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Abstract

This paper introduces the hybrid copula Bayesian network (HCBN) model, a generalization of the
copula Bayesian network (CBN) model developed by Elidan (2010) for continuous random vari-
ables to multivariate mixed probability distributions of discrete and continuous random variables.
To this end, we extend the theorems proved by Nešlehová (2007) from bivariate to multivariate
copulas with discrete and continuous marginal distributions. Using the multivariate copula with
discrete and continuous marginal distributions as a theoretical basis, we construct an HCBN that
can model all possible permutations of discrete and continuous random variables for parent and
child nodes, unlike the popular conditional linear Gaussian network model. Finally, we demon-
strate on a numerous synthetic datasets and a real life dataset that our HCBN compares favorably,
from a modeling and flexibility viewpoint, to other hybrid models including the conditional linear
Gaussian and the mixture of truncated exponentials models.

Keywords: Hybrid networks; Bayesian; copula.

1. Introduction and Motivation

Modeling large multivariate probability distributions is an essential research activity in many fields,
ranging from engineering to computational biology to economics. Their advantage is that they
allow us to understand the dependencies and interactions between random variables, which is ar-
guably instrumental in making intelligent decisions from data. Although modeling large multivari-
ate distributions has many advantages, it is a difficult problem from an analytical and computational
perspective. Closed form expressions for multivariate continuous random variables are limited in
number; common ones include the multivariate Gaussian, t, and chi-squared distributions. Al-
though analytically tractable, these standard models do not fully capture neither the true marginal
distribution nor the statistical dependency for datasets which do not follow these parametric models.
Computationally, one runs into the curse of dimensionality with many real-life datasets.

For discrete random variables, the situation is better because multinomial random variables can
represent arbitrary discrete distributions. However, a difficulty arises when the data is modeled using
multivariate probability distributions of both discrete and continuous random variables, referred to
henceforth as mixed random variables. One approach to modeling them is to factorize the joint
distribution into a conditional distribution of one set of outcomes and a marginal distribution of the
other set (Koller and Friedman, 2009; de Leon and Wu, 2011). While this is a valid approach, it
suffers from the problem of identifying probability distributions for each discrete outcome. When
multiple discrete random variables are combined, the number of conditional distributions to identify
explodes combinatorially.
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1.1 Prior Work

Bayesian networks are graphical models used to estimate large dimensional joint probability distri-
bution functions by estimating products of smaller joint probability distributions under conditional
independence assumptions (Koller and Friedman, 2009). In an all continuous network, these joint
probability distribution functions are typically chosen from parametric models such as the multivari-
ate normal probability distribution function. For hybrid networks, where nodes can be modeled as
both discrete and continuous random variables, popular models such as the conditional linear Gaus-
sian (CLG) network have additional limitations; in particular, they do not allow a continuous parent
to have a discrete child (Koller and Friedman, 2009). By contrast, the mixture of truncated expo-
nentials (MTE) approach removes the parent/child random variable type restrictions by effectively
piecewise surface-fitting the underlying distribution (Moral et al., 2001); although effective from a
modeling perspective, it still retains the combinatorial problem of identifying conditional distribu-
tions, and could introduce inaccuracies at the inflection points of the multivariate distribution due to
the nature of the exponential distribution. This motivates the need for new hybrid models.

Elidan (2010) overcomes the limitations of analytically tractable models by using copula theory
to model Bayesian networks. Copulas are multivariate joint probability distribution functions for
which the marginal distributions are uniform (Nelsen, 2006). Formally, we have

H(x1, . . . , xn) = C(FX1(x1), . . . , FXn(xn)). (1)

where H(·) is the joint distribution function of X1, . . . , Xn, C(·) is the copula that captures the
dependency structure between random variablesX1, . . . , Xn, and FXi(xi) is the univariate cumula-
tive distribution function of the random variables Xi. Elidan (2010) uses this relationship to create
CBNs, and shows that they can effectively model the underlying data while reducing the number of
variables to be estimated jointly.

1.2 Limitations of the CBN Approach

The main limitation of the CBN framework in its current form is that it can only model nodes in
the Bayesian network as continuous random variables. This is due to the fact that Sklar’s theorem,
given by (1), guarantees the existence of a unique copula only when the marginal distribution func-
tions represent continuous random variables. For a given joint distribution function with marginal
distribution functions that represent discrete random variables, there exist many copulas that satisfy
(1). Copula network classifiers (CNCs) (Elidan, 2012) build upon the CBN model and define con-
ditional copulas, allowing for copula networks of mixed random variables. However, CNCs have
the same structure limitations as the CLG model.

