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Abstract

Statistical matching (also known as data fusion, data merging, or data integration) is the umbrella
term for a collection of methods which serve to combine different data sources. The objective is
to obtain joint information about variables which have not jointly been collected in one survey, but
on two (or more) surveys with disjoint sets of observation units. Besides specific variables for the
different data files, it is indispensable to have common variables which are observed in both data
sets and on basis of which the matching can be performed. Several existing statistical matching
approaches are based on the assumption of conditional independence of the specific variables given
the common variables. Relying on the well-known fact that d-separation is related to conditional
independence for a probability distribution which factorizes along a directed acyclic graph, we
suggest to use probabilistic graphical models as a powerful tool for statistical matching. In this
paper, we describe and discuss first attempts for statistical matching of discrete data by Bayesian
networks. The approach is exemplarily applied to data collected within the scope of the German
General Social Survey.

Keywords: Statistical matching; data fusion; data merging; data integration; probabilistic graphi-
cal models; Bayesian networks; conditional independence.

1. Introduction

Nowadays data is omnipresent and is constantly being collected, for example, by authorities, com-
panies, or by surveillance systems. Thus, an immense amount of qualitative and quantitative data is
already available for researchers. To save time and costs, it is much more effective to use already
existing data sources for statistical analysis instead of planning and carrying out new surveys. How-
ever, single data sources are barely adequate to answer varying research questions, particularly in
the case when we need joint information about variables that have not jointly been observed but in
two (or more) different surveys. Let us assume that information about a specific set of variables
is available in the first of the two data set, and in the second data set we have information about a
disjoint set of variables. Given that there is also a set of partially overlapping variables in both data
sets, we are able to fuse these data sources to achieve joint information. This procedure is commonly
known as statistical matching (data fusion, data merging, or data integration). For example, |Rissler
(2002) or [D’Orazio et al.|(2006a) described different methods for statistical matching. Several of
these methods are mainly based on a certain kind of conditional independence (CI, throughout the
paper) assumption. This assumption is strongly related to d-separation which is a basic concept of
probabilistic graphical models, where the (in)dependence structure among a set of variables is nat-
urally represented by a graph. For this reason, we suggest to utilize probabilistic graphical models
for statistical matching. In this paper, we focus on discrete data and Bayesian networks.
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Figure 1: Schematic representation of the statistical matching problem (adapted from D’Orazio
et al., 20064, p. 5).

The paper is structured as follows. Section [I.1] outlines the framework and basic problem of
statistical matching. It introduces the basic idea of statistical matching under the assumption of
CI. Subsequently, Section [I.2] briefly recalls the definition of Bayesian networks and clarifies the
used notations. Section describes our basic idea for statistical matching of discrete data by
Bayesian networks. Afterwards, the procedure is elucidated in three steps. In Section[3] we illustrate
the proposed matching approaches by an application in the context of the German General Social
Survey. Section [3.1] gives an introductory summary of the data, while Section [3.2| shows the actual
application example. The corresponding results are presented in Section [3.3] which is followed by
a conclusion and discussion in Section K]

1.1 The Framework of Statistical Matching

Following, for instance, [D’Orazio et al.| (2006a), statistical matching aims at the combination of
two (or more) data sources to gain joint information about not jointly observed variables. The data
sources characteristically have a partially overlapping set of variables and disjoint sets of observa-
tions. Throughout the paper, let us assume that we have two data sets A and B, indexed by Z and
Ig, respectively, with na and np i.i.d. observations following a common discrete distribution P.
Both data sets contain information on the vector of common variables X = (X1, ..., X,)’, as well
as vectors of specific variables Y = (Y1,...,Y,) inAand Z = (Zy,...,Z,) in B, respectively.
To cut the matter short: we do not have joint information about X, Y, and Z, but on (X,Y) and
(X, Z). The schematic representation of this situation in Figure[1]illustrates this general framework,
and shows that the statistical matching problem can also be interpreted as a missing data problem,
where the shaded areas reflect the missing values. |D’Orazio et al.| (2006a) state that the missing
values are missing completely at random (MCAR) in most of the standard applications. They give
a brief justification for this statement and explain its consequences in their first chapter.

