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Abstract
Cox’s proportional hazard (CPH) model is a statistical technique that captures the interaction

between a set of risk factors and an effect variable. While the CPH model is popular in survival
analysis, Bayesian networks offer an attractive alternative that is intuitive, general, theoretically
sound, and avoids CPH model’s restrictive assumptions. Existing CPH models are a great source
of existing knowledge that can be reused in Bayesian networks. The main problem with applying
Bayesian networks to survival analysis is their exponential growth in complexity as the number of
risk factors increases. It is not uncommon to see complex CPH models with as many as 20 risk
factors. Our paper focuses on making large survival analysis models derived from the CPH model
tractable in Bayesian networks. We evaluate the effect of two complexity reduction techniques:
(1) parent divorcing, and (2) removing less important risk factors based on the accuracy of the
resulting models.
Keywords: Bayesian networks; Cox’s proportional hazard model; approximation.

1. Introduction

Survival analysis is a set of statistical methods that aim at modeling the relationship between a set
of predictor variables and an outcome variable and, in particular, prediction of the time when an
event occurs (Allison, 2010). One of the most popular survival analysis techniques is the Cox’s
Proportional Hazard (CPH) model (Cox, 1972), a set of regression methods used in the assessment
of survival based on its risk factors or explanatory variables.

While the CPH model has been popular in survival analysis, it comes with several limitations.
One of these is that the model focuses only on the interaction between the risk factors and the
survival variable, in separation from the rest of the world. Practical models ask for embedding both
the risk factors and the survival variable in interactions with other variables. Other assumptions
include a special type of multiplicative combination of the risk factors, typically binary risk factors
that are independent of one another. While it is not strictly necessary in theory, CPH models are
typically learned from data.

Bayesian networks (BNs) offer a general, theoretically sound formalism for an intuitive repre-
sentation of the joint probability distribution over a set of random variables. The CPH model is
clearly a restricted subset of the BN model. This means in practice that BNs allow for combining an
equivalent of multiple CPH models, allow for risk factors with multiple states, and for dependencies
between them.
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Building Bayesian networks may be time-consuming because of the quantities of numerical pa-
rameters necessary to capture practical interactions among variables. In (Kraisangka and Druzdzel,
2014), we proposed a methodology for translating a CPH model into a BN model. This resulting
BN model, which we called the BNCox model, captures the predictive ability of the CPH model in
a Bayesian network. The main application of this work is that it allows for reusing the rich body of
knowledge published in medicine that describes the effect of various risk factors on survival.

One problem with this approach that has not been addressed is the exponential growth of the
conditional probability tables corresponding to the survival variables. The tables double in size with
every additional binary risk factor. When the number of risk factors is high, this table may plainly
become intractable.

The goal of this paper is to address this problem. We test two approaches to complexity reduc-
tion: (1) modification of the Bayesian network structure through parent divorcing, and (2) simpli-
fying the network structure by removing least influential risk factors. While ( parent divorcing is a
well known and widely applied technique, it is not straightforward in BNCox models because the
CPH model is not decomposable. We demonstrate that approximate decompositions lead to size-
able loss in model accuracy. Finally, we show that removal of least influential risk factors leads to
reasonable approximations and may offer a viable solution to the problem.

The remainder of this paper is structured as follows. Section 2 introduces the CPH model and
two practical examples of the CPH model, Recidivism (Section 2.1, and the Pulmonary Arterial
Hypertension (PAH) model (Section 2.2). Section 3 reviews the BNCox model. Section 4 contains
the core of the paper, notably description of our efforts to improve the tractability of the BNCox
model by means of structural decomposition of large CPTs through parent divorcing (Section 4.1)
and removal of weak risk factors (Section 4.2). Finally, Section 5 summarizes our findings and
outlines avenues for further research.

2. Cox’s Proportional Hazard Model

Survival analysis basically focuses on modeling time-to-event occurrences. For example, we may
focus on time-to-death of patients with a specific disease, failure time of machines, or time to
possible rearrest of individuals who have been released from prison. One of the most popular
techniques in survival analysis is the Cox’s proportional hazard (CPH) model (Cox, 1972), which is
a set of regression methods used in the assessment of survival based on its risk factors or explanatory
variables. As defined originally by Cox (1972), the hazard regression model is expressed as

λ(t) = λ0(t) exp
β′·X .