To overcome this difficulty, several methods have been proposed in literature to construct cop-
ulas for discrete probability distributions. For instance, following Schweizer and Sklar (1974),
Denuit and Lambert (2005) and Nešlehová (2007) develop continuous extensions and transforma-
tions, respectively, of discrete random variables to define unique copulas with discrete marginal
distributions that retain many of the familiar properties of copulas with continuous marginal distri-
butions. By contrast, de Leon and Wu (2011) develop a conditional probability distribution-based
methodology, while Smith and Khaled (2012) propose a latent variable approach based on MCMC.
As for Kolesarova et al. (2006), they introduce a method based on sub-copulas over domains defined
by uniform discrete distributions. For reasons to be explained later, we concentrate on the approach
investigated by Nešlehová (2007).
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1.3 Goals

In this paper, we develop the theoretical framework for the HCBN model. We begin by extending
the bivariate discrete random variable copula construction and proofs provided by Nešlehová (2007)
to the multivariate (n ≥ 2) hybrid copula in Section 2 and discuss the applicability of these con-
structions. Section 3 then applies these copulas to CBNs, originally developed by Elidan (2010),
to create the HCBN framework. We then show the expressive modeling power of the HCBN in
Section 4 with a synthetic and real-life dataset, and compare its performance to the CLG, MTE, and
multinomial BN models for hybrid data. Concluding remarks are provided in Section 5.

2. Hybrid Copulas

The building block of our HCBN construction will be the hybrid copula, which is a copula function
that joins both continuous and discrete random variables. The discrete random variables under
consideration are count or ordinal discrete random variables, with some ordering between values in
the domain of the discrete random variable (this point is discussed in further detail in Section 2.2).
The difficulty here stems from the lack of uniqueness of the copula function, since the associated
cumulative probability distribution function will exhibit discontinuities at discrete values where
it has non-zero probability. Consequently, the associated copula expressed in terms of the joint
cumulative distribution function H(·) is given by

C(u1, . . . , un) = H(F
(−1)
X1

(u1), . . . , F
(−1)
Xn

(un)) (2)

where ui for all i = 1, . . . n is a uniform random variable taking on values in the unit interval [0, 1].
In this representation of Sklar’s theorem, H(·) is a function of ui for i = 1 . . . n that takes discrete
values over the unit interval [0, 1]. Therefore, there exist many copulas that satisfy the relations
given by (1) and (2), i.e. the copula is not unique. In order to address this issue, Denuit and Lambert
(2005) propose continuing the discrete random variable X with a random variable U valued on
(0, 1) independent of X with a strictly increasing cumulative distribution function LU (u), on (0, 1)
and sharing no parameters with X . Nešlehová (2007) generalizes the foregoing construction by
defining the transformation ψ : [−∞,∞]× [0, 1]→ [0, 1]

ψ(x, u) = P [X < x] + uP [X = x], (3)

where X denotes a random variable that can be continuous or discrete and U denotes a uniform
continuous random variable that is independent of X , and u is a realization of U . It is then
shown in the bivariate case that transforming the discrete random vector (X,Y ) to the vector
Ψ(X,U) = (ψ(X,U), ψ(Y, V )) yields a possible copula describing the original joint discrete
distribution function of (X,Y ). Additionally, if U and V are independent, the copula so defined is
again the standard extension copula of Schweizer and Sklar (1974). Consequently, it preserves the
concordance properties of the original discrete distribution function of (X,Y ) (Denuit and Lam-
bert, 2005; Nešlehová, 2007). Concordance is a form of dependence, which measures the degree to
which two random variables are associated with each other; a pair of random variables are said to
be concordant if large values of one random variable tend to be associated with large values of the
other random variable, and small values of one random variable are associated with small values
of the other variable (Nelsen, 2006). Due to this and other properties and generality, we use the ψ
transformation defined by Nešlehová (2007) and extend the proofs to the multivariate mixed copula.
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In this paper, we consider the ψ function to take any admissible form; this will allow us to
encompass not only the continuous extension defined by Denuit and Lambert (2005), but also the
case of continuous random variables following any probability distribution. For instance, if X is a
continuous random variable, then we have

ψ(X,U) = X, (4)

because P [X ≤ x] = P [X < x] + uP [X = x] = P [X < x] since P [X = x] = 0. In summary,
the transformation ψ(X,U) preserves continuous random variables and transforms discrete random
variables into continuous uniform random variables over [0, 1]. In the next section, we apply (4)
and the results in Nešlehová (2007) to define the multivariate mixed copula.