Basically, we can distinguish two main approaches of statistical matching: the macro approach
and the micro approach. The main objective of the macro approach is to estimate the joint probabil-
ity distribution of X, Y, and Z, (or any characteristic of it), while the micro approach is geared to
additionally generate a synthetic data set that contains all variables of interest (e.g.|D’Orazio et al.,
20064l pp. 13). To reach these aims, it is common practice to use procedures that are premised
on the assumption of CI of Y and Z given X. This technical assumption guarantees that the joint
distribution of X, Y, and Z is identifiable and thus estimable on the incomplete i.i.d. sample A U B,
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i.e. the union of the two data sets A and B with missing joint observations of Y and Z. Hence, its
joint probability distribution is fully described by its probability mass distribution

rxyzxy,z)=PXi=z1,.... Xp =2, Y1=uy1,....Yg =Yg Z1 = 21,. .., Zr = %),

;i € Xj,yp € Viwze € 20,7 =1,....,p,k=1,...,¢, 0 = 1,...,r, where X = A x
Xy, Y = Vi X . X Yy, and Z = Z; x ... x Z, denote the domains of X, Y, and Z,
and (x,y,z) = (1,...,%p,Y1,---,Yq: ?1,---,%r). Collecting all probability components of
Px v z(X,y,z) yields a vector p, whose |X| - || - | 2| entries can be considered as parameters,
representing the probability entries of the multidimensional contingency table of X, Y, and Z. The
parameters of the corresponding multinomial distribution directly follow from p by taking trivial
restrictions on the probability components into account. Under the assumption of CI of Y and Z
given X, the joint distribution is fully determined by the conditional distributions of Y given X,
and Z given X, together with the marginal distribution of X. Therefore, under the assumption of
CI, the parameter vector p simplifies to pAUB .— (pY‘X, Pz|X: px ) whose components are either
estimable from observations (x;,y;), ¢ € Za, or (X;,2;), ¢ € Ig, or x;, i € {Zp U Zg}, and whose
likelihood given A U B becomes

Lp"PIAUB) = [] pyx(ibei) [] pzx(zilx) ] px(Ga), (1)

1€ i€l 1€{ZpUZg}

by selecting the appropriate component of pAYB for every observation.

Conditional independence, which is the crucial basis of this approach, is strongly related to the
d-separation-criterion in probabilistic graphical models (e.g. Kjreulff and Madsen, 2013} pp. 32).
In a probabilistic graphical model, random variables are represented by nodes. If two nodes are
d-separated by a third node, it follows that the two random variables corresponding to the former
two nodes are conditionally independent given the third random variable corresponding to the latter
node. Based on this, we suggest to use probabilistic graphical models, more precisely, Bayesian
networks for statistical matching. We clarify the notations for Bayesian networks based on discrete
data used throughout this paper, hereinafter.

1.2 Bayesian Networks - Basic Concepts and Notation

A Bayesian network over the discrete random variables W = (W7y,..., W)’ is composed of a
global probability distribution P(W = w) = P(W; = wy, ..., Ws = ws) and a directed acyclic
graph (DAG) Gw, where each random variable W,,,, m = 1, ..., s is represented by an eponymous

node. The graph Gw is furthermore defined by a set € of directed edges between pairs of nodes
which represents the dependencies among the random variables (e.g. [Koller and Friedman), 2009,
pp- 51). According to the graph Gw, the joint probability distribution P(W = w) can be factorized
into smaller local probability distributions by applying the so-called chain rule of Bayesian networks
(e.g. Koller and Friedman, 2009, p. 62)

PW=w) = H P(Wy, = wp|Pa(W,,) = pa(W,,)) =: H p(wm |pa(W,)), 2)

m=1

where Pa(W,,,) denotes the vector of parents of node W, and pa(W,,) its realizations. This
factorization of the global probability distribution exploits the Markov assumption which states that
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each node is conditionally independent of its non-descendants given its parents (e.g. Kjreulff and
Madsenl 2013, p. 8, pp. 32).

