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Abstract

We look at probabilistic logic programs as a specification language for probabilistic models, and
study their interpretation and complexity. Acyclic programs specify Bayesian networks, and, de-
pending on constraints on logical atoms, their inferential complexity reaches complexity classes
#P, #NP, and even #EXP. We also investigate (cyclic) stratified probabilistic logic programs,
showing that they have the same complexity as acyclic probabilistic logic programs, and that they
can be depicted using chain graphs.
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1. Introduction

Bayesian networks and Markov random fields can be specified using a variety of languages, rang-
ing from logical ones such as PRISM (Sato and Kameya, 2001) and Markov logic (Richardson and
Domingos, 2006), to template languages such as BUGS (Gilks et al., 1993). Among probabilis-
tic logic programming languages, the approach started by Poole (1993) and Sato (1995) has been
very popular: here a normal logical program is enlarged with independent probabilistic facts. Any
propositional Bayesian network over binary variables can be specified with an acyclic probabilis-
tic logic program; conversely, any propositional acyclic program can be interpreted as a Bayesian
network (Poole, 1993, 2008). Thus propositional acyclic programs behave as Bayesian networks.
However, it is suprising that, as we show in this paper, the complexity of acyclic programs goes up
the counting hierarchy even when we restrict predicates to have bounded arity. And complexity goes
up to exponential levels when we do not impose this restriction. This is the first set of contributions
in this paper (Section 2).

Of course, probabilistic logic programs need not be acyclic. In fact, Sato’s original work on
distribution semantics did not impose acyclicity, only asked for it to obtain efficiency (Sato and
Kameya, 2001). Cyclic programs are attractive as they offer a possible specification strategy for
cyclic probabilistic graphical models, a challenging topic with applications for instance in structural
equations (Pearl, 2009) and feedback systems (Nodelman et al., 2002). It so happens that there are
simple syntactic conditions on probabilistic logic programs, lighter than acyclicity, that guarantee
that a program specifies a unique probability distribution over atoms. In particular, such uniqueness
obtains when the program is stratified (Fierens et al., 2014). We show how stratified programs can
be depicted using chain graphs, by resorting to loop formulas (Lin and Zhao, 2002), and we then
show that the complexity of stratified probabilistic logic programs is not harder than the complexity
of their acyclic counterparts. This is the second set of contributions in this paper (Section 3).
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2. Acyclic probabilistic logic programs and Bayesian networks

Section 2.1 collects concepts from logic programming, and Section 2.2 presents general facts about
probabilistic logic programs, quickly focusing on acyclic ones. We present in Section 2.3 a brief
review of complexity theory; the knowledgeable reader can (and perhaps should!) skim through
that material, as the only non-standard concept is “equivalence” for counting classes. We present
our results on the complexity of acyclic probabilistic logic programs in Section 2.4

2.1 Normal logic programs: syntax, interpretations, and dependency graphs

Take a fixed vocabulary consisting of logical variablesX,X1, . . ., predicates r, rr, . . ., and constants
a, b, . . .. A term is a constant or a logical variable; an atom is written as r(t1, . . . , tn), where r is
a predicate of arity n and each ti is a term (a 0-arity atom is written as r). An atom is ground if
it does not contain logical variables. A normal logic program consists of a set of rules written as
A0 :− A1, . . . , Am,not Am+1, . . . ,not An., where the Ai are atoms. The head of this rule is A0;
the right-hand side is the body. A rule without a body, written simply as A0., is a fact. A literal is
either A (positive) or notA (negative), where A is an atom. A program without negation is definite,
and a program without variables is propositional. The Herbrand base is the set of all ground atoms
built from constants and predicates in a program. We do not consider functions in this paper, to
stay with finite Herbrand bases. A substitution is a (partial) function that maps logical variables into
terms. A grounding is a substitution mapping into constants; a rule can be grounded by substitution
of all its logical variables. The grounding of a program is the propositional program obtained by
applying every possible grounding of a rule using only the constants in the program (i.e., using only
ground atoms in the Herbrand base). An interpretation is a consistent set of literals such that every
atom in the Herbrand base is mentioned. The dependency graph of a program is a directed graph
where each predicate is a node, and where there is an edge from a node B to a node A if there is a
rule whereA appears in the head andB appears in the body (ifB appears right after not, the edge is
negative; otherwise, it is positive). The grounded dependency graph is the dependency graph of the
propositional program obtained by grounding. An acyclic program is one with an acyclic grounded
dependence graph.