2.1 Multivariate Mixed Copulas

Define the random vector X = (X1, . . . , Xn), and without loss of generality letX1, . . . , Xk, k ≤ n
be continuous random variables, and Xk+1, . . . , Xn be ordinal or count discrete random variables.
Following the construction of Nešlehová (2007), let us define the transformed random vector as

Ψ(X,U) = (ψ(X1, U1), . . . , ψ(Xk, Uk), ψ(Xk+1, Uk+1), . . . , ψ(Xn, Un))

= (X1, . . . , Xk, ψ(Xk+1, Uk+1), . . . , ψ(Xn, Un)).
(5)

Proposition 1 The unique copula CΨ(X,U) of Ψ(X,U) is a possible copula of X.

Proof: See Appendix A.

Proposition 2 If U1 . . . Un are independent, then CΨ(X,U) is the standard extension copula of the
form specified by Schweizer and Sklar, extended to a k-linear interpolation.

Proof: Follows directly from Proposition 1 and Nešlehová (2007).
Additionally, due to (4), we can directly apply the results of Mesfioui and Quessy (2010) to obtain
the concordance properties of the multivariate mixed copula. More formally, we have

Q̃(H1, H2) = TQ(H1, H2), (6)

where T =
∏d

l=1

(
Tl+1

2

)
, TlP [X1 < X2] = P (X11 < X21, . . . , X1l < X2l, . . . , X1n < X2n],

X1 = (X11, . . . , X1d), X2 = (X21, . . . , X2d), Q̃(H1, H2) = Q(C∗1 , C
∗
2 ), and C∗1 and C∗2 are the

unique copulas associated with Ψ(X1,U1) and Ψ(X2,U2) respectively. Equation 6 shows us that
the multivariate mixed copula has the desirable consequence of retaining the concordance properties
of the original joint distribution X = (X1, . . . , Xk, Xk+1, . . . , Xn).

2.2 Applicability of the Multivariate Extension Framework

The mixed copulas and their properties derived above in Section 2.1 apply to count or ordinal dis-
crete data. This is because copulas contain information about the dependency structure between
two (or more) random variables. If there is no ordering of the discrete data, then the concept of
two random variables behaving together in either a concordant or discordant way (in order words,
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having some dependency structure) does not exist. This however does not prevent one from con-
structing copulas (details of copula construction are provided in Section 3.2) with mixed random
variables where the discrete random variables are unordered, such as categorical data. To construct
a copula with categorical data, one assigns arbitrary ordinal values to the categories. This works
because the continued random variable CDFs given by (5) agree with the original discrete CDF in
the discrete domain. However, interpretation of any dependence structure from the computed copula
only makes sense and is valid if the discrete random variables are count data or ordinal data. This is
not a limitation of the HCBN framework but rather an inherent property of the discrete data being
modeled.

3. Hybrid Copula Bayesian Networks

Having established the theoretical properties and framework for the multivariate hybrid copula, we
are now ready to formally define the HCBN. An HCBN is a tuple CHCBN = (G,ΘC ,Θf ) that
encodes the joint density fX (x). G is the graph structure, ΘC is the set of mixed copula functions
for each copula family (i.e. a child and its parents), and Θf is the set of parameters representing
the marginal densities fXi(xi). This is similar to the CBN definition in Elidan (2010), with the
difference that ΘC is a matrix in which the ith column represents the parameters of the ith copula,
rather than a 1-D vector with the ith element describing the dependence parameter of the ith copula.
This is because the copulas joining all continuous variables only require one parameter (assuming
one parameter families are used) to describe the copula, but copulas joining continuous and discrete
variables will need more.