In order to estimate a Bayesian network, i.e. a probability distribution and a DAG from data, we
have to carry out two steps: structure learning and parameter learning. Structure learning means that
we estimate the directed acyclic graph from the available data with the aid of score based, constraint
based or hybrid learning algorithms (e.g. Koski and Noble}, 2012} [Koller and Friedman, 2009, chap.
17). Given the learned structure, we estimate the parameters of the local probability distributions.
For this purpose, we can apply maximum likelihood estimation or Bayesian inference (e.g. Koller
and Friedman), |2009, chap. 17). These local probability distributions can then be composed to the
global probability distribution by means of the above-mentioned chain rule.

2. Statistical Matching by Bayesian Networks
2.1 Basic Idea

The main idea of statistical matching by Bayesian networks is the representation of the (assumed)
Cl of Y and Z given X by a directed acyclic graph and its extension by incorporating further CI
assumptions determined by the Bayesian network approach. To ensure that we derive a Bayesian
network which reflects the CI assumptions necessary for statistical matching, we restrict the graph
to the basic structur Y < X — Z, where the common variables are the parents of the specific
variables, hereinafter. This structure is known as fork connection (e.g. Koski and Noblel 2012).

Unless the joint graph structure is determined by an expert, we estimate two DAGs, one on
A, and one on B, and combine them to derive a joint DAG containing all common and specific
variables. On the basis of this structure, we learn the parameters of the local probability distributions
on the available observations given in the incomplete sample A W B either by maximum likelihood
estimation or by Bayesian inference. In a more algorithmic way, our proposed (micro) matching
approach consists of three steps: estimating and combining the (directed acyclic) graphs for data sets
A and B, estimating the corresponding local parameters and combining them to the joint probability
distribution, and imputing the missing values in A and B to derive a complete synthetic data set. In
the following, the three steps will be explained in detail.

2.2 Step 1: Estimation and Combination of the Graph Structures

For the estimation and combination of the DAGs for A and B, the following two different procedures
are conceivable.

Procedure 1 (fix graph structure Gx for the common variables in A and B): Initially, we
estimate the Bayesian network structure Gx, i.e. a directed acyclic graph, for the common variables
X on basis of all observations x; € {Za U Zg} utilizing common structure learning algorithms for

Bayesian networks. The resulting graph is denoted by QA')A‘(@B. Subsequently, we use the estimated
set of directed edges Q‘EQUB corresponding to Q)A(@B as prior knowledge and pass it to the structure

learning procedures on A and B as prior knowledge to retain the currently estimated graph structure
for X. Subject to the condition that the graph structure of the common variables is fixed, we estimate
two separate DAGs G)A( v and g}B{ 7z on the data sets A and B, respectively. This procedure ensures
that the graph structures regardiné to the common variables on A and B are identical and can be

1. The basic structures Y — X — Z and Y < X < Z would be equivalent.
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matched without any difficulties. The resulting joint DAG contains nodes for all variables X, Y,
and Z and its set of edges is composed by the umo @AUB U GX yU GX 7