This hazard model is composed of two main parts: The baseline hazard function, λ0(t), and the set
of effect parameters, β′ ·X = β1X1+β2X2+ ...+βnXn. The baseline hazard function, estimated
from data, determines the risks when all explanatory variables are absent. According to Cox (1972),
λ0(t) can be unspecified or follow any distribution, which makes the CPH model a semi-parametric
model. The βs are the coefficients corresponding to the risk factors X. To compute the survival
probability, we can use the survivor function as follows

S (t) = S0 (t)
γ ; γ =

λ(t2)

λ(t1)
=

exp (β′X2)

exp (β′X1)
.

The CPH model relies on the assumption that the hazard ratio of two observations, e.g., treatment
and control group in a clinical trial, is constant over time (Cox, 1972). If the hazards at two points
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in time, t1 and t2, are λ(t1) and λ(t2) respectively, their ratio γ is a constant. The CPH model is
typically used to estimate the probability that an individual will survive (event s) at time t given a
set of risk factors Xi, i.e., P (s|Xi, t).

2.1 Recidivism Model

Recidivism of prisoners (Rossi et al., 1980) CPH model is a frequently used example in survival
analysis. The data set has been made available to researchers and was used as an illustration in
survival analysis examples by Allison (2010) using SAS and Fox using R (Fox, 2002). The Recidi-
vism data describe 432 male prisoners who were under one year observation after being released
from prison. The event of interest in this analysis is re-arrest, i.e., whether the prisoner is re-arrested
during the period of study or not. For the purpose of simplicity, only seven binary risk factors (listed
in Table 1) from the total of nine risk factors available in the data set were used to create a CPH
model.

Risk factor (Xi) β exp(β) p-value
X1: fin -0.40415 0.6675 0.0339
X2: race 0.22931 1.2577 0.4549
X3: wexp 0.41055 1.5076 0.0403
X4: mar -0.49926 0.6070 0.1874
X5: paro -0.06721 0.9350 0.7288
X6: prio 0.28708 1.3325 0.2654
X7: educ -0.80736 0.4460 0.0557

Table 1: A list of seven binary risk factors, their corresponding coefficients β, hazard ratio exp(β),
and p-value estimated from the Recidivism data set.

The Recidivism CPH model is captured by the following survival function:

S(t) = S0(t)
eβ1X1+...+β7X7

.

S0(t) is the baseline survival probability function estimated from the model. In this case, S0(t)
consisted of baseline survival probabilities from the 1st week to the 52th week for individuals with
all risk factors absent (baseline) i.e., at 52th week, S0(t = 52) = 0.7527 (see Figure 1). We can
calculate the survival probabilities conditional on any combination of risk factors from the above
equation. The resulting survival curve will be proportional to the baseline survival curve (Figure 1)
due to the CPH assumptions.

2.2 The PAH Model

CPH models, reported usually as lists of risk factors along with their exp(β) coefficients are preva-
lent in medical literature. One such model is the Pulmonary Arterial Hypertension (PAH) CPH
model, created for the purpose of predicting the probability of one year survival of patients suffer-
ing from Pulmonary Arterial Hypertension. The model is based on a data set from the Registry to
Evaluate Early and Long-Term Pulmonary Arterial Hypertension Disease Management Predicting
Survival in Pulmonary Arterial Hypertension (REVEAL) (Benza et al., 2010). The model includes
19 binary risk factors (reproduced from the original paper in Table 2) and the baseline probability
of survival, S0(1) = 0.9698.
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Figure 1: The survival probability curve for individuals with all risk factors absent. The thick black
line shows the baseline survival probability, while the two grey lines show the upper and
the lower bound of the 5% confidence interval.

Risk factors Xi β exp(β) p-value
APAH-CTD 0.7737 1.59 <0.001
FPAH 1.2801 3.60 <0.001
APAH-PoPH 0.4624 2.17 0.012
Male >60 years age 0.7779 2.18 <0.001
Renal insufficiency 0.6422 1.90 <0.001
FC I -0.8740 0.42 0.039
FC III 0.3454 1.41 0.008
FC IV 1.1402 3.13 <0.001
SBP <110 mmHg 0.5128 1.67 <0.001
Heart Rate >92bmp 0.3322 1.39 0.005
6MWD ≥440 m -0.5455 0.58 0.006
6MWD <165 m 0.5210 1.68 <0.001
BNP <50 pg/ML -0.6922 0.50 0.003
BNP >180 pg/ML 0.6791 1.97 <0.001
Pericardial effusion 0.3014 1.35 0.014
% DLCO ≥80% -0.5317 0.59 0.031
% DLCO ≤32% 0.3756 1.46 0.018
mRAP > 20 mmHg 0.5816 1.79 0.043
PVR >32 Wood units% 1.4062 4.08 <0.001

Table 2: A list of 19 binary risk factors, their corresponding coefficients β, hazard ratios exp(β)
and p-values reported in the PAH REVEAL system (Benza et al., 2010).