To express the overall joint density X represented by the HCBN framework, let us first define
the local density of a family via the HCBN framework. In a local density containing n nodes,
without loss of generality, define k to be the continuous marginals, and the remaining n − k to be
discrete marginals. The local joint density of the ith family can then be written as

fi(xi) =

k∏
l=1

fXl
(xl)×

2∑
jk+1=1

· · ·
2∑

jn=1

(−1)jk+1+···+jn×

Ck
i (FX1(x1), . . . , FXk

(xk), uk+1,jn+1, . . . , un,jn)

(7)

where

Ck
i =

∂k

∂u1∂u2 . . . ∂uk
Ci(u1, . . . , un) (8)

, uj,1 = FXj (x
−
j ), uj,2 = FXj (xj). The local density in (7) is a product of the continuous marginal

distributions, the partial derivative of the encompassing copula function with respect to the contin-
uous variables, and the C-volume of the discrete marginal distributions; the C-volume is computed
via the summation of the encompassing copula function in the discrete dimensions over {1,2}, fol-
lowing (2.2.3) in Nelsen (2006). By defining the local density, and defining that Ck

i = 1 in the case
of root nodes, we derive the full joint density, X , using the conditional independence assumptions
of Bayesian networks as follows

fX (x) =
D∏
i=1

fi(xi) (9)
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This is different than the CBN parametrization of X as it does not rely on the copula densities
alone (Elidan, 2010). This is because the CBN model depends upon the fact that for continuous
distributions, the relation given by

f(x1, . . . , xN ) = c(FX1(x1), . . . , FXN
(xN ))

N∏
i=1

fXi(xi) (10)

is true. However, (10) does not hold true for discrete or mixed distributions (Panagiotelis et al.,
2012). This is the main reason why the CBN framework cannot be directly used for hybrid data.
The local density described by (7) is a generalization of (10), and thus applicable to the mixed
random variable scenario.

3.1 HCBN Construction

The steps common to any existing structure learning algorithm required to construct the HCBN are:

1. Preprocess each discrete random variable Xi with the transformation ψ(Xi, Ui).

2. Compute empirical marginal distributions for each node in the Bayesian network.

If score-based approaches such as greedy hill climbing are used for learning, candidate structures
scores would be computed using the scoring function given by given by

L(D : CHCBN ) =
M∑

m=1

∑
i

logfi(xi[m]),

where fi is the local density defined above in (7) and the best scoring structure taking into account
graph complexity would be chosen. The HCBN framework is also compatible with constraint based
approaches, although statistical tests of independence and conditional independence for mixed ran-
dom variables would need to be explored.

It is worth noting the flexibility of the ψ transform in the context of HCBN construction; the
transformation ψ is applied without any a-priori knowledge of the Bayesian network structure. One
consequence of this is that for each node to which the transformation ψ(Xi, Ui) is applied, an
independent Ui is used. The advantage of using an independent Ui for each discrete node is that the
constructed copula inherits the dependence properties of the data it is trying to model, as shown by
(6). The other advantage is that continuing the discrete random variables and the structure learning
are independent, allowing for computational efficiency.

3.2 Copula Density Estimation

In the CBN construction described by Elidan (2010), standard copula models including the Frank
and Gaussian copulas are used to join the continuous marginal distributions. The HCBN construc-
tion can also use standard copula models when all the nodes of a copula family are modeled as
continuous random variables. In the continuous marginals case, this approach works well because
the chosen copula’s dependency parameter θ can be set such that the empirical Kendall’s τ̂ of the
dataset matches the Kendall’s τ of the copula, using known relationships between τ and θ and
thereby capturing the underlying concordance properties of the data (although copula model se-
lection itself is another problem). However, using the relationship between a copula’s dependency
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parameter θ and empirical Kendall’s τ̂ with discrete marginal distributions leads to inconsistent and
biased estimates of the dependence parameter (Genest and Nešlehová, 2007).

Although algorithms to estimate parameters for standard copulas with discrete marginals with-
out bias have been explored (Smith and Khaled, 2012), to the best of the authors’ knowledge, model
selection for copulas in the hybrid scenario has not yet been explored. For this reason, we do
not use standard copulas for modeling mixed random variables. Propositions 1 and 2 show that
copulas constructed by transforming the discrete random variables with ψ and independent Ui’s
yield unique copulas that follow the concordance properties of the underlying data. Although this
amounts to creating a unique copula to model each local mixed distribution, we take this approach
for it’s theoretical soundness. Equivalently, this unique copula model can be viewed as a nonpara-
metric approach to estimating the dependency structure of the corresponding copula family. This
nonparametric approach also avoids the copula compatibility problem, because overlapping copula
marginals remain the same due to them being estimated directly from the data, avoiding the marginal
skewness problem outlined in the CBN construction (Elidan, 2010). However, this advantage comes
at the computational cost of estimating the copula density nonparametrically.