Procedure 2 (individual graph structures QX and QX for the common variables in A and
B): For the second procedure for estimating and combining the graph structures, we separately
estimate two DAGs QA)ALY and QA;B(,Z with sets of edges é/)\(,Y and é)B(,z independently of one another
on A, and on B. Since the observation units in A and B are disjoint, it cannot be ruled out that we
derive different graph structures for the common variables on the two different data sets A and B,
ie. é?‘( # é)B( To obtain one joint graph structure for all common variables, we suggest to union
GAUB — éE%Y U Q;Z)BLZ or intersect ¢AYB = (¢4 N ef)u éé{,Y—x U QAZ%Z_X the sets of edges
within the common variables of QA and ,C’; B where, for example, (A’E@’Y_X denotes the set of edges
among the specific variables Y and the connecting edges between these specific variables and the
common variables. Since the sets of edges (;E)A( and (;E)B( correspond to two directed acyclic graphs,
for the intersection of both holds that @)A(@B C @9( and @%LUJB C (;E)B( and therefore, @%MB is also
free of cycles. However, the union of these two sets of directed edges may contain cycles. In this
case, we search for the feedback arc set and revert its elements, so that the resulting graph is free
of cycles (e.g. Bastert and Matuszewski, 2001). This procedure yields a common graph structure
GAUB for the matched Bayesian network. The edges among the specific variables, and between the
specific variables and the common variables are preserved in the matched Bayesian network. As a

result, the matched DAG contains all variables X, Y, and Z and its set of directed edges is given by
(}EALLUB.

2.3 Step 2: Estimation of the Local Parameters and the Joint Probability Distribution

In the second step, we need to estimate and combine the local probability distributions of all vari-
ables in the Bayesian network. As described above, the global probability distribution represented
by a Bayesian network is the product over the local (conditional) probability distributions. Applying
the chain rule from Equation (2) for Bayesian networks in the statistical matching context yields

::Q

PAP(X=xY =y,Z=2)=]] s (slpa(¥i)) HPQB (ze|pa(Ze))

(=1

Pgpue (25]pa(X;)) 3

:M

1

.
Il

as an estimator for the joint probability distribution. Just as in the likelihood function in Equa-
tion (I), the different terms of this joint probability distribution are estimable on A, B, or AU B,
respectively. In the event that our original concern was macro statistical matching, we are now
finished. Otherwise, we additionally need to perform Step 3.

2.4 Step 3: Imputation of the Missing Values

In the last optional step, our aim is to construct a synthetic data file containing observations of all
common and specific variables. The most obvious approach is the imputation of the missing values

2. The union of these three sets of directed edges contains no cycles. The argument is based on the following three facts:
1. None of the sets @AUB @x v, and @x z corresponding to the three DAGs contains cycles. 2. The subsets only
concerning the common variables are identical in all of the three sets. 3. The two subsets concerning the specific
variables Y and Z are disjoint and can therefore not produce cycles.
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in A U B. Specifically, this means that we impute values for Z in A and Y in B. The values of X
remain unaffected in A as well as in B. This ensures that, in any case, the marginal as well as the
joint distributions of the common variables are maintained. For the purpose of imputation, we can
directly draw synthetic values for Y, k = 1,...,qor Zy, £ = 1,...,r, given the realizations of
X, for every i € T4, or for every ¢ € Zp, respectively, from the estimated posterior distributions
PAYB(Z — z|X = x) and PAYB(Y = y|X = x).

3. The German General Social Survey
3.1 The Data Base

To illustrate the proposed approach of statistical matching by utilizing Bayesian networks, we exem-
plarily apply it to the German General Social Survey (GGSS/ALLBUS) (GESIS — Leibniz Institute
for the Social Sciences|, |2013)). This survey periodically collects information on attitudes, behavior,
and the social structure in Germany every two years since 1980 (GESIS — Leibniz Institute for the
Social Sciences, [2016). After preparation, these data are available for research and teaching and are
therefore frequently used for statistical analysis.

In this paper, we apply our suggested approach to data which has been collected in 2012 and
which contains, inter alia, information on demography, religiousness and physical health of the
respondents. Originally, this survey covered 3480 observations of 752 variables. (For details see
GESIS — Leibniz Institute for the Social Sciences| (2013)).) For this illustration, we extracted the
following 17 variable as common or specific variables:

e common: sex, age, graduation, professional activity, marital status, and net income of the
respondents,

e specific in A: denomination, frequency of churchgoings, frequency of experiencing the pres-
ence of God through faith, frequency of experiences that can only be explained through the
intervention of supernatural powers, any experience with miracle healers/spirit healers, and
frequency of praying

e specific in B: frequency of visiting a doctor, hospital stay in the last 12 month, number of
cigarettes per day, alcoholic beverages per day, and general health.