2.2 Probabilistic logic programs, acyclicity, and Bayesian networks

A probabilistic logic program consists of a pair 〈P,PF〉, where P is a normal logic program and
PF is a set of probabilistic facts. A probabilistic fact is a fact that does not unify with any rule
head, and that is associated with a (rational) probability value. If a probabilistic fact contains logical
variables, it is interpreted as a set of probabilistic facts (one per grounding). All ground probabilistic
facts are assumed stochastically independent. A truth assignment for all probabilistic facts is a
total choice; a total choice is represented as a list containing only those atoms that are set to true
(the remaining probabilistic facts are set to false by the total choice). We often write A to denote
{A = true} and ¬A to denote {A = false}. We abbreviate “probabilistic logic program” by PLP,
and we use, whenever possible, the syntactic conventions of the ProbLog system1 (Fierens et al.,
2014). The only unusual aspect of this syntax is the use of α :: A to specify that the probability of
atom A is α.

1. At https://dtai.cs.kuleuven.be/problog/index.html.
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Example 1 Here is a ProbLog probabilistic logic program:

0.7 :: burglary . 0.2 :: earthquake . 0.9 :: a . 0.8 :: b . 0.1 :: c .
neighbor(1) . neighbor(2) .
alarm :− burglary, earthquake, a . alarm :− burglary,not earthquake, b .
alarm :− not burglary, earthquake, c . calls(X) :− alarm, neighbor(X) .

A truth assignment for some probabilistic facts is {burglary = true, earthquake = false}. �

The semantics of a PLP is given by the semantics of its grounding. Consider then a propositional
PLP 〈P,PF〉. Due to the assumption of independence, we can obtain the probability of each total
choice C (note that C can be given simply as a list of atoms) as the product of their individual
probabilities: P(C) =

∏
A∈C P(A)

∏
A∈PF\C[1 − P(A)], where P(A) denotes the probability

annotating the probabilistic fact P(A) :: A in the PLP. Note also that for each total choice C, we
obtain a logical program P ∪ C. The idea is that, if the truth assignment for all atoms is unique
for program P ∪C, for each C, then the product measure over probabilistic facts induces a unique
probability distribution over all atoms. This is precisely what happens when P is acyclic.

Indeed, an acyclic logic program uniquely specifies the truth assignment over all atoms by its
universally adopted semantics (Apt and Bezem, 1991). Namely, the semantics is the unique inter-
pretation that satifies the Clark completion of P (Clark, 1978). This completion is a transformation
that takes P and produces a first-order theory; roughly speaking, the transformantion replaces each
:− by a logical equivalence⇔, and replaces each not by a classical negation ¬; it introduces ex-
istential quantification over logical variables in the body and not in the head; it produces a single
formula out of the rules that share the head (this is done by introducing a disjuction of the bodies of
those rules), and it universally quantifies all remaining logical variables.

So, given an acyclic PLP 〈P,PF〉, for any total choice the program P ∪ C is acyclic, and the
probabilities over probabilistic facts induce a unique probability distribution over all atoms. This
distribution is the program’s semantics. It so happens that this distribution is given by a Bayesian
network whose structure is the program’s grounded dependency graph, and whose parameters are
given by the program’s Clark completion (Poole, 1993, 2008):

Example 2 Example 1 describes an acyclic PLP, whose dependency graph is the graph depicted in
Figure 1 (predicate neighbor is omitted as it is always true). The figure shows probabilistic assess-
ments and sentences in the Clark completion. For each total choice, there is a unique interpretation
for all non-root nodes. Note also that the graph and the completion clearly specify a Bayesian
network over the atoms, as each node can be viewed as a random variable yielding 1 when the
grounding is true in an interpretation, and 0 otherwise. �

Conversely, a Bayesian network can be specified by an acyclic propositional PLP (Poole, 1993,
2008). The argument is simple, and we show it by turning Example 2 upside down:

