimental analysis is performed using a Java 7 implementation
running on a Linux Ubuntu server (kernel 2.6.38-16-server) with a four-core Intel Xeon(TM) E3-
1270 Processor and 32 GB RAM. For each network, 100 sets of evidence ¥ = e are generated
at random with all heuristics using the same evidence on each network. The computation time in

66

ON BAYESIAN NETWORK INFERENCE WITH SIMPLE PROPAGATION

seconds is measured as the elapsed (wall-clock) time for a full round of message passing (inward
and outward) and computing posteriors marginals P(v|E = e) for each non-evidence variable in
the network. The average computation time is calculated over 100 runs and reported in columns 3
to 11 of Table 1, respectively.

Note that although the heuristics attempt to order the potentials themselves, they do not order
the variables to be marginalized from within a potential. For instance, variables k, e, and h will be
eliminated arbitrarily from potential P(j, k|e, h) in Example 3.

Table 1: Experimental results on 29 BNs eliminating variables in SP arbitrarily versus using 8
elimination ordering heuristics. Times in boldface indicate a unique winner for that BN.

Arbitrary Inc Dec Incin Decin Inc X DecX Incin Decin

BN Vars Order X X S S Size Size S Size S Size
Water 32 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05
00w 33 0.06 0.05 0.06 0.05 0.06 0.06 0.06 0.06 0.06
oow_bas 33 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03
Mildew 35 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04
oow_solo 40 0.06 0.05 0.06 0.05 0.06 0.06 0.06 0.06 0.06
HKV 44 0.02 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03
Barley 48 0.09 0.09 0.09 0.09 0.09 0.09 0.08 0.09 0.08
KK 50 0.08 0.08 0.08 0.08 0.08 0.08 0.07 0.08 0.07
ship 50 0.16 0.13 0.16 0.13 0.16 0.15 0.15 0.15 0.15
hailfinder 56 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02
medianus 56 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03
3nt 58 0.01 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02
Hepar_II 70 0.24 023 032 0.28 0.31 0.23 0.32 0.27 0.31
win95pts 76 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03
system_v57 85 0.05 0.05 0.06 0.05 0.06 0.05 0.05 0.05 0.05
FEW 109 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.14
pathfinder 109 0.09 0.09 0.09 0.09 0.09 0.10 0.09 0.09 0.10
Adapt T1 133 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03
ccl4s 145 0.08 0.08 0.08 0.07 0.08 0.08 0.08 0.08 0.07
Muninl 189 0.68 0.72 0.72 0.84 0.90 0.71 0.69 0.76 0.84
andes 223 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12
cc245 245 0.17 0.18 0.18 0.17 0.18 0.18 0.17 0.18 0.17
Diabetes 413 0.27 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28
Adapt_T2 671 0.19 0.19 0.19 0.20 0.20 0.19 0.20 0.20 0.20
Amirali 681 0.40 039 044 042 0.40 0.42 0.44 0.40 0.41
Munin2 1003 0.44 041 042 041 0.43 0.42 0.44 0.40 0.39
Munin4 1041 0.51 0.52 051 0.51 0.52 0.53 0.51 0.52 0.51
Munin3 1044 0.53 0.55 056 0.56 0.56 0.55 0.56 0.55 0.55
sacso 2371 0.72 0.75 074 0.74 0.74 0.75 0.74 0.74 0.75
Tied for first 13 16 11 17 9 12 14 11 13
Unique wins 6 1 0 0 0 0 0 0 1

Analysis of Table 1 shows that eliminating arbitrarily won 6 out of § times when there was a
clear winner. In the other two cases, two heuristics each won once. These results suggest that SP

67

BuUTZ, OLIVEIRA, DOS SANTOS, AND MADSEN

does not require elimination orderings, provided that an optimal (or close to) join tree is built from
the real-world BNs in Table 1. As SP’s performance degrades dramatically when applied on non-
optimal join trees (Madsen et al., 2016), elimination orderings may be useful to SP in these cases.
This remains as future work.

4. Relevant Potentials in SP

In this section, we establish our second main contribution, namely, a one-to-one correspondence
between the relevant potentials in SP and LP.

Rather than multiplying together the CPTs at each node, Lazy Propagation (LP) (Madsen and
Jensen, 1999) maintains a multiplicative factorization. Thus, during message construction, LP
safely removes (without performing numerical computation) two kinds of irrelevant potentials from
the factorization. Similar to SMC, the first kind is irrelevant potential of barren variables. However,
detecting the second kind of irrelevant potential is more involved.