In many statistical matching applications, the common variables include demographic informa-
tion. This is because in most of the surveys, questions about the demographic background of the
respondents are very common. However, this fact does not eo ipso justify to assume CI between the
sets of specific variables given demographic information.

The continuous variables income and age have been discretized by interval discretization into
categorical variables with finally six possible, different realizations (levels) for income, and 17
levels for age. Variables levels with less than 20 observations have globally been ignored. After
excluding the missing values, we obtain a data set with 800 observation. This data set is randomly
split into two subsets, each containing nay = ng = 400 observations. In the first subset, we remove
all observations regarding to the variables Z, and in the second data set, we remove observations
of Y. This procedure yields two data sets A (€ R400x12) and B (¢ R4%9%11) which can then be

3. In the following, we mainly use the abbreviations written in slanted font to refer to the variables.
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Figure 2: Graph structure of the matched Bayesian network GAUB using Procedure 1 in Step 1 of
the statistical matching approach.

matched as if they stem from two different surveys. Additionally, the matched synthetic data file
can then be compared to the original file.

For the practical implementation of the suggested matching approach, we used the statistical
software R (version 3.3.0 R Core Teaml 2016)), and the package bnlearn (version 3.9 [Scutari,
2010; [Nagarajan et al.| 2013)).

3.2 Statistical Matching of the GGSS Data by Bayesian Networks

For Procedure 1 of Step 1 in our statistical matching approach, we rely on n = na+ng observations
of the six common variables to estimate the graph structure Q)A(L”JB. For the estimation of the DAG
structure, we use a bootstrap approach with model averaging to learn the directed acyclic graph
which additionally estimates a measure for the strength of an edge to appear in the final DAG
(Scutari and Nagarajan, 2011)). In concrete, the structure is learned with the aid of the hill climbing
algorithm in combination with the Bayesian information criterion as score which is applied to 500
bootstrap samples of size % -n (e.g.Nagarajan et al.,|2013; |[Margaritis, |2003). To achieve a Bayesian
network that represents the intended CI assumptions, the algorithm is limited to structures which
are in line with the fork connection. Every edge that appeared in one of the bootstrap iterations
is incorporated into the final graph, except for cycle-causing arcs. During the bootstrap structure
learning, the strength of each edge to appear in the final DAG is computed as its relative frequency
of appearance in the bootstrap folds. Starting with the edge with the highest strength, all edges are
incorporated into the final DAG. In the event that an edge would cause a cycle, it is ignored and the
edges with higher strengths stay incorporated in the final DAG. Since the structures for the common
variables are fixed and identical in this procedure, we can merge the two graphs into one single
Bayesian network as displayed in Figure 2]

Given the joint Bayesian network structure, we estimate the parameters of the local distributions
by maximum likelihood. (A Bayesian estimation approach is also conceivable for this purpose.)
Hence, the estimators equal the (conditional) empirical fractions of the variable levels. For nodes
with several parent nodes it is likely that there exist combinations of parent instantiation which
have not been observed in the present data. We cannot estimate the parameters for this child-node
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Figure 3: Graph structure of the matched Bayesian network GAUB using edge intersection in Proce-
dure 2 in Step 1 of the statistical matching approach.

given unobserved parental characteristics. In these cases, we assume the child-node to be uniformly
distributed given its parent instantiations. This ad hoc assumption only slightly influences the micro
approach because only rare combinations of instantiations are affected. Nevertheless, the influence
of this assumption should be investigated more extensively in future research. Finally we impute
the missing values in A U B by random draws from the posterior.