Example 3 Consider the converse of Example 2: suppose we have only the graph in Figure 1,
now without the nodes a, b, c, and, instead of the assessments and sentences in the figure, we are
given the following probabilities: P(burglary) = 0.7, P(earthquake) = 0.2, P(alarm|πtrue,true) =
0.9, P(alarm|πtrue,false) = 0.8, P(alarm|πfalse,true) = 0.1, P(alarm|πfalse,false) = 0.0, where πij =
{burglary = i, earthquake = j}, and finally suppose that for X ∈ {1, 2}, we have probabilities
P(calls(X)|alarm = false) = 0, P(calls(X)|alarm = true) = 1. This Bayesian network can be
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P(burglary) = 0.7
P(earthquake) = 0.2

P(a) = 0.9, P(b) = 0.1 P(c) = 0.1

∀X : calls(X)⇔ alarm

alarm⇔ (burglary ∧ earthquake ∧ a) ∨ (burglary ∧ ¬earthquake ∧ b) ∨ (¬burglary ∧ earthquake ∧ c)

burglary

earthquake

alarm calls(1)

calls(2)a b c

Figure 1: Bayesian network extracted from Example 1.

specified by the PLP in Example 1, with the understanding that nodes a, b and c are auxiliary (note
that the predicate neighbor appears in Example 1, but it does not affect the resulting network as its
value is fixed (to true) in that example). �

Given this two-way translation, immediately we see that inference in acyclic propositional PLPs
must have the complexity of Bayesian network inference. To formalize this and similar results, we
must define precisely our computational problem. We do it right away.

We are interested in the computation of probabilities such as P(Q|E), where Q and E are truth
assignments to selected sets of grounded atoms. For instance, Q = {alarm = true, calls(2) =
false}. Of course, P(Q|E) = P(Q,E) /P(E), hence it is easy enough to obtain the conditional
probability from the marginal ones. Note also that complexity classes related to counting can cap-
ture the computation of marginal probabilities, but are not believed to be closed under division
(Hemaspaandra and Ogihara, 2002). Hence, we focus on the complexity of computing P(Q); a
conditional probability can be easily produced, if so desired, by an extra division.

More precisely, in this paper we are interested in the inferential complexity of PLPs, where,
as input, we have a PLP whose probabilities are rational numbers, and a truth assignment Q to
some ground atoms in its Herbrand base; and as output, we have the probability P(Q). We are
also interested in the complexity of inferences when the probabilistic logic program is fixed, and
the input is the query. This is the query complexity of the program: a PLP where probabilities are
rational numbers is fixed, and we have, as input, a truth assignment Q as before, and, as output, we
again want the probability P(Q). These concepts are based on analogous concepts found in database
theory (Cozman and Mauá, 2015b).2 In practice one may face situations where the program is large
and inferential complexity is the key concept; in other circumstances the program may be small
compared to the query, and query complexity is the key concept.

Before we present results on inferential and query complexity of probabilistic models specified
by acyclic programs, we must review some needed complexity theory.

2.3 Complexity classes: a few needed complexity classes and reductions

A language is a set of bit-strings; a complexity class is a set of languages, and we use well-known
complexity classes P, NP, EXP (Dantsin et al., 2001; Papadimitriou, 1994). An element of a class
of languages/functions is a problem. We also use oracle Turing machines, where the oracle itself
may be a language or a function. If A and B are classes of languages/functions, AB = ∪L∈BAL

(AL is class A with oracle L). The polynomial hierarchy PH is the class of languages
⋃

i ∆P
i =⋃

i ΠP
i =

⋃
i ΣP

i , where ∆P
i = PΣP

i−1 , ΠP
i = coΣP

i , ΣP
i = NPΣP

i−1 and ΣP
0 = P.

