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Abstract

Computing posterior and marginal probabilities constitutes the backbone of almost all inferences
in Bayesian networks. These computations are known to be intractable in general, both to compute
exactly and to approximate by sampling algorithms. While it is well known under what constraints
exact computation can be rendered tractable (viz., bounding tree-width of the moralized network
and bounding the cardinality of the variables) it is less known under what constraints approximate
Bayesian inference can be tractable. Here, we use the formal framework of fixed-error randomized
tractability (a randomized analogue of fixed-parameter tractability) to address this problem, both
by re-interpreting known results from the literature and providing some additional new results,
including results on fixed parameter tractable de-randomization of approximate inference.
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1. Introduction

Computing posterior and marginal probabilities constitutes the backbone of almost all inferences
in Bayesian networks. These computations are known to be intractable in general (Cooper, 1990);
moreover, it is known that approximating these computations is also NP-hard (Dagum and Luby,
1993). To render exact computation tractable, bounding the tree-width of the moralized network
is both necessary (Kwisthout et al., 2010) and (with bounded cardinality) sufficient (Lauritzen and
Spiegelhalter, 1988). For approximate inference, the picture is less clear, in part because there are
multiple approximation strategies that all have different properties and characteristics. First of all,
it matters whether we approximate marginal, respectively conditional probabilities. The approxi-
mation error can be measured absolute (independent of the probability that is to be approximated)
or relative to this probability. Finally, the approximation algorithm can be deterministic (always
guaranteeing a bound on the error) or randomized (return a bounded error with high probability). In
this broad array there are a few (somewhat isolated) tractability results (Henrion, 1986; Dagum and
Chavez, 1993; Dagum and Luby, 1993; Pradhan and Dagum, 1996; Dagum and Luby, 1997), but
an overview of what can and cannot render approximate inference tractable is still lacking.

In this paper we use fixed-error randomized tractability analysis (Kwisthout, 2015), a recent
randomized analogue of parameterized complexity analysis (Downey and Fellows, 1999), to sys-
tematically address this issue. We consider both absolute and relative approximation, using both
randomized and deterministic algorithms, for the approximation of both marginal and conditional
probabilities. We re-interpret old results and provide new results in terms of fixed-parameter or
fixed-error tractability and intractability. In addition to identifying a number of corollaries from
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known results, a particular new contribution in this paper is a de-randomization of randomized
marginal absolute approximation for fixed degree networks.

The remainder of this paper is structured as follows. After introducing the necessary preliminar-
ies on Bayesian networks, approximation strategies, and parameterized computational complexity
in Section 2, we give an overview of results from the literature in Section 3.1 and some new results
in Section 3.2. The paper is concluded in Section 4.

2. Preliminaries

In this section we introduce notation and provide for some preliminaries in Bayesian networks,
approximation algorithms, the complexity classes BPP and PP, and fixed-parameter and fixed-error
tractability.

2.1 Bayesian networks

A (discrete) Bayesian network B is a graphical structure that models a set of discrete random vari-
ables, the conditional independences among these variables, and a joint probability distribution
over these variables (Pearl, 1988). B includes a directed acyclic graph Gg = (V,A), mod-
eling the variables and conditional independences in the network, and a set of parameter prob-
abilities Pr in the form of conditional probability tables (CPTs), capturing the strengths of the
relationships between the variables. The network thus describes a joint probability distribution
Pr(V) = [[;, Pr(V; | m(V;)) over its variables, where 7(V;) denotes the parents of V; in Gg. The
size n of the network is the number of bits needed to represent both Gz and Pr. Our notational
convention is to use upper case letters to denote individual nodes in the network, upper case bold
letters to denote sets of nodes, lower case letters to denote value assignments to nodes, and lower
case bold letters to denote joint value assignments to sets of nodes. In the context of this paper
we are particularly interested in the computation of marginal and conditional probabilities from the
network, defined as computational problems as follows:

MPROB
Input: A Bayesian network B with designated subset of variables H and a corresponding

joint value assignment h to H.
Output: Pr(h).