3. Bayesian network interpretation of the CPH models

In (Kraisangka and Druzdzel, 2014), we proposed a Bayesian network interpretation of the CPH
model by (1) creating a simple network structure in which every risk factor had a directed arc
coming into the survival node, and (2) subsequently populating the CPT for the survival node with
probabilities of survival conditional on every combination of values of the risk factors using the
following formula:

Pr(s|Xi, T = t) = S0(t)
eβ

′Xi .
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The BNCox model captured the temporal characteristics of the CPH model by representing time
explicitly as an indexing variable. The time variable is discretized into the number of time snapshots
used in the original CPH model. The resulting BNCox model produces survival probabilities for
each of these time snapshots that are identical to those of the CPH model. An immediate advantage
of the BNCox model is that it is capable of predicting survival when only a subset of risk factors is
known. The CPH model requires that values of all risk factors are known.

For the sake of simplicity, in the remainder of this paper, we will focus on static BNCox models,
which derive the probabilities of survival at one point in time. We will fix the value of the time
variable to 52th week for the Recidivism model, and to one year for the PAH model.

4. Making CPH model tractable in BN

We investigate two approaches to reducing the complexity of the survival node’s CPT in the BNCox
model: (1) decomposition through parent divorcing, and (2) simplification through removing least
important variables. The following sections describe both approaches and the resulting loss of
accuracy.

4.1 BNCox Decomposition

The size of a CPT in a node is exponential in the number of parents of the node. When the number
of parents is large, the CPT of the node becomes too complex for both knowledge engineering and
for inference. One way of reducing the size of the CPT and the resulting complexity of inference
is through structural decomposition known as parent divorcing. Parent divorcing amounts to adding
intermediate nodes that each take a distinct subset of the original parents and each has a directed arc
ending at the original child node.

Parent divorcing can lead to substantial reduction of the number of parameters and, effectively,
higher efficiency of Bayesian updating (Zagorecki et al., 2006). Figure 2 shows an example decom-
position of a Bayesian network node S with four binary parents.

Figure 2: An example of a Bayesian network structural decomposition known as parent divorcing.
By adding two intermediate nodes, I1 and I2, the node S with four parents will have only
two parents resulting in a smaller CPT and a smaller total number of parameters.

Two auxiliary nodes reduce the size of the CPT at S. The total number of parameters decreases
from 24 = 16 to 22 + 22 + 22 = 12. The savings become even more dramatic when the number of

256



MAKING LARGE COX’S PROPORTIONAL HAZARD MODELS TRACTABLE

parents is large. With 100 binary parents, for example, a single simple decomposition can reduce
the number of parameters from 2100 to 250 + 22 + 250 ∼= 251.

For an interaction between a node and its parents to be amenable to exact parent divorcing, the
function expressing the interaction has to be decomposable in the following way

f(x1, x2, . . . , xn) = g(f1(x1, x2, . . . , xk), f2(xk+1, xk+2, . . . , xn)) .

In case of the noisy-OR gates (e.g., Dı́ez and Druzdzel (2006)), the combination function is a logical
OR, which is commutative, i.e., OR(X1, ..., Xn) function is equivalent to OR(X1, OR(X2,
OR(...OR(Xn1, Xn)...))). Other functions, such as AND, MIN, and MAX are also decomposable.

The main question is whether the survivor function can be similarly decomposed. For the sake
of simplicity, we will use the structure of the BNCox model from Figure 2 as an example for
demonstration. The original survivor function from the model is as follows:

Figure 3: A PAH BNCox model decomposition from (a) to (b) with 19 risk factors

S(t) = S0(t)
e(β1X1+β2X2+β3X3+β4X4)

.