Within Procedure 2 for Step 1 of the statistical matching approach, we estimate two different
graph structures for A and B, again with the bootstrap approach. To receive graph structures that
represent the block-wise CI of the statistical matching framework, we again restrict the graphs GA
and GB to the fork connection, where the common variables are the parents of the specific variables.
The resulting two graph structures only regarding the common variables differ in a few details.
Therefore, as mentioned above, the sets of edges of graphs G” and GB are combined by either
intersection as displayed in Figure [3|or by union as displayed in Figure[d] The combination strategy
using edge union leads to the following issue: in GA we estimated the edge sex—ractivity, while in
GB the reverted edge sex<—activity has been estimated. Applying the idea of feedback arc sets to
this situation leads to the decision that sex is the parent of activity in the final matched graph. After
the estimation and combination of the local probability distributions, we impute the missing values
of AUB on the same principle as above. Using the same start value for the random number generator
yields the same results for all matched Bayesian networks, derived by Procedure 1 or Procedure 2.
This is due to the fact that all specific variables have the same variables as parents in every matched
DAG.

3.3 Results

For the assessment of the accuracy of a statistical matching procedure, Réssler (2002)) distinguishes
four quality levels in descending order: (i) preserving the individual values, i.e. the matched values
equal the true values, (ii) preserving joint distributions, (iii) preserving correlation structures, which
corresponds to association in our case, and (iv) preserving marginal distributions. To exemplarily
assess the quality of the derived complete synthetic data files by statistical matching with Bayesian
networks, we limit ourselves to the latter two points, i.e. the comparison of the marginal distribu-
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Figure 4: Graph structure of the matched Bayesian network GAUB using edge union in Procedure 2
in Step 1 of the statistical matching approach.

tions and the bivariate association structures in the original GGSS data and the matched synthetic
data in the following. Quality level (i) is generally very difficult to fulfill and not that important (e.g.
D’Orazio et al., 20064, p. 10). The second quality level should be examined extensively in future
simulation studies where the true joint distribution is known.

Since the imputation process does not change the marginal distributions of the common vari-
ables, it is sufficient to consider the marginal distributions of the specific variables exclusively. To
emphasize the contrast between the original and matched marginal distributions, we compute the
Jensen-Shannon divergence between the parameters in the matched synthetic data set and the es-
timated parameters in the original GGSS data set (e.g. |Lin, [1991)). Table |1| presents the rounded
results for the Jensen-Shannon divergence using the base 2 logarithm. It is apparent from this table

denomination church  god  supernatural healer pray

0.000 0.001  0.001 0.004 0.021 0.002

doctor hospital cigarettes alcohol health

0.247 0.003 0.304 0.322  0.182

Table 1: Jensen-Shannon divergence of the synthetic marginal distributions and the marginals in
the original GGSS data. (new table)

that a part of the marginal distributions of the synthetic and original data are very similar. However,
the other part shows that the matching process did not preserve the parameters of the marginal distri-
butions. For example, for the variable denomination the Jensen-Shannon divergence has a rounded
value of 0. This means that the parameters of his variable are globally very similar in the matched
synthetic data and the original GGSS data. However, the Jensen-Shannon divergence for alcohol is
rather large with a rounded value of 0.322. Taken together, the results shown in Table [I] indicate
that the matching process performed rather good with regard to the preservation of the marginal
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distributions of the variables denomination, church, god, supernatural, healer, pray, and hospital.
However, the marginal distributions of the remaining variables which concern the physical health,
are not so well retained. These results are mostly also confirmed by the p-values of the univariate
x2-tests with a corresponding null hypothesis which states that the marginal distributions of the
original GGSS data and the matched data are equal. Within the set of specific variables regarding
religiousness, we recognize stronger associations in average between the single variables than in the
specific set regarding to the physical health. There is evidence that this strength of association also
affects the preservation of the marginals of the specific variables which should be investigated more
closely in future research.