We use the class #P as defined by Valiant (1979). That is, #P is the class of integer-valued
functions computed in polynomial time by counting Turing machines (a standard nondeterministic

2. We have used combined and data complexity in previous work, but inferential and query seem more appropriate.

113



COZMAN AND MAUÁ

Turing machine that prints in binary notation, on a separate tape and with unit cost, the number of
accepting computations induced by the input). Valiant also defines, for every (decision) complexity
class A, the class #A to be ∪L∈A(#P)L, where (#P)L is the class of functions counting the ac-
cepting paths of nondeterministic polynomial time Turing machines with L as oracle. Hence, #NP
is the class of functions computed by a counting Turing machine with a NP oracle. And #EXP,
in Valiant’s sense, contains functions computed by a counting Turing machine in polynomial time
with EXP as oracle. Valiant’s class #EXP is not always appropriate for our purposes, as it can only
produce a counter of polynomial size, and it is often the case that we must compute a probability
value with exponentially many bits in the output. For this reason we use #EXP to denote the class
of functions that can be computed by counting Turing machines taking exponential time, as pro-
posed by Papadimitriou (1986). Note that Papadimitriou’s #EXP allows for an exponentially large
output.

One might be tempted to use #P-completeness theory to analyze the complexity of probabilistic
inference. However, probabilities are not integers produced by counting; some sort of normalization
is needed, but we cannot rely on division “inside” counting complexity classes (Hemaspaandra and
Ogihara, 2002). In fact, in his seminal work on the complexity of Bayesian networks, Roth (1996)
notes that “strictly speaking the problem of computing the degree of belief is not in #P, but easily
seem equivalent to a problem in this class”. The challenge is to formalize such an equivalence. We
adopt the strategy proposed by Bulatov et al. (2012) in their study of weighted constraint satisfaction
problems: they define weighted reductions that are suited for our purposes (a similar strategy is
adopted by Kwisthout (2011), who discusses #P membership modulo normalization).

For functions F1 and F2 from an input language to the positive rational numbers, a weighted
reduction is a pair of polynomial time functions G1 and G2 such that F1(`) = G1(`)F2(G2(`)) for
all `, where G1 is a function from the language of interest to the positive rational numbers, and G2

is a transducer. In other words, a weighted reduction is a parsimonious reduction G2 scaled by a
polynomial time computable rational G1(`). In this paper, for complexity class C in the polynomial
hierarchy, a function F is #C-hard if any function in #C can be reduced to F via a weighted
reduction. And a function F is #C-equivalent if it is #C-hard and G · F is in #C for some
polynomial time function G that maps strings to positive rationals. Finally, F is #EXP-equivalent
if it is #EXP-hard via weighted reductions where G1 is allowed to require exponential time effort,
and if there is membership of G · F in #EXP for some exponential time function G.

The canonical complete problem for class #ΠP
k via parsimonious reductions is #ΠkSAT (Du-

rand et al., 2005): as input, a formula ϕ(Y ) = ∀X1∃X2 . . . QkXkψ(X1, . . . , Xk, Y ), where each
ofX1, . . . , Xk, Y is a set of propositional variables and ψ is in 3-Conjunctive Normal Form (3CNF);
as output, the number of assignments to the variables Y that make the formula ϕ evaluate to true.

2.4 The complexity of Bayesian networks specified by acyclic probabilistic logic programs

By combining arguments around Examples 2 and 3, we see that inference in acyclic propositional
PLPs is #P-equivalent (Roth, 1996). One might suspect that a bound on predicate arity would yield
the same #P-equivalence, because the grounding of a PLP would then produce only polynomially-
many ground atoms. Surprisingly, this is not the case here, as shown by the next theorem, our main
result in this section.

Theorem 1 The inferential complexity of inference in acyclic PLPs with bounded predicate arity is
#NP-equivalent.
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Proof Membership follows as logical reasoning with this language is ∆P
2 -complete (Eiter et al.,

2007, Table 5); for each fixed total choice of the probabilistic facts, logical reasoning determines
whether the probability of that total choice is to be taken into account; hence by counting ac-
cepting computations (within #NP), one reaches a number that must be later normalized (hence
the need for weighted reductions). Hardness is shown by building a PLP that solves a #Π1SAT
problem where the formula ϕ(x1, . . . , xn, y1, . . . , ym) is in 3CNF as the conjunction of clauses
c1, . . . , ck, and the problem is to determine the number of assignments of x1, . . . , xn for which
∀y1, . . . , ymϕ(·, y1, . . . , ym) is true. For instance,