In order to decompose the BNCox model, we have to find a function f that is capable of expressing
S(t) in the following way:

S (t) = f(S1(t)
e(β1X1+β2X2)

, S2(t)
eβ3X3+β4X4

) . (1)

The survivor function describes an interaction between states of risk factors (PRESENT and AB-
SENT) and the probability of survival. This is different from an OR functions which describe
interaction between states. While we cannot offer a proof of this, we believe that the BNCox model
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is not decomposable in a closed form and will, therefore, require an approximation for the sake of
decomposition.

To test this idea, we used the PAH model of Benza et al. (2010). We created the BNCox version
of the PAH model and derived the CPT of the survival node following the interpretation of the CPH
model (Kraisangka and Druzdzel, 2014). All prior probabilities of each parent node followed the
uniform distribution, since the prior probability distributions over the risk factors were not reported
in the original reference. The structure of PAH BNCox is shown in Figure 3-a.

After creating the PAH BNCox model, we generated a data set from the original CPH model by
means of stochastic sampling. We generated at least 5 records for each combination of risk factors.
Once we have generated the data set, we randomly divided all risk factor nodes into two groups.
Figure 3-b shows the structure of the decomposed PAH BNCox. Then, we learned the decomposed
network’s CPTs from the data set using the EM algorithm with intermediate nodes being unobserved
(i.e., absent in the data file). Figure 4-a shows a scatterplot of the probabilities of survival from the
original PAH BNCox model (our baseline) against the probabilities of survival generated by the
decomposed model. As we can see, the approximation resulting from the PAH BNCox model is
rather poor.

Figure 4: Probabilities from the decomposed model against the original CPH model shown in (a) a
scatterplot and (b) a scatterplot with hexagonal binning

Due to the high density in the scatterplot, it is not clear where most of the points are. We used
an alternative visualization technique called Hexagon binning plot (Lewin-Koh, 2011) to show the
same data in Figure 4-b. Each hexagon is colored-coded according to the number of points falling in
that region. Figure 5 shows the Euclidean distance between the survival probabilities calculated by
the original CPH and the decomposed BNCox model for all possible combinations of values of risk
factors sorted from smallest to largest distance. We see an overall poor fit between the decomposed
and the original structures.

Although, we have not tested all version of the network decomposition, we tried other decom-
positions with different number of groups including 4 groups, 6 groups, 9 groups. However, all
those resulting decomposed networks confirm poor approximation of the original model.
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Figure 5: The histogram showing the Euclidean distance between the survival probabilities pro-
duced by the original PAH BNCox model and the decomposed model sorted from the
smallest to largest distance.

4.2 BNCox simplification by removing least influential risk factors

It can be expected that some of the risk factors included in a CPH model will have minimal effect
on the probability of survival and omitting them altogether will not lead to much loss of precision.
On the other hand, removing each of these uninfluential factors will reduce the size of the survival
node’s CPT. Our second approach to reducing the complexity of the BNCox model is, thus, remov-
ing the least influential risk factors. There exist several techniques for variable selection in survival
analysis (Fan and Li, 2002). Some of them originate from multiple linear regression techniques,
e.g, stepwise selection or best subset selection. Other modern techniques are designed for the CPH
model, such as, penalized likelihood approach (Fan and Li, 2001) and LASSO techniques. These
variable selection methods are used to determine the best subset of risk factors during model de-
velopment by refitting the model in order to obtain the best accuracy with the smallest number of
variables. Because our main application of the BNCox model is assimilating CPH parameters from
medical literature, we assume that we already have the best CPH model. Hence, we will investigate
the effect of identifying and omitting the least influential risk factors from among a reported set and
focus on comparing those simplified models to the original CPH model.

We first performed experiments on the Recidivism CPH model. We removed the weakest risk
factor and the strongest risk factor judging by their p-values. We define the “weakest” influences as
those with the highest p-values and the smallest values of the coefficient β. The smaller the value
of β, the weaker the absolute influence of the risk factor on the survival probability. The larger
the value of p, the less certain we are that the risk factor is really affecting survival. The weakest
variable in Table 1 seems paro with β = −0.06721 and p = 0.7288. The strongest variable, on
the other hand, seems wexp with β = 0.41055 and p = 0.0403. We created two modifications
of the Recidivism CPH model: (1) one with the variable paro removed (weakest), and (2) one
with the variable wexp (strongest) removed. These new refitted models have different sets of β
coefficients than the original model. We subsequently calculated the survival probabilities using all
combinations of risk factors (a total of 26 = 64 probabilities) from each of the two modified models.
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Figure 6 shows the result of survivals of the simplified models against the original Recidivism
model.