CPROB
Input: A Bayesian network 5 with designated non-overlapping subsets of variables H

and E and corresponding joint value assignments h to H and e to E.
Output: Pr(h | e).

2.2 Approximation

For a particular instance (53, H, h) of MPROB, respectively (8, H, h, E, e) of CPROB, an approx-
imate result is a solution to this instance that is within guaranteed bounds of the optimal solution.
We use € to denote such (two-sided) bounds, and define additive approximation and relative approx-
imation of MPROB and CPROB as follows:
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AA-MPROB
Input: As in MPROB, in addition, error bound € < 1/2.
Output: g(h) such that Pr(h) — e < ¢(h) < Pr(h) +e.

RA-MPROB
Input: As in MPROB, in addition, error bound e.

Output: ¢(h) such that Plrfr};) < q(h) < Pr(h) x (1+e¢).

We define AA-CPROB and RA-CPROB correspondingly for the conditional case.

AA-CPROB
Input: As in CPROB, in addition, error bound € < 1/2.
Output: g(h | e) suchthat Pr(h |e) —e < g(h | e) < Pr(h|e) +e.

RA-CPROB
Input: As in CPROB, in addition, error bound e.

Output: g(h | e) such that Pr(lilee) <q(h|e)<Pr(h|e)x (1+e).

In addition to the approximations above, that are guaranteed to always give a solution that is within
the error bounds ¢, we also define stochastic or randomized approximations, where this constraint
is relaxed. In a stochastic approximation we have an additional confidence bound 0 < § < 1 and
we demand that the approximate result is within the error bounds € with probability at least §. If §
is polynomially bounded away from /2, then the probability of answering correctly can be boosted
arbitrarily close to 1 while still requiring only polynomial time.

2.3 Complexity theory

We assume that the reader is familiar with basic notions from complexity theory, such as intractabil-
ity proofs, the computational complexity classes P and NP, and polynomial-time reductions. In this
section we shortly review some additional concepts that we use throughout the paper, namely the
complexity classes PP and BPP and some basic principles from parameterized complexity theory.

The complexity classes PP and BPP are defined as classes of decision problems that are decid-
able by a probabilistic Turing machine (i.e., a Turing machine that makes stochastic state transitions)
in polynomial time with a particular (two-sided) probability of error. The difference between these
two classes is in the bound on the error probability. Yes-instances for problems in PP are accepted
with probability /2 + €, where e may depend exponentially on the input size (i.e., € = 1/c» for a con-
stant ¢ > 1). Yes-instances for problems in BPP are accepted with a probability that is polynomially
bounded away from 1/2 (i.e., ¢ = 1/n¢). PP-complete problems, such as the problem of determining
whether the majority of truth assignments to a Boolean formula ¢ satisfies ¢, are considered to be
intractable; indeed, it can be shown that NP C PP. In contrast, problems in BPP are considered
to be tractable. Informally, a decision problem II is in BPP if there exists an efficient randomized
(Monte Carlo) algorithm that decides II with high probability of correctness. Given that the error is
polynomially bounded away from 1/2, the probability of answering correctly can be boosted to be
arbitrarily close to 1 while still requiring only polynomial time.

While obviously BPP C PP, the reverse is unlikely; in particular, it is conjectured that BPP =
P (Clementi et al., 1998). In principle, randomized algorithms can always be de-randomized by
simulating all possible combinations of stochastic transitions and taking a majority vote. If a ran-
domized program takes n random bits in its computation, this will yield an O(2") determinis-
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tic algorithm; however, if a polynomial-time randomized algorithm can be shown to use at most
O(log |z|) distinct random bits (i.e., logarithmic in the input size |z|) than the de-randomization
will yield a polynomial time deterministic (although not very efficient) algorithm. One can show
that a logn bit random string can be amplified to a k-wise independent random n bit string in
polynomial time for any fixed k& (Luby, 1988), so showing that the random bits in the randomized
algorithm can be constrained to be k-wise independent (rather than fully independent) is sufficient
for efficient de-randomization.