ϕ(x1, x2, x3, y1) ≡ (¬x1 ∨ x2 ∨ y1) ∧ (x1 ∨ ¬x2 ∨ y1) ∧ ¬y1. (1)

For each propositional variable yj , we use a corresponding logical variable Yj . Denote by Yi the
ordered set of logical variables in Y1, . . . , Ym corresponding to propositional variables in ci. In
Expression (1), Y1 = Y2 = Y3 = [Y1]. Introduce 0-arity predicates x1, . . . , xn, and predicates
nc1, . . . , nck. The arity of nci is equal to the number of logical variables in Yi.

For each nci, go over the possible assignments of Yi. If Yi makes the clause ci true, move to
the next assignment. If instead Yi leaves the clause dependent on some propositional variables in
x1, . . . , xn, say propositional variables xi1 , xi2 and xi3 (where we allow a propositional variable
to appear more than once), then introduce the rule: nci(yj) :− [not]xi1 , [not]xi2 , [not]xi3 ., where
each not is included if and only if the literal containing xi1 is positive. Now introduce, for each
nci, a rule exists :− nci(Yi).. Finally, add probabilistic fact 0.5 :: xi., for each xi, and compute
P(exists). The Clark completion of the PLP just constructed encodes the #Π1SAT problem of in-
terest, and the desired counting is 2nP(¬exists), thus proving #NP-hardness. For instance, given
the formula in Expression (1), generate the following PLP:
nc1(false) :− x1,not x2 . nc2(false) :− not x1, x2 . nc3(true) .
exists :− nc1(Y1) . exists :− nc2(Y1) . exists :− nc3(Y1) . 0.5 :: x1 . 0.5 :: x2 .
The number of truth assignments for x1 and x2 such that every truth assignment to y1 is satisfying
is equal to 22P(¬exists).

Intuitively, this results shows that, to produce an inference for a PLP with bounded predicate
arity, one must go through the truth assignments for polynomially large groundings, guessing one
at a time (thus a counting nondeterministic Turing machine), and, for each assignment, it is then
necessary to use an NP-oracle to construct the probability values. Theorem 1 suggests that acyclic
PLPs capture a larger set of probabilistic languages than many probabilistic relational models that
stay within #P (Cozman and Mauá, 2015a).

The next step is to remove the bound on arity. We obtain:

Theorem 2 The inferential complexity of inference in acyclic PLPs is #EXP-equivalent.

Proof Membership follows from grounding and then running inference with an exponentially large
counting Turing machine (up to a multiplying rational). Hardness follows from the fact that plate
models (Koller and Friedman, 2009) can be encoded by acyclic PLPs, using the same encoding illus-
trated by Example 3, and the inferential complexity of inference in enhanced plates with unbounded
nesting is #EXP-equivalent (Cozman and Mauá, 2015a).

Consider query complexity. The following result is handy (and in fact we use it later):
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Theorem 3 Query complexity is #P-hard for any class of programs that include the programs

formed by
{

0.5 :: t(X) . c(Y ) :− pos(X,Y ), t(X) . c(Y ) :− neg(X,Y ), f(X) .
a(X) :− t(X), f(X) . b(X) :− t(X) . b(X) :− f(X) . .

Proof Consider a CNF formula ϕ(x1, . . . , xn) with clauses c1, . . . , cm. Let Pj (resp., Nj) denote
the indices of the positive (negative) literals xi (¬xi) in clause j. We will encode the truth-value of
a clause cj as c(j), the truth-value of a positive (negative) literal `i as t(i) (f(i)), and the occurrence
of a positive (negative) literal xi ∈ Pj (xi ∈ Nj) as pos(i, j) (¬xi). The atoms a(i) and b(i) will
ensure a single truth-value assignment to each variable xi by setting a(i) = false and b(i) = true.
So assemble a query Q containing assignments to c(j) = true for j = 1, . . . ,m, pos(i, j) = true
for i ∈ Pj , j = 1, . . . ,m, neg(i, j) = true for i ∈ Nj , j = 1 . . . ,m, and a(i) = false and
b(i) = true for i = 1, . . . , n. The Clark completion defines c(j) ⇔

∨
i∈Pj

t(i) ∨
∨

i∈Nj
f(i) for

every cj , and that t(i)⇔ ¬f(i) for every xi. Thus 2nP(Q) is the model count of the formula.