In principle, LP tests separation in a graph, a process that reflects testing independencies induced
by evidence, to safely remove irrelevant potentials from the factorization. A potential is irrelevant if
and only if the corresponding separation holds in the graph. The original LP (Madsen and Jensen,
1999) applied d-separation (Pearl, 1988) in the given BN B. The extensions of LP (Madsen, 2004,
2010) test separation in the domain graph constructed from the factorization under consideration.
The domain graph (Madsen, 2004) of a potential ¢(W|Z) is a graph with undirected edges between
v;,v; € W and directed edges from each v, € Z to each v; € W. The domain graph of a set of
potentials is defined in the obvious way. Afterwards, all remaining potentials are relevant.

Now, all variables not appearing in the separator need to be marginalized. The order in which
these variables are marginalized, called an elimination ordering (Madsen and Butz, 2012), is deter-
mined by examining the moralization of the domain graph built from the factorization of relevant
potentials. The moralization of a domain graph also adds undirected edges between all pairs of ver-
tices with children connected by an undirected path before dropping directionality. Fill-in weight
is one heuristic for finding good elimination orderings in LP (Madsen and Butz, 2012). More for-
mally, LP uses Algorithm 2, called Message Construction (MC), when a node is ready to construct
its message to a neighbour. LP passes messages in the same sequence as SP, but calls MC instead
of SMC.

Algorithm 2 Message Construction.

1: procedure MC(F, S, FE)

2 F = REMOVEBARREN(F, S)

3 Construct the domain graph G; of F
4: Construct the moralization G{" of Gy
5: for each potential ¢(X) in F do
6

7

8

9

if I(X, E,S) holds in G]" then
F=F—{o(X)}
Determine an elimination ordering o
: for each v in o do
10: F = SuMOUT(v, F)
11: return F

68

ON BAYESIAN NETWORK INFERENCE WITH SIMPLE PROPAGATION

We use Example 4 to illustrate how LP works.

Example 4 Let N3 be the root of the initialized join tree in Example 1. LP augments each node
with the evidence variables d and n. Ny calls MC(F, S, E) with F = {P(a), P(bla), P(c|a)},
S = {b,e,d,n}, and E = {d,n}. LP eliminates variable a as in (1). Hence, Ny sends message
P(b,c) to No.

Node Ny calls MC(F, S, E) to compute its message to node N3, where factorization F is in
(2), separator S = {d, j,n,0,q}, and E = {d,n}. In line 2, no potential is removed.

Next, in line 3, the domain graph G is constructed from F. In line 4, the moralization Gi"
of G is illustrated in Figure 2. In line 5, considering potential P(b,c), LP tests I(bc,dn, joq) in
GT", namely, whether evidence variables d and n separate the variables b and c in P(b, c) from the
separator variables S. Since this separation in G{"* holds, LP safely removes irrelevant potential
P(b,c) from F, in line 7. Similarly, for potential P(d = 0|b, ¢), I(bec, dn, joq) holds in G{* meaning
that P(d = 0|b,c) also is removed from F in line 7. For the other twelve potentials in F, it
can be verified that I(e,dn, joq), I(eg,dn, joq), I(f,dn,joq), I(fh,dn,joq), I(ghk,dn,jogq),
I(i,dn, joq), I(hil,dn,joq), I(km,dn,joq), I(l,dn,joq), I(gj,dn,joq), I(mo,dn,joq), and
I(q,dn, joq), either do not hold in GJ"* by separation or are not well-formed.

The remainder is to compute Zi,e,f,g,h,k,l,m F using lines 8-10 of MC, where

F = {P(e]d:0),P(f]d:0),P(g\e),P(h[f),P(i),P(j\g), (7
P(k|g,h), P(l|h,i), P(m|k), P(n = 1|1), P(o|m), P(qln = 1)} .

Next, the fill-in weight heuristic can yield the elimination ordering o = (i, e, f,qg,h,k,l,m). Fol-
lowing o, LP computes in lines 9 and 10:

P = 3 PG) - PUb, 1),
P(gld =0) = ijmme) - Pleld = 0),
P(hld=0) = i:P(fld = 0)- P(hl}),
P(j.Kld=0,h) = épmwd = 0)- P(klg,h) - P(ilg).

P(j,k,1|d = 0)

> " P(hld = 0) - P(j,kld = 0,h) - P(l|h),
h
P(j,l,m|ld =0) = Y P(j k,1|d = 0) - P(mlk),
k
P(j,m,n=1|d=0) = Y P(j,l,m|d = 0) - P(n = 1|1),

l
P(j,n=1,0ld=0) = Y P(j,m,n=1|d=0) P(o|m).

LP sends message ma = {P(j,n = 1,0ld = 0), P(q|n = 1)} to N3 in line 11. This concludes the
inward phase. The outward phase is not described, but proceeds in the same manner.