Sometimes problems are intractable (i.e., NP-hard) in general, but become tractable if some pa-
rameters of the problem can be assumed to be small. Informally, a problem is called fixed-parameter
tractable (Downey and Fellows, 1999) for a parameter ~ (or a set of parameters {x1, ..., Km}) if
it can be solved in time, exponential (or even worse) only in x and polynomial in the input size
||, that is, in O(f(k) - |x|¢) for a constant ¢ and an arbitrary computable function f. In practice,
this means that problem instances can be solved efficiently, even when the problem is NP-hard in
general, if k is known to be small. The complexity class FPT characterizes parameterized problems
{k}-II that are fixed-parameter tractable with respect to . On the other hand, if II remains NP-hard
for all but finitely many values of the parameter «, then {x}-II is para-NP-hard: bounding  does
not render the problem tractable. Conceptually in between these extremes one can place a problem
{k}-II that can be solved in time O(|x|*); in this case, {x}-II is in the class XP.

A similar notion of parameterized tractability has been proposed for the randomized complexity
class BPP (Kwisthout, 2015). A problem may need an exponential number of samples to be solved
by a randomized algorithm (e.g., be PP-complete), but this number of samples may be exponential
only in some parameters of the instance, while being polynomial in the input size. A parameter-
ization of the probability of acceptance of a probabilistic Turing machine introduces the notion
fixed-error randomized tractable for a problem with parameter « that can be decided by a proba-
bilistic Turing Machine in polynomial time, where the probability of error depends polynomially
on the input and exponential on . The class FERT characterizes problems II that can be efficiently
computed with a randomized algorithm (i.e., in polynomial time, with error arbitrarily close to 0) if
k is bounded. Formally, a parameterized problem {x}-II € FERT if there is a probabilistic Turing
machine that accepts Yes-instances of II with probability ! /2+min(f(k), 1/|z|c) for a constant ¢ and
arbitrary function f : R — (0, 1/2]; No-instances are accepted with probability at most 1/2. If IT is
PP-hard even for bounded x, then {«}-II is para-PP-hard. A somewhat weaker result relies on the
assumption that BPP # NP: if IT is NP-hard for bounded «, then {x}-II ¢ FERT.

While the theory of fixed parameter tractability is built on parameters that are natural numbers,
the theory can easily be expanded to include monotone rational parameters (Kwisthout, 2011). We
will liberally mix integer and rational parameters throughout this paper. A final observation with
respect to fixed-parameter and fixed-error tractability that we want to make is that for each k1 C &,
if k-II € FPT, then x1-II € FPT, and for each k C ko, if k-II is para-NP-hard, then xs-II is
para-NP-hard. Similar observations can be made for FERT and para-PP-hardness.

3. Results

For exact computations, it is well known that the tree-width of the network and the maximum cardi-
nality of the variables are crucial parameters that allow for fixed-parameter tractable computations
of both marginal and posterior probabilities. For approximate computations, we identify the param-
eters in Table 1. The dependence value of the evidence (D,) is a measure of the cumulative strength
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of the dependencies in the network, given a particular joint value assignment to the evidence vari-
ables (Dagum and Chavez, 1993). We can define for any node X; its dependence strength (given
evidence e) \; as i /i, where [; and u; are the greatest, resp. smallest numbers such that

Vesea(x) Vpeamnxinli < Pr(Xi = z; | p,e) <y

The dependence value of the network (given evidence e) is then given as D, = [[, A\;, where we
assume that there are no deterministic parameters in the network. Note that this value is dependent
on the evidence and can normally not be computed prior to approximation as it requires the compu-
tation of posterior probabilities that were to be approximated in the first place. The local variance
bound (B) of a network is a measure of the representational expressiveness and the complexity of
inference of the network (Dagum and Luby, 1997). It is defined similarly as the dependence value,
but is not conditioned on the evidence, and a maximization rather than a product of the local values
is computed. Let \; be ui/1;, where [; and u; are the greatest, resp. smallest numbers such that

Veeax) Vpearxli < Pr(Xi =z [ p) <y

The local variance bound of the network is then given as B = max;(\;). Additional parameters that
we will consider are the posterior probability P, = Pr(h | e), the prior probability of the evidence
P, = Pr(e), the number of evidence variables |E|, the maximum indegree d and the maximum path
length [ of the network. Finally, we will also parameterize the actual approximation error e.