We then obtain:

Theorem 4 The query complexity of inference for acyclic PLPs is #P-equivalent.

Proof Hardness follows from Theorem 3, and membership follows from the fact that data complex-
ity of logical reasoning in acyclic logical programs is polynomial (Dantsin et al., 2001, Theorem
5.1), and any total choice of probabilistic facts is a certificate.

There are subclasses of acyclic PLPs that characterize well-known tractable Bayesian networks.
An obvious one is the class of such programs with bounded treewidth, as Bayesian networks subject
to such bound are tractable (Koller and Friedman, 2009). As a more interesting example, the acyclic
definite PLPs with a bound on predicate arity, with at most one atom per body, correspond to noisy-
or Bayesian networks (Heckerman, 1990): for these programs, the Quick-Score algorithm runs in
polynomial time when Q only contains negated atoms. Alas, this tractability result is quite fragile,
as “positive” evidence breaks polynomial behavior as long as P 6= NP (Shimony and Domshlak,
2003). Yet another tractable class consists of acyclic definite propositional PLPs such that each atom
is the head of at most one rule: inference in this class is polynomial when Q contains only true (by
adapting results from Cozman and Mauá (2015b)). This is also a fragile result:

Proposition 1 Inference for the class of acyclic propositional PLPs such that each atom is the head
of at most one rule is #P-equivalent even if (a) Q contains only true (and the program may not be
definite); (b) the program is definite (and Q may contain false).

Proof Case (a) follows from the fact that such programs can directly encode MAJSAT problems;
Case (b) follows by adapting Theorem 1 in Ref. (Cozman and Mauá, 2015b).

3. Stratified probabilistic logic programs: interpretation and complexity

A stratified normal logic program is one where the grounded dependency graph has no cycles con-
taining a negative edge (Apt et al., 1988).3 A stratified program has the useful property that its
universally adopted semantics produces a single interpretation.

3. Often such a normal logic program is referred to as a locally stratified normal logic programs.
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Example 4 Here is a (cyclic!) stratified program on the relation between smoking, stress, and
social influence (Fierens et al., 2014): facts influences(a, b) ., influences(b, a) ., stress(b) ., and
rules smokes(X) :− stress(X). and smokes(X) :− influences(Y,X), smokes(Y ).. The grounded
dependency graph is depicted in Figure 2 (left). �

Example 5 Here is a stratified PLP with cycles and negation: b :− a, f ., f :− b, g ., g :−
b ., c :− not b ., h :− c ., i :− h ., j :− i ., c :− j ., d :− not c ., k :− d ., d :−
k ., l :− k, e .. �

Alas, the semantics of stratified programs is not simple; we will present it using the stable
model semantics (Gelfond and Lifschitz, 1988). First, a model M for a normal logic program P is
an interpretation such that A0 ∈ M if there is A0 :− A1, . . . , Am,not Am+1, . . . ,not An. where
A1, . . . , Am ∈ M and Am+1, . . . , An 6∈ M . A model M is minimal if there is no model M ′ such
that M ′ ⊂ M . For a program P and an interpretation I, the reduct PI is the program obtained
by (i) grounding P, (ii) removing all rules that contain in their body a negative literal notA with
A ∈ I, and finally (iii) removing the remaining negative literals. The reduct is clearly a definite
program. Then I is a stable model for P if and only if I is a minimal model for P I . A stratified
program always has a single stable model that is the semantics of the program.