69

BuUTZ, OLIVEIRA, DOS SANTOS, AND MADSEN

b\d/e
— \f__

C

\/\/
\@

Figure 2: The moralization G of the domain graph at node Ns.

The main result of this section, given next in Theorem 1, establishes a one-to-one correspon-
dence between the relevant potentials in SP and LP.

Theorem 1 Given evidence E and factorization F, suppose join tree node N is ready to construct
its message to a neighbour sharing variables S. A potential $(X) € F is relevant in the call
MC(F, S, E) in LP if and only if p(X) is relevant in the call SMC(F, S, E) in SP.

Proof (=-) Suppose LP determines potential ¢(X) is relevant for message construction. By defi-
nition, .S and X are not separated by evidence E in GG, where G is the moralization of the domain
graph of the factorization F of potentials at N. Hence, there exists a path in G of non-evidence
variables and with a minimum number of edges from a variable in S to a variable in X. Let
(v1,v2), (v2,v3), ..., (vk_1,vx) denote this path, where v; € S and vy, € X. Since the path has a
minimum number of edges, the £ — 1 edges in the path represent k£ — 1 distinct potentials, denoted
o1, b2, . .., dr_1; otherwise, if two edges come from the same potential, then there exists another
path from S to X with fewer edges. Again, since the path has a minimum number of edges, none of
V9,3, . ..,V are members of S. Let us now consider SP. Potential ¢ contains non-evidence vari-
able v; € S and non-evidence variable vy ¢ S. By construction, SP eliminates vy. This involves
multiplying ¢9, since ¢o contains v, and marginalizing vs, a process which leaves a potential con-
taining both v; and v3. Again, by construction, SP eliminates v3. This elimination involves potential
@3, since ¢3 contains vs, and results in a potential containing both v; and v4. This process repeats
until the resulting potential contains both v; and v;. Once again, by construction, SP eliminates vy,.
Since vy appears in ¢(X), potential ¢(X) is relevant for message construction in SP.

(<) Suppose SP determines potential ¢(X) is relevant for message construction from a node
N to a neighbour node sharing variables S. Then, ¢(X) contains a non-evidence variable v; € S
and another vy, ¢ S. There are two cases to consider. Suppose ¢(X) € F. By definition, G must
contain an edge (v1,vi), where G is the moralization of the domain graph of the factorization F
of potentials at N. Therefore, LP determines potential ¢(X) is relevant for message construction.
Otherwise, suppose ¢(X) ¢ F. Then, ¢(X) was built by SUMOUT in the elimination of another
non-evidence variable v;_1. By SUMOUT, this involved at least two potentials: ¢j, containing vy,
and v;_1, and ¢p_71 containing v;_1 and v;. Again, there are two cases to consider. Suppose
¢r—1 € F. From ¢y_1 and ¢y, G must contain a path (vq, vg_1), (vk—1, vx). Hence, LP determines
potential ¢(X) is relevant for message construction. Otherwise, suppose ¢;—1 ¢ F. Thus, ¢r_1
was built by SUMOUT in the elimination of another non-evidence variable vi_o. By SUMOUT, this
involved at least two potentials: ¢ _1 containing vi_1 and vi_o, and ¢_o containing vg_o and vy.
Once again, there are two cases to consider. Suppose ¢r_o € F. From ¢y_o, ¢r_1, and ¢y, G

70

ON BAYESIAN NETWORK INFERENCE WITH SIMPLE PROPAGATION

must contain a path (v1,vg—2), (Vg—2,Vk—1), (Vk—1,vk). Thus, LP determines potential ¢(X) is
relevant. Now, suppose ¢r_o ¢ F. Here, the above process can be repeated until SP eliminates its
first non-evidence variable v, using only potentials in . The elimination of vy necessarily involves
a potential ¢; containing v; € S and vy ¢ S. Therefore, by potentials ¢1,...,¢p_1,0r € F, G
must contain a path (vq, v2), ..., (Vg—2, Vk—1), (Vg—1, V) from v; € S to v, € X not separated by
evidence E. Thus, LP determines potential ¢(X) is relevant for message construction. |

Even though SP and LP may eliminate variables in a different order, the relevant potentials in
SP and LP are precisely the same.

Example 5 In Example 4, LP determined at node No that potentials P(i), P(l|h,i), P(gle),
P(eld = 0), P(fld = 0), P(hlf), P(klg.h), P(jlg), P(mlk). P(n = 1|1), P(o|m), and
P(q|n = 1) were relevant. In Example 2, SP determined at node N» that these same potentials
were relevant.