Parameter Meaning

D, dependence value of the evidence

B local variance bound of the network
P posterior probability

|E| number of evidence variables

P, prior probability of the evidence

d maximum indegree of the network

l maximum path length of the network
€ absolute or relative error

Table 1: Overview of parameters used in the results

3.1 Reinterpretation of known results

In this section we review the literature on approximation algorithms with respect to parameterized
complexity results. In general, if there exists a (fixed-parameter or fixed-error) tractable relative
approximation for MPROB, respectively CPROB, there there also exists a tractable absolute approx-
imation; this is due to the probabilities p that are being approximated are between 0 and 1, and thus
that if 1%6 <qg<px(l4e),thenp —e < g < p+ e. The intractability of absolute approxima-
tions thus implies the intractability of relative approximations. The converse does not necessarily
hold, in particular if p is very small; in a sense, relative approximations are ‘harder’ then absolute
approximations.
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3.1.1 MARGINAL PROBABILITIES

For any fixed e < 1/27+! it is easy to show that absolute approximate inference is PP-hard, as any
approximation algorithm that is able to guarantee such a bound is able to solve MAJSAT simply by
rounding the answer to the nearest 1/2~, this results holds for bounded d as the PP-hardness proof
is constrained to networks with indegree 2 (Kwisthout, 2009). For € > 1/nc we can efficiently ap-
proximate the marginal inference problem absolutely by simple forward sampling (Henrion, 1986);
this is a corollary of Chebyshev’s inequality (Dagum and Luby, 1993). As the number of samples
needed to approximate AA-MPROB by a randomized algorithm depends (only) on €, this yields the
following results:

Corollary 1 (Kwisthout, 2009) {d}-AA-MPROB is PP-hard.
Result 2 (Henrion, 1986) {c}-AA-MPROB € FERT.

For relative approximation, however, it is impossible to approximate RA-MPROB in polynomial
time with any bound € as this would directly indicate whether Pr(h) = 0 or not, and hence by a
corollary of Cooper’s (1990) result, would decide SATISFIABILITY. We thus have that:

Result 3 (Cooper, 1990) {c}-RA-MPROB is para-NP-hard.
Corollary 4 {e}-RA-MPROB ¢ FERT.

3.1.2 CONDITIONAL PROBABILITIES

The situation becomes more interesting when we consider computing posterior probabilities condi-

tioned on evidence. There is a polynomial relation between the marginal and conditional relative

approximation problems: As Pr(h | e) = ng?é‘;), any guaranteed relative approximations ¢(h) and

q(e) will give a relative approximation q(h | e) with error (14 €)? (Dagum and Luby, 1993). How-
ever, conditioning on the evidence increases the complexity of approximation in the absolute case.
Dagum and Luby (1993) showed that there cannot be any polynomial time absolute approximation
algorithm (unless P = NP) for any ¢ < 1/2 because such an algorithm would decide 3SAT. Their
proof uses a singleton evidence variable (J[E| = 1) and at most three incoming arcs per variable
(d = 3). This intractability result implies that there cannot be a tractable relative approximation
algorithm either.

Result 5 (Dagum and Luby, 1993) {¢,d, |E|}-AA-CPROB and {e,d, |E|}-RA-CPROB are para-
NP-hard.

Corollary 6 {¢,d,|E|}-AA-CPROB ¢ FERT; {e,d, |E|}-RA-CPROB ¢ FERT.