Furthermore, we compare the bivariate associations between the specific variables in the matched
synthetic data with the corresponding associations in the GGSS data to receive an impression of the
matching quality. To this end, we determine Sakoda’s adjusted Pearson’s C' € [0, 1] (corrected con-
tingency coefficient) for every bivariate combination of specific variables Y and Zy, k = 1,...,q,
¢ = 1,...,r. This coefficient is independent of the sample size and the dimension of the con-
tingency table. The absolute deviations of the associations in the matched synthetic data and the
GGSS data which range from 0.02 to 0.149 indicate that the association structures in both data files
are similar. The mean absolute deviation of the association has a rounded value of 0.046 and a
standard deviation of 0.035.

4. Conclusion and Discussion

In this paper, we represented first attempts to utilize probabilistic graphical models as a powerful
tool for statistical matching. Concretely, an approach for statistical matching of discrete data by
Bayesian networks is described which we will further develop end extend in future work.

To the authors’ knowledge, there is no statistical matching approach implemented which can
deal with discrete data only. For this reason, we have not yet compared our results to a kind of
gold standard statistical matching approach. This makes it even more important to stress that the
generalizability of the results of the application example is subject to certain limitations. For in-
stance, the choice of the common variables was more or less arbitrary. The association between
the common variables and the specific variables should, in practice, be measured (e.g. |D’Orazio
et al., 2006a, pp. 167). In our GGSS example these associations vary rather stable between 0.13
and 0.20 for the specific variables on religiousness, and with a wide range between 0.02 and 0.44
for the specific variables on physical health. Although demographic variables are often selected
as matching variables because they are collected in most of the surveys, it is not ensured that they
are convenient to justify CI between the specific variables given the common ones. Note that this
assumption can, in general, not be tested on the incomplete sample A U B in the statistical matching
framework. Further sources of weakness which could have affected the results of the application
example are the assumption of uniformly distributed parameters for not observed parent instantia-
tions as mentioned in Section and the choice of the structure learning algorithm. Additionally,
the representativeness of the synthetic data set should be examined more accurately. In the event
that the original data is known, like in the application example above, the assumption of CI should
also explicitly be tested.

The approaches introduced in this paper will serve as a base for future research of how proba-
bilistic graphical models can be utilized for statistical matching. A natural progression of this work
is to consider not only discrete but also continuous and mixed discrete and continuous variables for
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statistical matching. Additionally, the natural ordering of ordinal variables should not be ignored.
Further research is also required to determine if the use of undirected probabilistic graphical models
is more promising. Although directed graphical models are appropriate to map many real-world
problems, it is not always reasonable to set a direction between associated variables. In statistical
matching it is also common practice to use auxiliary information to estimate the parameters of the
joint probability distribution. This may mean the inclusion of a third complete or incomplete file
or information about inestimable parameters (e.g.|D’Orazio et al., 2006a, chap. 3). In addition, the
inclusion of auxiliary information to probabilistic graphical models in terms of predefined graph
structures or parameters, would be a fruitful area for future work. More broadly, in future research
we should also take advantage of imprecise probabilistic graphical models (see, e.g.,|Cozman,|[2000;
Antonucci et al., 2014, for a survey) to robustify the whole modeling process, including a relaxation
of the CI assumption by the different concepts of independence for imprecise probabilities (for an
overview, see, e.g., Miranda and de Cooman, [2014)). The stability of estimates based on very few
observations can also be improved by these generalizations. Moreover, we should also consider, in
the spirit of Manski| (2003) and [Vansteelandt et al.| (2006), to use partial identified models or sys-
tematic sensitivity analysis to avoid the strong assumption of CI (see also [D’Orazio et al.,|2006b).
In many surveys mainly discrete information is collected and a statistical matching approach for
this kind of data is surely beneficial. Furthermore, this also allows for surveys which reduce the
respondent’s burden by not asking a respondent a complete questionnaire but only specific blocks
of questions. The resulting data could then be matched.
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