A deeper analysis of the proof of Theorem 1 reveals an intrinsic connection between paths
in LP’s domain graph and the potentials required during message construction in SP. SP can be
seen as only building paths between X and .S involving exclusively variables that were previously
marginalized.

Example 6 Recall SP in Example 2, where the separator S = {d,j,0,n,q}. The first variable
to be eliminated is g. As shown in Figure 3 (i), there is a path (g,j) from g to S built using the
potential P(j|g) in F. The second variable to be eliminated is h. As depicted in Figure 3 (ii), there
is a path (h,qg), (g,7) from h to S built using potentials P(k|g,h) and P(j|g) in F. The third
variable to be eliminated is f. Once again, as illustrated in Figure 3 (iii), there is a path from f to
S built using potentials P(h|f), P(k|g, h), and P(j|g) in F. Paths from the remaining variables to
be marginalized to S can be established similarly.

5. Conclusion

The first main result of this paper is a comprehensive empirical evaluation of eight heuristics for
determining elimination orderings in SP. Our second key contribution establishes that the relevant
potentials in SP are exactly the relevant potentials in LP. This strengthens (Butz et al., 2016), where
it was shown that SP is equivalent to LP, namely, the product of the messages are equal. Our
experimental results suggest that SP does not require elimination orderings, provided that an optimal
(or close to) join tree is built from the real-world BNs in Table 1. It is possible that elimination
orderings are needed for larger BNs or when non-optimal join trees are used, since SP’s performance
degrades dramatically when applied on non-optimal join trees (Madsen et al., 2016). These studies
remain as future work, as well the investigation on breaking ties when more than one variable is
suitable for elimination.

References

C. J. Butz, J. S. Oliveira, A. E. dos Santos, and A. L. Madsen. Bayesian network inference with
simple propagation. In Proceedings of the Twenty-Ninth International FLAIRS Conference, pages
650-655, 2016.

71

BuUTZ, OLIVEIRA, DOS SANTOS, AND MADSEN

b e g i

\d/ |\k—m—o

C/ \f—h/]
|\1_n/
i/ S-E
()

b e g j

~4 l\k—m—o

C/ \f—h/]
|\1_n/
i/ S-E
(ii)

I~ TS

C/ \f—h/]
\ /
!/ S-E

(iii)

Figure 3: There exists a path in the moralization of the domain graph of F from each variable being
marginalized to the separator S = {d, j, 0, n, q}, traversing only previously marginalized variables:

() (g,4); (D) (h, 9), (9,7); and (i) (f, k), (h, g), (g, 7).

A. Darwiche. Modeling and Reasoning with Bayesian Networks. Cambridge University Press,
2009.

F. Jensen. HUGIN API Reference Manual - V. 8.1, 2014. URL www.hugin. com.

U. Kjerulff. Triangulation of graphs - algorithms giving small total state space. Technical Report
R90-09, Aalborg University, Denmark, March 1990.

U. B. Kjerulff and A. L. Madsen. Bayesian Networks and Influence Diagrams: A Guide to Con-
struction and Analysis. Springer, 2nd edition, 2013.

D. Koller and N. Friedman. Probabilistic Graphical Models: Principles and Techniques. MIT
Press, 2009.

S. L. Lauritzen and D. J. Spiegelhalter. Local computation with probabilities on graphical structures
and their application to expert systems. Journal of Royal Statistical Society, 50:157-244, 1988.

72

ON BAYESIAN NETWORK INFERENCE WITH SIMPLE PROPAGATION

A. L. Madsen. An empirical evaluation of possible variations of lazy propagation. In Proceedings
of the Twentieth Uncertainty in Artificial Intelligence, pages 366-373, 2004.

A. L. Madsen. Improvements to message computation in lazy propagation. International Journal
of Approximate Reasoning, 51(5):499-514, 2010.

A. L. Madsen and C. J. Butz. On the importance of elimination heuristics in lazy propagation. In
Sixth European Workshop on Probabilistic Graphical Models, pages 227-234, 2012.

A. L. Madsen and F. V. Jensen. Lazy propagation: A junction tree inference algorithm based on
lazy evaluation. Artificial Intelligence, 113(1-2):203-245, 1999.

A. L. Madsen, C. J. Butz, J. S. Oliveira, and A. E. dos Santos. On tree structures used by simple
propagation for bayesian networks inference. In Proceedings of the Twenty-Ninth Canadian
Artificial Intelligence Conference, pages 207-212, 2016.

J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan
Kaufmann, 1988.

G. Shafer. Probabilistic Expert Systems, volume 67. Philadelphia: Society for Industrial and Ap-
plied Mathematics, 1996.

73