In rejection sampling (Henrion, 1986) we basically compute a conditional probability by doing
forward sampling and rejecting those samples that are not consistent with the evidence. It follows as
a corollary that the number of samples needed for a guaranteed absolute error bound is proportional
to the prior probability of the evidence, leading to the following result:

Result 7 (Henrion, 1986) {P.,c}-AA-CPROB € FERT.

269



KWwISTHOUT

In so-called randomized approximation schemes one can compute bounds on the number of samples
needed for efficient relative approximation of CPROB using the zero-one estimator theorem (Karp
etal., 1989). As the number of samples for a particular query depends on the error ¢, the confidence
0, and the posterior probability Py, the following result follows directly from this theorem:

Result 8 (Dagum and Chavez, 1993) { P}, e}-RA-CPROB € FERT.

These results depend on the prior probability of the evidence, respectively the posterior probability
conditioned on the evidence. In a series of papers, Paul Dagum and colleagues explored efficient
relative approximations of CPROB that did not depend on these probabilities, using dependence and
variance bounds as explained in the introduction of this section. They proved that exact inference for
every D, > 1 is #P-hard (by reducing from #3SAT); this implies that we cannot have an absolute
approximation for arbitrary € as we could then round the approximate result in order to recover
the number of satisfying 3SAT instances. They did introduce a randomized approximation scheme
using €, 9, and D, as parameters. This gives the following results:

Corollary 9 (Dagum and Chavez, 1993) {D,}-AA-CPROB is para-PP-hard.
Result 10 (Dagum and Chavez, 1993) {D., ¢}-RA-CPROB € FERT.

In a later paper (Dagum and Luby, 1997), the dependency on the evidence in the network in the
definition of the dependence value was removed by the introduction of local bounded variance B.
Computing MPROB exactly is PP-hard even when parameters are arbitrarily close to 1/2, that is,
when B is bounded; this follows as a corollary from the N PPP_hardness proof of the MAP problem
in Park and Darwiche (2004). The range of the posterior probabilities in this proof is such that
the posterior probability of a particular query of interest in a satisfying instance is bigger then
twice the probability of an unsatisfying instance, hence we cannot have a relative approximation
for any € < 1 because that would solve SAT. In addition to this result, Dagum and Luby (1997)
showed that in general { B}-AA-CPROB is NP-hard for any ¢ < 1/2 and any B > 1. However,
Dagum and Luby (1997) showed that for bounded B, |E|, and € one can obtain efficient Monte
Carlo sampling algorithms, even when B is defined only on the query and evidence variables, i.e.,
B = max;caug (i), rather than on the network as a whole.

Result 11 (follows from Park and Darwiche, 2004) {B}-RA-CPROB is NP-hard for every e < 1.
Corollary 12 {B}-RA-CPROB ¢ FERT forany e < 1.
Result 13 (Dagum and Luby, 1997) {B, |E|, ¢}-RA-CPROB € FERT.

Dagum and Luby (1997) also introduced a de-randomization result; when, in addition to B and
€, also the depth of the network (i.e., the length [ of the longest path in the graph) is bounded,
then CPROB can be approximated with a guaranteed relative error € in polynomial time. The de-
randomized algorithm is not fixed-parameter tractable, however, as the running time is not polyno-
mial in the input size, but exponential in the parameters. This places this parameterized problem
variant in the class XP, rather than FPT.

Result 14 (Dagum and Luby, 1997) {B, [, |E|, e}-RA-CPROB € XP.
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3.2 New results
3.2.1 INTRACTABILITY

A number of intractability results that we list in the overview in Table 3.3 are simple corollaries
from well known intractability results. For example, as it is PP-hard to absolutely approximate
MPROB in general, even with bounded indegree, this implies that {d, P., |E|}-AA-CPROB is PP-
hard, as we can include an isolated evidence node with arbitrary (non-zero) prior probability without
influencing the intractability result.

In this section we will explicitly prove that there cannot be an efficient absolute e-approximation
of the MPROB problem parameterized on the posterior probability P, unless P = NP. We assume
the existance of an algorithm A that can absolute e-approximate MPROB in polynomial time when
the posterior probability is larger than any number R < 1—1/2~-1, and we show that this assumption
implies P = NP.