Figure 6: The scatterplot of the survival probability produced by the simplified models against the
survival probability produced by the original CPH model. The diagonal gray line shows
the ideal scatterplot, one representing no difference between the original and the modified
models.

The original CPH model consisted of 7 binary risk factors resulting in 27 = 128 predicted sur-
vival probabilities. Since we removed one variable from the original CPH model, the total number
of predicted probabilities in the simplified model is 26 = 64. Two survival probabilities in the origi-
nal CPH model correspond to one probability in the modified models. As expected, we observe loss
of accuracy in the simplified models. Removing the weakest variable (Figure 6-a) leads to almost
no loss in accuracy, while removing the strongest variable leads to a noticeable loss (Figure 6-b).

We can use any variable selection methods to obtain the best approximation when we have a
data set available. More typical, however, is the situation in which we have no access to the original
data but have a full set of parameters β (this is the case with our second example, the PAH CPH
model). Instead of refitting the model to data as in the case of the preceeding experiment, one could
fix the state of the weakest variable to either “ABSENT” or to “PRESENT”. In our next experiment,
we evaluated the effect of fixing the state of the weakest variable against the refitting simplified
model from previous experiment. We used the original CPH model (Table 1) and fixed the state of
the weakest variable, paro, producing two sets of survival probabilities (for paro = 0, i.e., absent,
and for paro = 1, i.e., present). Figure 7 shows scatterplots for these two CPH models against the
model with paro removed and the original CPH model.

All three models produce similar errors measured by Euclidean distance. Setting the weakest
variable to absent produces results that are closest to the variable-removed model. In other words,
we could approximate the simplified model by setting state of a risk factor to absent in the original
model without refitting the model from the data set. To confirm this result, we further evaluated this
effect by setting the states of several least influential variables to absent and comparing them against
refitted variable-removed models. We chose four least influential risk factors: paro, race, prio, and
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Figure 7: The scatterplot shows probabilities produced by two fixed-variable models against
one variable-removed model (paro-ABSENT, paro-PRESENT, and the paro-removed
model). The diagonal gray line shows ideal probability as produced from the original
CPH model.

mar from the original model, using their p-value. From the original CPH model, we set paro to
absent and iteratively set additional less influential risk factors (race, prio, and mar respectively).
This resulted in four models that are samples of one-, two-, three-, and four-variable absent models.
Figure 8 shows the resulting survival probabilities of the simplified models both fixed-absent and
refitted models with variable removed against the original CPH model in different number of risk
factors.

Figure 8 shows the effect of fixing variables to absent and refitting simplified models with
variable removal against the original CPH model. As expected, the more we simplify the model, the
higher loss in accuracy. Figure 8-d shows huge loss in accuracy due to a small number of remaining
risk factors. With only three binary risk factors, 16 survival probabilities in the original CPH models
were approximated by one survival probabilities in the simplified models formed in the eight vertical
lines in the scatterplot. We also observed that the more we simplify models, the more difference
between the model with fixing variables and the refitted model with variable removal.

5. Discussion

A major challenge in making BNCox models practical is the exponential growth of the conditional
probability tables at the survival node. We tested two approaches to handling this problem: (1) par-
ent divorcing, and (2) removing least influential risk factors. The BNCox model does not seem to
be decomposable and complexity reduction by parent divorcing leads to a high loss of accuracy. We
suggest simplifying complex models BNCox models by removing the weakest risk factors from the
model.

Any statistical variable selection methods (Fan and Li, 2002) can be used to simplify or reduce
the number of risk factors in the CPH models when data are available. However, when data are not
available, we can simplify the model by removing least influential risk factors, judging them by the
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Figure 8: Effect of absent and removed risk factors in the simplified models against the original
CPH model. The diagonal gray line shows ideal probability as produced from the original
CPH model.

β coefficient and the p-value. Removing less influential variables means that we set the states of
those variables to absent in the CPH model. We evaluated the effect of this approach and observed
a manageable loss of accuracy in the simplified models.

It is worth noting that Oniśko and Druzdzel (2013) found that in medical diagnostic systems,
precision of parameters in Bayesian networks may not be as important for the diagnostic accuracy
of models. Rounding parameters to even as few as two intervals yielded reasonable diagnostic
performance. Removing least important risk factors may not harm much the predictive accuracy of
the model.
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