To estimate the multivariate empirical copula density, the beta-kernel approach is taken (Char-
pentier et al., 2007). Beta-kernels are an ideal way to estimate copula density functions due to
their bounded support. For the purposes of HCBN, we estimate the copula density from the data x
directly with

ĉh(u) =
1

M

M∑
m=1

D∏
d=1

β(FXd
(xd(m)),

u

h
+ 1,

1− u
h

+ 1), (11)

where h is a bandwidth parameter, β is the probability distribution function of the Beta distribution,
and FXd

(xd(m)) is the mth pseudo-observation for the dth dimensional data point. Equation (11) is
a multivariate extension of the bivariate copula density estimated by beta-kernals (Charpentier et al.,
2007).

In the context of HCBN, estimating the copula density directly is preferred to finding the copula
function and then differentiating. This is due to two primary reasons: 1.) although the empiri-
cal copula function estimate introduced by Deheuvels (1979) provides a robust and universal way to
compute an empirical copula estimate, the discontinuous features of the estimator introduce difficul-
ties when differentiating the empirical copula, even with respect to the continuous random variables,
and 2.) the inverse function of H in (2) at some point i

T may be chosen arbitrarily between the de-
fined points of the dataset from which the empirical copula is constructed (Charpentier et al., 2007).
Once the copula density is estimated, the discrete dimensions are numerically integrated to find Ck

i

for the ith family.

3.3 Accuracy of Density Estimation in the Hybrid Context

In the hybrid random variable context, (11) becomes a better estimator of the true copula density
as the number of discrete outcomes increases. This is because in this scenario, less volume in the
unit hypercube is filled in with the uniform random variable in ψ(X,U). Figure 1 shows pseudo-
observations of two different bivariate mixed random variables, with the discrete random variable
continued by (5). Both have a dependency structure described by the same copula whose pseudo-
observations are shown in the middle plot; the mixed random variable with two discrete outcomes
is shown in the left plot and the mixed random variable with ten discrete outcomes is shown in the
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right plot. It is seen that as as the number of outcomes for the discrete random variable increases,
the empirical pseudo-observations are closer to the true pseudo-observations, and thus the copula
and dependency structure is better estimated.

Figure 1: Pseudo-Observations plot for different discrete random variables with the same copula
compared to true pseudo-observations of copula.

This intuition is also corroborated by theory in Genest and Nešlehová (2007); Nešlehová (2007);
Denuit and Lambert (2005). Conversely, as the number of discrete outcomes increases, the MTE
and CLG models need to define an exponentially growing number of conditional distributions with
a decreasing number of samples per conditional distribution. Therefore, from a computational and
modeling perspective, the HCBN can be recommended over the CLG or MTE models as the number
of discrete outcomes per local density (copula family in the HCBN context) increases.

4. Experimental Evaluation

We test the HCBN construction with various experiments on various synthetic datasets and a real-
life dataset. In order to compare the HCBN’s performance against the CLG, MTE, and multinomial
BN models, we first create a synthetic data-set generated from a structure with the same I-map as
the Bayesian Network structure showed in Figure 2, where nodes A and B are multinomial discrete
random variables, and C, D, and E are continuous random variables. This structure restriction allows
us to compare the CLG model fairly to the other models.

Figure 2: Bayesian Network used for synthetic data testing.
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To test each model, every permutation of the different configurations for the discrete nodes,
continuous nodes, and the dependencies between them outlined in Figure 2 were tested for the syn-
thetic data evaluation for the CLG, MTE, multinomial BN (data was discretized using a histogram
approach), and HCBN models. All models were given the true structure in Figure 2, in order to
isolate and quantify the expressiveness of each model. Figure 3 shows the experimental bias and
variance of each model for strong and weak, linear and nonlinear dependency structures for the
graphical model with copulas C1, C2, C3 in Figure 2.

Figure 3: Monte Carlo simulations of Hybrid Models against synthetic data.

The results show that in general, for weak dependencies, the copula approach is on par with
or exceeds the performance of the MTE models. For strong dependencies, it is seen that the MTE
model has better performance characteristics than the HCBN model. The strong dependency re-
sults are explained by the reasoning provided in Section 3.3. The weak dependency results can
be explained in a similar light; in a weak dependency scenario, the pseudo-observations are more
spread out and resultantly, the domain of the discrete random variable has less impact in the copula
estimation of the true dependency structure. As expected, the CLG model displays high bias due
to cases in the experiments where the data does not follow the Gaussian distribution. It is seen that
the multinomial approach exhibits relatively low bias but high variance for each category tested,
which can be explained by the discretization process. It remains to be explored how sensitive the
multinomial approach is to other discretization approaches.