Fix R and let ¢ = R — 1/2»*. From an arbitrary SATISFIABILITY instance ¢ (using ¢ =
—(x1 V x2) A ~z3 as a running satisfiable example) we construct a Bayesian network B, as follows.
For every literal z; in ¢, we construct a binary root variable X; in By, with uniform probability. For
every logical connective in ¢ that binds the subformulae x and y, we introduce a binary variable
F, with x and y as parents, and with a conditional probability distribution that matches the truth
table of that connective. For example, for a disjunction connecting x; and x5 we introduce a binary
variable with Pr(F,,,, = true | X1, Xo) = 1 if either X; or X5 (or both) are set to ¢true. The
top-level connective (A in the example formula) is denoted as V; in the network. Observe that
Pr(Vy = true) = #/2, where # denotes the number of satisfying truth assignments to ¢; more
in particular, Pr(Vy = true) > 0 if and only if ¢ is satisfiable. In addition, we add a binary
variable H to By, with V;, as only parent, and Pr(H = true | Vy = true) = g+ 1/2»~ and
Pr(H = true | V = false) = q. Figure 1 gives the resulting network for the running example
¢ = —\(iL'l V $2) N —x3.

Figure 1: The Bayesian network B, corresponding to the example SATISFIABILITY instance ¢ =
—|(SL‘1 V ZL‘Q) N —x3
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Theorem 15 [f there exists a polynomial-time AA-MPROB algorithm for any posterior probability
larger than R <1 — 1/2n-1, then P = NP.

Proof Let ¢ be a SATISFIABILITY instance with n variables and let B, be the Bayesian network
constructed from ¢ as discussed above. Obviously this construction takes polynomial time. Let
q = R—1/2"*. We then have that Pr(H = true) = (¢ x 1)+ ((¢+1/2-*) x 0) = ¢ if ¢ is not satis-
fiable, and Pr(H = true) > (¢ x 1—1/27)+ ((g+1/2"1) x 1/27) = g+ 2/2»* if ¢ is satisfiable. Let
€ < 1/27*. For any range R C [0,1 — 1/2n—1], the existance of a polynomial-time e-approximation
of Pr(H = true) would immediately decide whether ¢ was satisfiable. We conclude that there
cannot exist an polynomial-time algorithm approximating AA-MPROB for any posterior probability
P, €10,1 —1/2-1] unless P = NP. [

Corollary 16 {P,}-AA-MPROB ¢ FERT.

3.2.2 DE-RANDOMIZATION

We will show that {d, e}-AA-MPROB is fixed-parameter tractable by de-randomizing Result 2. Let
{B,H, h, ¢} be an instance of AA-MPROB. A simple forward sampling algorithm that would com-
pute a single sample for H using a number of random bits which is linear in the input size n, i.e.,
O(n)'. This algorithm would be run N times to achieve a randomized approximation algorithm,
and by Result 2 N would be exponential only in €, and polynomial in the input size. We can de-
randomize this algorithm by simulating it for every combination of values of the random bits and
making a majority vote, but this would give an exponential time algorithm as the number of random
bits is O(n). If O(logn) distinct random bits would suffice, however, we could effectively simu-
late the randomized algorithm in polynomial time, as the O(log n) random bits can be amplified in
polynomial time to a k-wise independent O(n)-bit random string for every fixed & (Luby, 1988).

In general, we cannot assume k-wise independence in the random bits. As the forward sampling
algorithm samples values for variables from their CPTs, given a (previously sampled) joint value
assignment to the parents of these variables, the random numbers need to be fully independent
for all parents of these variables; that is, if the maximum number of parents any variable has in
the network is d (i.e., the maximal indegree of the network) then the random numbers need to be
d-wise independent. So, we can effectively de-randomize a simple forward sampling randomized
approximation algorithm for AA-MPROB to a tractable deterministic algorithm if d is bounded. This
gives us a {d, €} fixed parameter tractable algorithm for AA-MPROB.