Now, let us return to our study of probabilistic logic programs as specification languages for
probabilistic models, and see whether we can find some graph-based tool to help us represent their
semantics. Note that for acyclic PLPs the grounded dependency graph is a correct representation for
the constraints in the program, as the parents of a node suffice to determine the truth assignment for
the node. Given a stratified program, what exactly are the constraints it encodes? Some constraints
are again given by the Clark completion of the program. However, to obtain a complete set of
constraints, we must use loop formulas (Lin and Zhao, 2002). Loop formulas are added to the Clark
completion so that the resulting logical theory has only the “right models” (in the stratified case, a
single stable model for each total choice). For a given cycle in the program, a corresponding loop
formula is of the form G ⇒ H , where H is a conjunction involving atoms in a cycle, and G is a
formula containing some atoms that are not in the cycle but that appear as parents of nodes in the
cycle. The precise definition of loop formulas is somewhat involved; details are omitted but the
reader can find guidance from Lin and Zhao (2002) and Lifschitz and Razborov (2006).

Example 6 Consider a probabilistic version of Example 4, by taking the two rules in that example
and the probabilistic facts 0.3 :: influences(a, b) ., 0.3 :: influences(b, a) ., and 0.8 :: stress(b) ..
The grounded dependency graph for this PLP is in Figure 2. It is tempting to interpret this graph
as a Bayesian network, but of course this is not quite right as the graph is cyclic. The Clark
completion imposes the following constraints (note the obvious abbreviations that we use from now
on to save space): ¬in(a, a), ¬in(b, b) and ¬st(a), and additionally sm(a) ⇔ in(b, a) ∧ sm(b)
and sm(b)⇔ st(b) ∨ (in(a, b) ∧ sm(a)). However, these latter two constraints are not sufficient to
encode the semantics: for total choice C′ = {in(a, b) = true, in(b, a) = true, st(b) = false}, the
Clark completion produces only sm(a) ⇔ sm(b). Thus we get two possible interpretations, even
though the program resulting from this total choice has a single stable model. Now, a loop formula
to be added to our running example is ¬(st(a) ∨ st(b)) ⇒ ¬sm(a) ∧ ¬sm(b), a constraint that
eliminates the unwanted model of the Clark completion, leaving both sm(a) and sm(b) as false for
total choice C′. �
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influences(a, b) influences(b, a)

stress(a) stress(b)

smokes(a) smokes(b)

influences(a, a) influences(b, b)

in(a, b) in(b, a)

st(b)

sm(a) sm(b)

a b c d e

f g h

i

j k l

Figure 2: Left: grounded dependency graph for program in Example 4. Middle: chain graph for
Example 4. Right: chain graph for Example 7.

Hence, to graphically represent the constraints in our PLP, we must at least encode the loop
formulas in the grounded dependency graph. Thus consider the following procedure. First, take the
grounded dependency graph, remove directions of all edges, and remove self-loops. Second, remove
the root nodes that do not correspond to a given fact (probabilistic or otherwise), as these nodes have
fixed truth value by the semantics. Third, create the set of all constraints (Clark completion and loop
formulas). For each constraint, connect all atoms that appear in the constraint with an undirected
edge. Finally, direct each edge that goes from a probabilistic (ground) fact to another atom (from
the probabilistic fact to the atom). In doing so, we obtain a chain graph (Koller and Friedman,
2009) that represents all constraints and probability assessments in the PLP (such a chain graph is
interpreted using the LWF semantics (Lauritzen and Richardson, 2002); note that logical programs
that specify chain graphs have been studied before (Hommersom et al., 2009)). For Example 6, we
obtain the graph in Figure 2 (middle), a representation for the meaning of the stratified program.

Example 7 Take the rules in Example 5 and the probabilistic facts 0.5 :: a . and 0.5 :: e .. The loop
formulas are are ¬b ∧ ¬f ∧ ¬g, ¬b ∧ ¬f, b ⇒ ¬c ∧ ¬h ∧ ¬i ∧ ¬j, and c ⇒ ¬d ∧ ¬k. The chain
graph in Figure 2 (right) conveys these constraints and the Clark completion. �

It seems appropriate to take these chain graphs as the graph-based interpretation of stratified
PLPs. Having looked at the interpretation of stratified programs, we now look at their inferential
complexity. As the number of loop formulas for a cyclic program may be large (Lifschitz and
Razborov, 2006), one might fear that in moving from acyclic to stratified programs we must pay a
large penalty. This is not the case: the complexity classes remain the same as in Section 2. Here is
our main result in this section:

Theorem 5 For locally stratified PLPs, inferential complexity is (a) #P-equivalent for proposi-
tional programs, (b) #NP-equivalent for programs with bounded predicate arity, and (c) #EXP-
equivalent for general programs. For locally stratified PLPs, query complexity is #P-equivalent for
general programs.