In addition to the synthetic data experiments described above, we model the 1994 Census dataset
(Lichman, 2013) using the HCBN. Figure 4 shows samples generated from the HCBN Bayesian
network, versus the collected census data. The left handed columns in Figure 4 are scatter plots
of two random variables from the actual data, and the right handed columns are samples from the
HCBN generative model of that data. It is seen from Figure 4 heuristically, that both continuous
and discrete random variables are modeled expressively and accurately with the HCBN model.
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Figure 4: The top left figure shows a scatter plot of Age (Continuous) vs. FNLWGT (Continuous)
in the 1994 Census data. The top right figure shows samples produced from the HCBN
generative model of Age vs. FNLWGT. The bottom left figure shows a scatter plot of
Age (Continuous) vs Martial-Status (Discrete-Categorical) in the 1994 Census data. The
bottom right figure shows samples produced from the HCBN generative model of Age
vs. Martial-Status.

5. Conclusion

In this paper, we have shown a new method for constructing multivariate copulas with discrete
and continuous random variables, and applied this construction to Bayesian networks to create the
HCBN. The main contribution is the extension of proofs by Nešlehová (2007) to the multivariate
case to ensure the validity of the constructed hybrid copulas and incorporating them into the CBN
framework proposed by Elidan (2010). The defined framework has the ability to:

1. Effectively model multivariate hybrid distributions, while removing the restrictions of graph
structure imposed by the CLG model (Koller and Friedman, 2009).

2. Avoid defining a combinatorial number of conditional distributions.

3. Efficiently sample the Bayesian network through copula sampling algorithms.

The empirical evaluation shows that the HCBN construction compares favorably to the CLG
model and performs similarly to the MTE model. The estimated copula contains information about
the underlying dependency structure, which may eventually be useful for causality related studies.
Although both of these topics are out of the scope of this paper, they motivate research activities in
estimating the copula density of the family via the beta-kernel based technique.

Additional research that will be conducted is to investigate the h parameter in the beta-kernel
methods given by 11. Furthermore, more research into copula constructions for hybrid random
variables will be conducted to address the issue of underestimating strong dependencies when the
domain of the discrete random variables is small, as was seen in Figure 1 and the experimental
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results shown in Figure 3. Finally, we aim to address the approximate inference and structure
learning problem that remains to be solved in the HCBN model.
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Appendix A.

Proof As in Nešlehová (2007), let w ∈ [0, 1] and set

x(w) := F
(−1)
X (w+) u(w) =

{
1 if P [X = x(w)] = 0
w−P [X<x(w)]
P [X=x(w)] else ,

,

where F (−1)
X (x+) denotes the right hand side limit of the generalized inverse of FX . For

(w1, . . . , wn) ∈ [0, 1]n one can construct points (x1(w1), . . . , xn(wn) such that

P [Ψ(X1,U1) ≤ w1, . . . ,Ψ(Xn, Un) ≤ wn]

=
∑
b∈S

CU(u1(w1), . . . , un(wn))×

P [X1�x1(w1), . . . , Xn�xn(wn)],

(12)

where S is the set of all possible combinations of binary vectors of length n,

ui(wi) =

{
1 if Sb(i) = 1
ui(wi) else

� =

{
= if Sb(i) = 1
< else .

,
,

� stands for the mathematical symbol defined above, and Sb(i) is the ith element of the bth bi-
nary vector in the set S. Now suppose that (w1, . . . , wn) ∈ RANGE{F1}× · · ·×RANGE{Fn}.
As in Nešlehová (2007, Proof of Proposition 4), we have that xi(wi) := F

(−1)
Xi

(wi) or xi >

F
(−1)
Xi

(wi), which implies that

ui(wi) =

{
0 if P [Xi = xi(wi)] > 0
1 if P [Xi = xi(wi)] = 0.

Substituting the appropriate values of ui(wi) depending on P [Xi = xi(wi), we arrive at

CΨ(X,U)(w1, . . . , wn) = P [ψ(X1, U1), . . . , ψ(Xn, Un)]

= P [X1 ≤ F (−1)
X1

(w1), . . . , X1 ≤ F (−1)
Xn

(wn)]

= CX(w1, . . . , wn).
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