Result 17 {d, e}-AA-MPROB € FPT.

As a corollary from Results 7 and 17, we can also de-randomize { P, ¢}-AA-CPROB to prove the
following result:

Result 18 {P.,d, e}-AA-CPROB € FPT.

1. Note that we defined the input size as the total number of bits needed to describe both the graph and the CPTs.

272



PARAMETERIZED COMPLEXITY OF APPROXIMATE INFERENCE

3.3 Overview

The results from the previous sub-sections are summarized in Table 3.3. The table shows there are
a number of combinations of parameters that can render randomized approximation of posterior
probabilities (either by a sampling approach or a Monte Carlo Markov Chain approach) tractable,
typically bounding both the quality of approximation €, some property of the probability distribution
(like the local variance), and/or some property of the evidence (such as the number of evidence
variables or the prior probability of the evidence). From a complexity-theoretic perspective the
contrast between the two de-randomization results is interesting. Although it is widely assumed
that BPP = P, in the parameterized world we need an extra constraint on d to go from a fixed-
error randomized tractable algorithm for {€}-AA-MPROB to a fixed-parameter tractable one; the de-
randomization of { B, ¢, |E|}-CPROB with the added constraint on [, however, leads to an O (n/(%))

algorithm, i.e., an XP-algorithm, rather than an FPT-algorithm.

Table 2:

MPROB CPROB
Parameters  abs. approx.  rel. approx. abs. approx.  rel. approx.
{e} € FERT[2] ¢ FERT[4] ¢ FERT[6] ¢ FERT [6]
{d} PP-hard [1] PP-hard [1] PP-hard [1] PP-hard [1]
{d, ¢} € FPT [17] ¢ FERT [4] ¢ FERT[6] ¢ FERT [6]
{d,¢,|E|} N/A N/A ¢ FERT [6] ¢ FERT [6]
{d,P.,|E|} N/A N/A PP-hard [1] PP-hard [1]
{P., €} N/A N/A € FERT [7] ?
{P.,d, €} N/A N/A € FPT [18] ?
{Pn} ¢ FERT [16] ¢ FERT [16] ¢ FERT [16] ¢ FERT [16]
{Pn, €} € FERT[8] € FERTI[8] € FERT[8] € FERT [8]
{B} N/A N/A ¢ FERT [12] ¢ FERT® [12]
{B, ¢ |E|} N/A N/A € FERT [13] € FERT [13]
{B,l,¢,|E|} N/A N/A € XP [14] € XP [14]
{D.} N/A N/A PP-hard [9] PP-hard [9]
{D., €} N/A N/A € FERT [10] € FERT [10]

Overview of fixed-parameter and fixed-error tractability and intractability results. The
number between the brackets refers to the number of the result. ‘€ FPT’ denotes that the
parameterized problem {x}-II € FPT, ‘€ XP’ denotes that the parameterized problem
{k}-Il € XP, ‘€ FERT’ denotes that {«x}-II € FERT, ‘¢ FERT’ denotes that {x}-
IT ¢ FERT unless BPP = NP, ‘PP-hard’ denotes that {«}-II is para-PP-hard, and ‘?’
denotes that this problem is open. N/A means that the parameterization is not applicable
for the marginal case where we have not evidence variables. *): This result holds for every

€ < 1. For € > 1 we currently have no relative approximation results.

4. Conclusion

In this paper we investigated the parameterized complexity of approximate Bayesian inference, both
by re-interpretation of known results in the formal framework of fixed-error randomized complexity
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theory, and by adding a few new results. The overview in Table 3.3 gives an insight in what con-
straints can, or cannot, render approximation tractable. These constraints are notably different from
the traditional constraints (treewidth and cardinality) that are necessary and sufficient to render ex-
act computation tractable. In future work we wish to extend this line of research to other problems
in Bayesian networks, notably the MAP problem.
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