Proof For propositional stratified PLPs, membership follows as logical reasoning with this language
is polynomial (Eiter et al., 2007, Table 2), and any total choice of probabilistic facts is a certificate;
hardness comes from grounding the program in Theorem 3.

For stratified programs with bounded predicate arity, membership follows as logical reasoning
with this language is ∆P

2 -complete (Eiter et al., 2007, Table 5); for each total choice, logical rea-
soning determines whether the probability of that total choice is to be taken into account; hence by
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counting accepting computations (within #NP), one reaches a number that must be later normal-
ized. Hardness follows from Theorem 1.

For general stratified PLPs, membership follows from the fact that we can ground the PLP into
an exponentially large propositional PLP, and then encode inference with a Turing machine there.
Hardness is argued as in the proof of Theorem 2 (that is, by using plate models that can be expressed
using acyclic programs with negation).

Finally, membership for query complexity follows from the fact that the data complexity of the
corresponding logical inference is polynomial (Dantsin et al., 2001); hardness follows from Theo-
rem 3.

We noted, at the end of Section 2, that some sub-classes of acyclic programs display polynomial
behavior. We now show an analogue result for a sub-class of definite (and therefore stratified, but
possibly cyclic) programs with unary and binary predicates:

Proposition 2 Inferential complexity is polynomial for queries containing only positive literals, for
PLPs where each atom is the head of at most one rule, and rules take one of the following forms:{

α :: a(X) . β :: a(a) . γ :: r(X,Y ) . a(a) . r(a, b) .
a(X) :− a1(X), . . . , ak(X) . a(X) :− r(X,Y ) . a(X) :− r(Y,X) .

Proof [Sketch] We show that the inference can be reduced to a tractable weighted model counting
problem. First, ground the program in polynomial time (because each rule has at most two vari-
ables). Since the resulting program is definite, only atoms that are ancestors of the queries in the
(grounded) dependency graph are relevant for determining the truth-value of the query in any logic
program induced by a total choice (this follows as resolution is complete for propositional definite
programs). Thus, discard all atoms that are not ancestors of a query atom. For the query to be true,
the remaining atoms that are not probabilistic facts are forced to be true by the semantics. So collect
all rules of the sort a(a) :− r(a, b) ., a(a) :− r(b, a) ., plus all facts and all probabilistic facts. This is
an acyclic program, so that its Clark completion gives the stable model semantics. This completion
is a formula containing a conjunction of subformulas a(a) ⇔

∨
b r(a, b), a(a) ⇔

∨
a r(a, b), and

unit (weighted) clauses corresponding to (probabilistic) facts. The query is satisfied only on models
where the lefthand side of the definitions are true, which is equivalent to reducing the subformu-
las to their righthand side. The resulting weighted model counting problem has been shown to be
polynomial-time solvable (Mauá and Cozman, 2015).

4. Conclusion

We can summarize our main contributions as follows. We have clarified the complexity of acyclic
PLPs, showing that their ability to encode Bayesian networks leads to quite expressive complexity
classes. We then studied the complexity of (locally) stratified PLPs and their representation by
chain graphs — in particular we have shown that acyclic and stratified programs lead to the same
complexity classes: #P-equivalence for propositional programs, #NP-equivalence for programs
with bounded predicate arity, #EXP-equivalence for programs (without bound on predicate arity),
and finally #P-equivalence for query complexity.
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Much more is yet to be explored concerning the encoding of probabilistic models as PLPs. For
instance, we have not discussed non-stratified PLPs: What models do they capture? What graphical
representations can represent them? Also, other classes of PLPs deserve attention: tight, strict,
order-consistent programs may lead to interesting results. There are also several extensions of
normal programs that should be investigated as specification languages; for instance, disjunctive
programs (Dantsin et al., 2001). The inclusion of functions (with appropriate restrictions to ensure
decidability) is another challenge.
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